Studying Fundamental Physics with Planetary Data & Space Quantum Technology

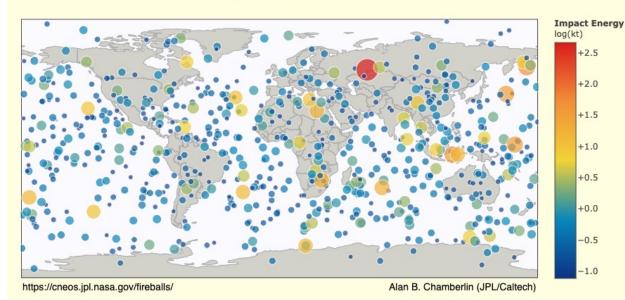
#### Yu-Dai Tsai

University of California, Irvine w/ Youjia Wu, Sunny Vagnozzi, Luca Visinelli, <u>arXiv:2107.04038</u>, under review by *PRL* Contact: <u>yt444@cornell.edu</u> or <u>yudait1@uci.edu</u>

mage: Hasan Almasi - Unsplash -free usage for commercial & non-commercial purposes

#### Theme of this talk:

# Bridging **Planetary Science**, **Fundamental Physics**, and **Space (Quantum) Technologies**


Warning: this talk may have real-life consequences!

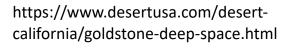
https://www.youtube.com/watch?v=dpmXyJrs7iU (Tuvix72, Youtube video on asteroid hitting Earth)

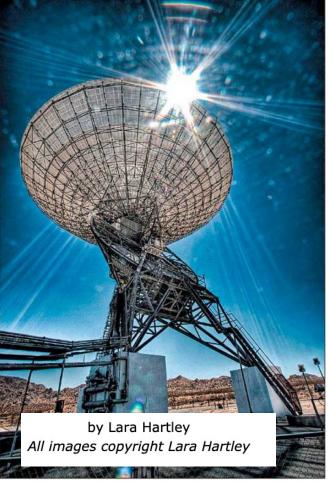
### Asteroids hitting the earth

#### Fireballs Reported by US Government Sensors

(1988-Apr-15 to 2021-Jul-30)

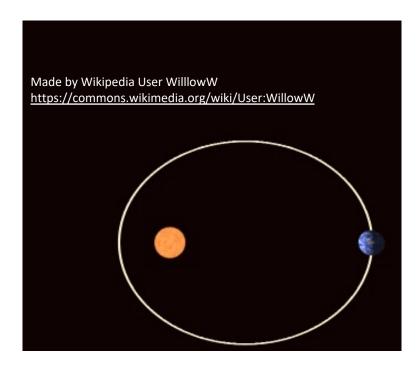






Tracking asteroids is extremely important e.g., unexpected 2013 Chelyabinsk meteor injured >1500 people Also, near-Earth asteroid search accidentally found 'Oumuamua

### **Observations**

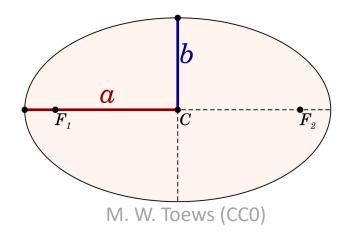
- Radar Goldstone Observatory: • Provide very precise location and velocity information of the asteroids
- **Radar astronomy:** • observing nearby astronomical objects by reflecting microwaves off target objects and analyzing the reflections.
- Round-trip light time (RTLT): The • elapsed time taken by a signal travelling from the Earth to a spacecraft or other celestial body - Distance
- **Doppler measurement: LOS velocity**








#### **Perihelion Precession: Einstein's Success**


**Precession of Mercury's perihelion (closest point to the Sun)** 



https://en.wikipedia.org/wiki/Apsidal\_precession#/media/File:Prec essing\_Kepler\_orbit\_280frames\_e0.6\_smaller.gif under CC BY 3.0

$$\frac{\mathrm{d}^2 u}{\mathrm{d}\varphi^2} + u - \frac{GM_{\odot}}{L^2} = \frac{3GM_{\odot}}{c^2} u^2 \cdot \mathbf{GR}$$

- Consider planar motion and fix  $\theta = \pi/2$ .
- Define inverse radius variable  $u \equiv 1/r = u(\phi)$
- $a = rac{L^2}{M_{\odot}(1-e^2)}$  , a is the semi-major axis



### Precession by General Relativity (GR)

#### **Perihelion precession from GR**

$$\Delta \varphi_0 = \frac{6\pi G M_{\odot}}{a(1-\mathsf{e}^2)c^2} \left[\frac{2-\beta+2\gamma}{3}\right]$$
(GR)

- *a* is the semi-major axis
- e is the eccentricity
- B, γ are the two parameterized post Newtonian parameters, both equal to 1 in GR tightly constrained by Solar System probes
- β represents the amount of nonlinearity in the superposition law for gravity
- γ represents the amount of curvature produced by a unit mass

### **Nine Near-Earth Objects/Asteroids**

**Table 1.** Selected asteroids and orbital elements: Semimajor Axis (a), Eccentricity (e), and Inclination with Respect to the Ecliptic  $(i_{ec})$  and Sun's equator  $(i_{eq})$ .

| Target      | $a~(\mathrm{au})$ | e     | $i_{ m ec}~( m deg)$ | $i_{ m eq}~( m deg)$ | $\dot{\delta\omega}$ (" cy <sup>-1</sup> ) |
|-------------|-------------------|-------|----------------------|----------------------|--------------------------------------------|
| 1566 Icarus | 1.078             | 0.827 | 22.9                 | 15.8                 | 10.1                                       |
| 1998 TU3    | 0.787             | 0.484 | 5.41                 | 3.41                 | 9.11                                       |
| 1999 KW4    | 0.642             | 0.688 | 38.9                 | 46.0                 | 22.1                                       |
| 1999 MN     | 0.674             | 0.665 | 2.02                 | 5.25                 | 18.5                                       |
| 2000 BD19   | 0.876             | 0.895 | 25.7                 | 28.0                 | 26.9                                       |
| 2000 EE14   | 0.662             | 0.533 | 26.5                 | 26.1                 | 15.0                                       |
| 2001 YE4    | 0.677             | 0.541 | 4.82                 | 11.0                 | 14.4                                       |
| 2004 KH17   | 0.712             | 0.499 | 22.1                 | 14.9                 | 12.0                                       |
| 2006 CJ     | 0.676             | 0.755 | 10.3                 | 16.1                 | 23.7                                       |

The ecliptic is the plane of Earth's orbit around the Sun.

#### Nine NEOs with excellent radar observations

Verma, Margot, Greenberg, arXiv:1707.08675, APJ 17

- Radar astronomy help reduce the uncertainty of near-Earth distance to 30 m – 1 km!
  - + fast improving optical obs.

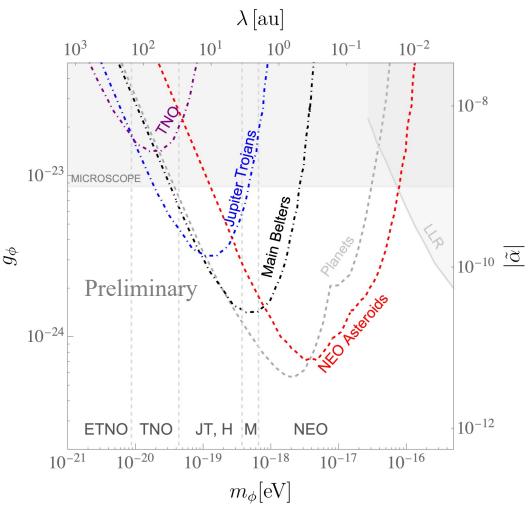
Fractional uncertainty: 
$$10^{-8} - 10^{-9}$$

- $^{\circ}$  1999 KW4 / 66391 Moshup Nearest point  $\sim$  5  $\times$   $10^{9}$  meters uncertainly 40 300 meters
- Utilizing Mission Operations and Navigation Toolkit Environment (MONTE) simulation from JPL

### Analysis

- Verma, Margot, Greenberg, APJ '17
- Dynamical Modeling + MONTE to simulate the trajectories; Dynamical model includes gravitational forces from the Sun, 8 planets, and 21 minor planets with well-determined masses (Konopliv et al. 2011), general relativistic effects, and perturbations due to the oblateness of the Sun
- Construct a covariant matrix analysis, with the observed data from optical and radar observations
- Determine the allowed range from the nominal (Standard Model) values of the β parameter considering the diagonal elements of the covariant

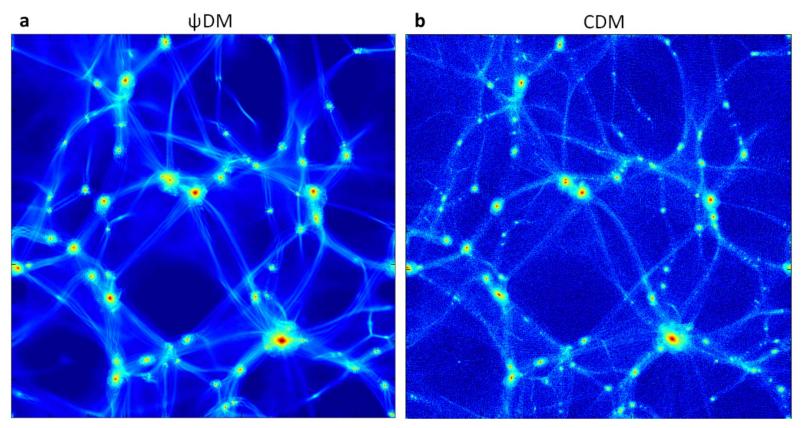
$$\sigma_{\beta} = 5.6 \times 10^{-4}, \qquad \sigma_{\beta} \sim 2 \times 10^{-4},$$


(Optimal 2022 results)

# **Ultralight Dark Sector**

Why is asteroids interesting?

- Large statistics
- Large spread in orbit radius


### **Upshot: Exploring New Physics**



- LLR: Lunar Laser Ranging Williams, Turyshev, Boggs, PRL 04
- **Apache Point Observatory Lunar** Laser-ranging Operatio (APOLLO), Murphy et al (led by UCSD!)
- **Planets:** Poddar, Mohanty, Jana, EPJC 21
  - Asteroidal / Planetary / Lunar Probes are the strongest for equivalence principle conserving fifth forces.

Tsai, Wu, Vagnozzi, Visinelli, arXiv:2107.04038, submitting to PRL

## **Motive 1: Ultralight Dark Matter**



Schive, Chiueh, Broadhurst, Nature Physics '14 arXiv:1406.6586, demonstrated the large-scale structure of this  $\psi$ DM simulation is indistinguishable from CDM, as desired, but differs radically inside galaxies.

# Motive 2:

#### **Extended SM Symmetries & Fifth Forces**

**Gauged**  $U(1)_{EM}$  (Standard Model)  $\implies$  photons

"Gauged"  $U(1)_{X's}$  (hypothetical)  $\Longrightarrow$  "Dark" photons

- X can be bayon number, lepton number, etc: Standard Model Global Symmetries
- Motivated by baryogenesis (matter-anti matter asymmetry) & dark matter

#### 5<sup>th</sup> force and Yukawa Potential

$$\begin{split} V(r) &= \widetilde{\alpha} \frac{GM_{\odot}M_{*}}{r} \, \exp\left(-\frac{r}{\lambda}\right) \,, \\ V(r) &= \mp \frac{g^{2}}{4\pi} \frac{Q_{\odot}Q_{*}}{r} \, \exp\left(-\frac{mc^{2}}{\hbar c}r\right) \,, \\ \frac{\mathrm{d}^{2}u}{\mathrm{d}\varphi^{2}} + u - \frac{GM_{\odot}}{L^{2}} &= \frac{3GM_{\odot}}{c^{2}}u^{2} + \underbrace{\widetilde{\alpha}\frac{GM_{\odot}}{L^{2}}\left(1 + \frac{1}{\lambda u}\right)e^{-\frac{1}{\lambda u}}}_{}, \end{split}$$
(fifth force)

- Gauge boson, dark photon of  $U(1)_B$  or scalar coupled to baryon number
- g is new physics coupling constant, and m is the mediator mass
- See, e.g., Poddar et al, https://arxiv.org/abs/2002.02935

### **Ultralight Bosons**

**1.** Spin 0: ultralight scalars coupled to Standard Model particles

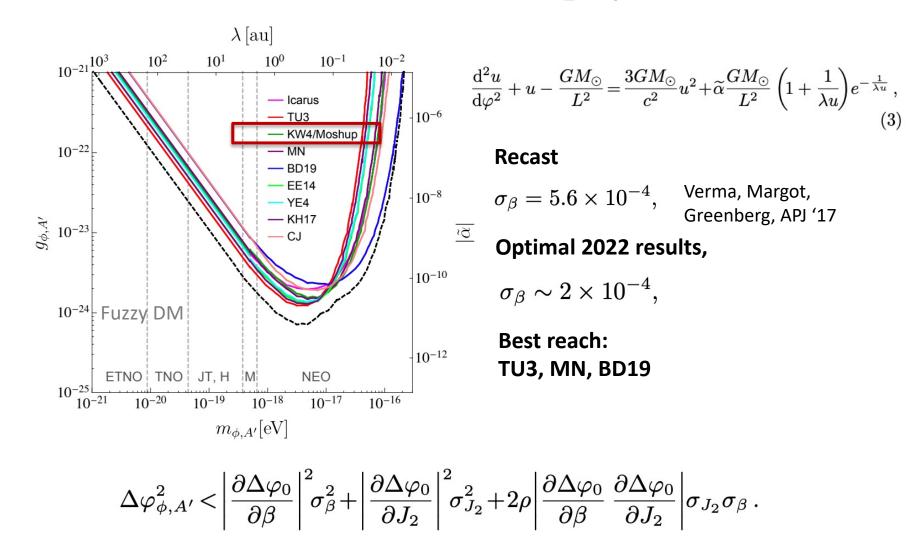
$$\mathcal{L}_{\phi} = \left( g_p \bar{p} p + g_n \bar{n} n + g_e \bar{e} e \right)$$

#### 2. Spin 1: Dark photon of gauged $U(1)_B$ , with coupling $g_A$ , charging all baryons equally charge: $q_p = q_n = 1$

 $U(1)_B$  has chiral anomaly, so extra heavy particle is needed, and there may be additional constraints & model building needed for those constraints (Constraints: Dror, Lasenby, Pospelov, arXiv:1705.06726, arXiv:1707.01503) (Models to alleviate bounds: Green, Schwarzy, PLB 87, Kaplan, NPB 91)

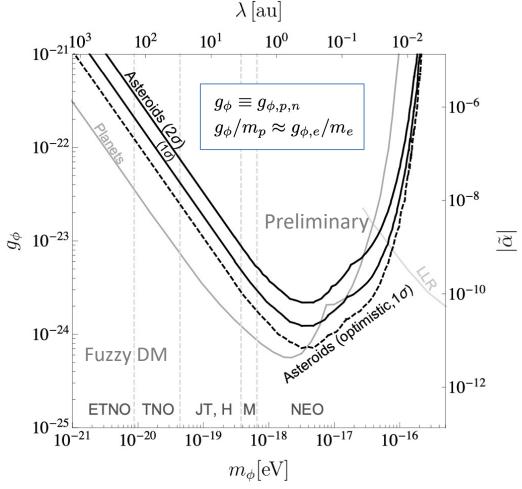
3. Our study can also be applied to  $U(1)_{B-L}$ ,  $L_e - L_{\mu,\tau}$ , etc., Need to understand the asteroid compositions for these.

#### Precession (Analytical) at Low-Mass Limit


$$\begin{split} |\Delta\varphi_{\phi,A'}| \simeq \frac{2\pi}{1 + \frac{g^2}{4\pi G m_p^2}} \frac{g^2}{4\pi G m_p^2} \left(\frac{amc}{\hbar}\right)^2 (1 - \mathbf{e}) \,. \end{split}$$
 (fifth force)

•  $m_p$  is proton mass

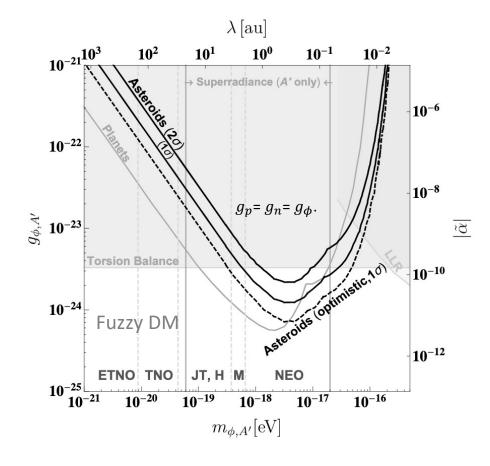
$$\Delta \varphi_0 = \frac{6\pi G M_{\odot}}{a(1-\mathsf{e}^2)c^2} \left[\frac{2-\beta+2\gamma}{3}\right]$$
(GR)


- for low mass, m << 1/ a (Natural Unit)</li>
- The term gets larger with *a*
- That's why we should explore objects further away from the Sun: not just Mercury or other planets
- Not depending on target celestial bodies' mass

#### **Results for the new physics**



Tsai, Wu, Vagnozzi, Visinelli, arXiv:2107.04038, submitting to PRL


# Asteroid Constrain EP Conserving 5<sup>th</sup> forces

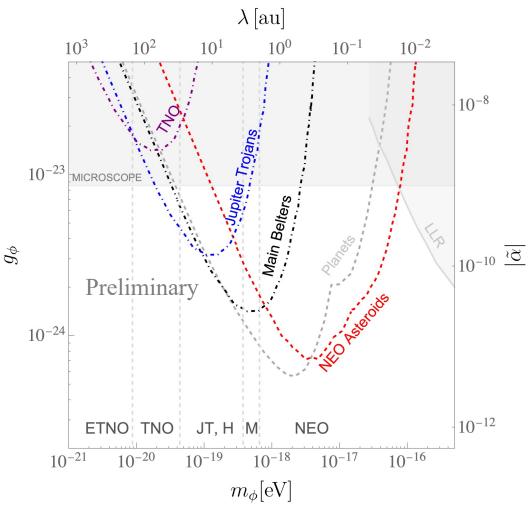


- Planets: Poddar, Mohanty, Jana, EPJC 21
- LLR: Lunar Laser Ranging Williams, Turyshev, Boggs, PRL 04
- Apache Point Observatory Lunar Laser-ranging Operatio (APOLLO), Murphy *et al* (led by UCSD!)
  - Asteroidal / Planetary / Lunar Probes are the strongest for equivalence principle conserving fifth forces.

Tsai, Wu, Vagnozzi, Visinelli, arXiv:2107.04038, submitting to PRL

## **Equivalence Principle-Breaking Fifth Forces**




• Best reach: TU3, MN, BD19

۲

- **Torsion Balance Exp:** Schlamminger, Choi, Wagner, Gundlach, Adelberger, PRL 08
- Superradiance: Baryakhtar, Galanis, Lasenby, and Simon, PRD 21
- LLR: Lunar Laser Ranging Williams, Turyshev, Boggs, PRL 04
- Planets: Poddar, Mohanty, Jana, EPJC 21

#### Tsai, Wu, Vagnozzi, Visinelli, <u>arXiv:2107.04038</u>, submitting to PRL

### **Rough Projections of Near-Future Analysis**



| Minor Planets                | a [au]     | $\sim$ Numbers   |
|------------------------------|------------|------------------|
| Near-Earth Object (NEO)      | $< 1.3^*$  | > 25000          |
| Main-Belt Asteroid (M)       | $\sim 2-3$ | $\sim 1$ million |
| Hilda (H)                    | 3.7 - 4.2  | > 4000           |
| Jupiter Trojan (JT)          | 5.2        | > 9800           |
| Trans-Neptunian Object (TNO) | > 30       | 2700             |
| Extreme TNO (ETNO)           | > 150      | 12               |

Tsai, Wu, Vagnozzi, Visinelli, <u>arXiv:2107.04038</u>, submitting to PRL

#### **Future objects of interest**

| Minor Planets                | a [au]     | $\sim$ Numbers   |
|------------------------------|------------|------------------|
| Near-Earth Object (NEO)      | $< 1.3^*$  | > 25000          |
| Main-Belt Asteroid (M)       | $\sim 2-3$ | $\sim 1$ million |
| Hilda (H)                    | 3.7 - 4.2  | > 4000           |
| Jupiter Trojan (JT)          | 5.2        | > 9800           |
| Trans-Neptunian Object (TNO) | > 30       | 2700             |
| Extreme TNO (ETNO)           | > 150      | 12               |

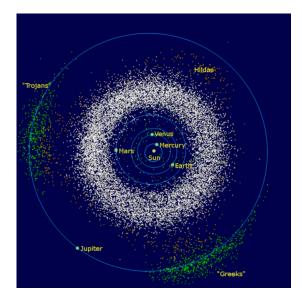



TABLE I. Targets for our future studies, for which exciting opportunities are provided by sheer numbers and observational programs, classified roughly based on their typical semimajor axes.

\*NEOs are defined as having perihelia a(1 - e) < 1.3 au.

$$|\Delta \varphi_{\phi,A'}| \simeq \frac{2\pi}{1 + \frac{g^2}{4\pi G m_p^2}} \frac{g^2}{4\pi G m_p^2} \left(\frac{amc}{\hbar}\right)^2 \left(1 - \mathbf{e}\right).$$

- Tsai, Wu, Vagnozzi, Visinelli, <u>arXiv:2107.04038</u>, submitting to PRL
- Can also probe dark matter, primordial black hole, etc


#### **Optical Observations, GAIA, Space Mission**



A photograph and rendering mix of the exterior of the Vera C. Rubin Observatory building on Cerro Pachón in Chile. Image credit: Rubin Obs./NSF/AURA https://www.aura-astronomy.org/centers/nsfs-oir-lab/rubinobservatory/

- **LUCY** is a planned NASA space probe that will complete a 12-year journey to seven different **asteroids**.
- Optical Vera Rubin Observatory: increase the discovered number of solar-system objects by 5 times.





An artist's impression of the Lucy spacecraft performing a flyby of a Jupiter trojan.

# New projects

Yu-Dai Tsai, Fermilab  $\rightarrow$  UC Irvine, '21, <u>yt44@cornell.edu</u>

#### **Some References**

- LLR Experiments: Williams, Turyshev, Boggs, PRL 04 Murphy, Rept. Prog. Phys 13
- Atomic / nuclear clocks for fundamental physics: Peik, Schumm, Safronova, Pálffy, Weitenberg, Thirolf, 2012.09304
- GW background, Fedderke, Graham, Rajendran, PRD21
- Quantum Technologies in Space, Kaltenbaek, Exp Astron 21

## **Three Exciting Research Directions**

- Asteroidal/Planetary Tracking Array develop a tracking array to study **bosonic ultralight dark matter** (possible) and gravitational wave (difficult), see <u>references in previous slides</u>
- Lunar Laser + Radar Ranging LLR + transponder; multi-messenger localization discussing with NSF funded <u>Q-SEnSE collaboration</u>
- Space Q: Space Quantum Technologies
   Probing fundamental physics with space quantum technologies
   with Josh Eby (IPMU) & Marianna Safronova (Delaware)
   coming out this week!

## **Big Picture & Outlook**

- Bridging planetary science, space (quantum) technology, and fundamental physics
- Our result is exciting now and has significant potential given the future measurements: radar, optical, and space missions will bring tremendous progress!
- Atomic clocks on the moon, spacecraft, satellite, Asteroid Tracking Array, and Advanced Lunar Ranging: Many exciting projects forward! Collaborating with NIST, NASA, ESA, etc people on proposals

Yu-Dai Tsai, Fermilab → UC Irvine, '21 <u>yt444@cornell.edu</u>

# Thank you! Especially thank Youjia, Sunny, & Luca Happy to discuss more!

Yu-Dai Tsai, UC Irvine, '21 <u>vt444@cornell.edu</u>