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PBH Bounds

TRRRTI

Fraction

PR R I S S S
1050 1055

M [g] Carr et al. 2020




PBH Heating Constraint

Thermal Equilibrium PBH allowed fraction

* Require heating rate equal to cooling rate i
MC

* Ignore heating from standard sources feBH < foound = m
Total heating (PBH) vs local heating (particle DM) ~ Lower limit
pomV 3M
Nppu(M) = fpeu Jooungd > T
M oun 41r1‘2yspDM

Bhoonah et al. 2018
Wadekar and Farrar 2019




Target System: Leo T

Dwarf Galaxy

Well-studied and modeled

No significant star formation

No coherent rotation detected
Properties

Average DM density: 1.75 GeV/cm”3

Average H1 density: 0.07 GeV/cm”3

Velocity dispersion: 7 km/s
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Cloud Cooling
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Cooling rate:
C = n?10F/HIA(T)

Cooling Function:

K(T)y= 2515 1202

Wadekar and Farrar 2019
Kim 2020




Cloud Heating Processes

Accretion disk luminosity
*  Bondi-Hoyle accretion

* ADAF

*  Thin disk

*  Optical Depth

Winds
* Stopping Power

Dynamical Friction




Individual Heating Contributions
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Initial Constraints
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Spinning PBH

* Spin decreases Innermost Stable Circular
Orbit (ISCO) radius

* Increased plasma temperature resulting in
higher accretion disk emission

* Possibility of Blandford-Znajek jets

Blandford and Znajek 1977
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Winds and Jets as Outflows

* Parameterized emission with
efficiency factor

Lj — EjMaCC

* Magnetically Arrested Disk (MAD)
suggest (j=1 (high eff.)

disk

relativistic jet

cocoon ,
(shocked material) | i

e Qutflows from Quasars suggest
(j=0.005 (low eff.)

Volodymyr Takhistov e Additional factors from duty cycles,
heating efficiency implicitly included
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Application to Evaporating PBHs

109 ¢
* Competitive bound for light PBH F

* Uses similar cloud cooling

1071 E
argument :

fen

* Assumed positrons/electrons

102§
were permanently trapped :

* We reanalyzed and included spin. "
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Figure taken from Kim 2020
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Conclusions

1. New competitive bound on intermediate mass from cloud
cooling. This bound is cosmology independent and complementary
to other bounds.

2. Spinning black holes have increased emissions resulting in more
stringent bounds

3. Outflows from winds or jets can form shocks, efficiently heating
the jets.

4. Without the assumption of ion trapping, the bound on light PBH
from Hawking evaporation is much weaker than previously claimed.




Questions?




