The Diffuse Supernova Neutrino Background at Super-Kamiokande: latest results and future prospects

AstroDark-2021

Alberto Giampaolo December 9, 2021

Laboratoire Leprince-Ringuet - École Polytechnique

The DSNB search with Super-Kamiokande

Latest analysis results using SK-I-II-III-IV data

The future: SK-Gd

The DSNB search with Super-Kamiokande

Latest analysis results using SK-I-II-III-IV data

The future: SK-Gd

The Diffuse Supernova Neutrino Background

Neutrino flux from all distant core-collapse supernovae

- Detection and characterization would allow for the study of aggregate properties of core-collapse supernovae, while probing the history of the universe and neutrino properties
- · All flavors of neutrinos produced during CC SN, reaching Earth redshifted
- Expected signal is \sim 10s of MeVs and has so far proved elusive

The Super-Kamiokande Detector

A 50-kton water Cherenkov detector in Japan's Kamioka mine

- Located under Mt. Ikeno in Gifu Prefecture, Japan
- Shielded from cosmic ray activity by ${\sim}1\,\text{km}$ of rock
- Inner Detector: 11129 PMTs
- Resolution: 50cm, 3 ns
- Energy coverage: 4 MeV $\leftrightarrow \sim$ TeV
- Water constantly recirculated and purified
- SK phases I-V: ultrapure water
- SK phases VI+ (starting summer 2020): water doped with Gadolinium sulfate, enhancing the signature of a neutron in the detector

A 50-kton water Cherenkov detector in Japan's Kamioka mine

- Located under Mt. Ikeno in Gifu Prefecture, Japan
- Shielded from cosmic ray activity by ${\sim}1\,\text{km}$ of rock
- Inner Detector: 11129 PMTs
- Resolution: 50cm, 3 ns
- Energy coverage: 4 MeV $\leftrightarrow \sim$ TeV
- Water constantly recirculated and purified
- SK phases I-V: ultrapure water
- SK phases VI+ (starting summer 2020): water doped with Gadolinium sulfate, enhancing the signature of a neutron in the detector

Detection of DSNB $\overline{\nu_e}$ via Inverse Beta Decay (IBD) in water

- 5-20 events/year
 Energy range: 12-80 MeV
- Need extremely powerful algorithms to characterize spallation and atmospheric backgrounds and identify the neutrons
- Current analysis: uses runs from the SK-IV data-taking era (Sep 2008-May 2018)
- Reconstruction separates into:
 - 1. Prompt event (e⁺) vertex reconstruction
 - 2. Delayed event (n) tagging

Weak delayed signal

Detection of DSNB $\overline{\nu_e}$ via Inverse Beta Decay (IBD) in water

- 5-20 events/year
 Energy range: 12-80 MeV
- Need extremely powerful algorithms to characterize spallation and atmospheric backgrounds and identify the neutrons
- Current analysis: uses runs from the SK-IV data-taking era (Sep 2008-May 2018)
- Reconstruction separates into:
 - 1. Prompt event (e⁺) vertex reconstruction
 - 2. Delayed event (n) tagging

Weak delayed signal

[Beacom and Vagins, Phys. Rev. Lett., 93:171101, 2004]

Radioactive spallation backgrounds

Radioactivity induced by cosmic muon spallation in water

[FLUKA simulation, A. Coffani]

- One spallation muon every two minutes
- Needs to be reduced by $\mathcal{O}(10^4)$
- Main signatures

> 99%
$$\beta$$
 decays: A \rightarrow e[±] + ν
< 1% IBD-like (⁹Li): A \rightarrow e[±] + n

- Isotopes' half-lives up to 13 s \Rightarrow correlations over large time scales
- No simulation in WC detectors ready at time of analysis

Reduction strategy:

- Identify isotope clusters and neutrons from muon showers
- Investigate correlations between muons and candidate events

Pair each candidate event with muons up to 30 s before Investigate correlations using a likelihood analysis

Observables

Extracting distributions

- + Δt , L_t , L_l : distance and time difference
- resQ: charge deposited by the muon in addition to minimum ionization

Atmospheric neutrino backgrounds

Estimating normalization and spectral shapes:

- O(100%) uncertainties on rates and spectral shapes below 100 MeV except for decay electrons (measured Michel spectrum from stopping muons).
- Strategies: Use T2K to estimate cross-sections and efficiencies (NC backgrounds), or use sidebands in energy and Cherenkov angle. [Y. Ashida, Ph D. thesis (2019)]

Neutron tagging

A faint neutron capture signal amid a sea of low-energy background

- 2.2 MeV neutron capture signal extremely weak; easily lost among abundant low-energy backgrounds (4 kHz PMT noise, radioactivity, flasher events...): vertex not readily reconstructed
- Wide trigger scheme (540 μ s time window), makes detection of neutron captures in water ($\tau_{CAP} \sim 200 \mu$ s) feasible.
- Up to $\mathcal{O}(10^4)$ reduction required after candidate selection

- Maximally exploit correlations with well-reconstructed primary vertex
- Use a BDT (a Machine Learning method) to classify neutron candidates, achieving \sim 20%-30% overall efficiency
- Gd has recently been dissolved inside the tank, producing brighter, 8 MeV capture signals. Efficiency is expected to increase to >80% for future analyses.

The DSNB search with Super-Kamiokande

Latest analysis results using SK-I-II-III-IV data

The future: SK-Gd

Binned, model-independent analysis

- · Bin-by-bin cut optimization and limit extraction
- SK-IV is the first data perdiod where neutron tagging is possible, allowing to lower the energy threshold down to E_{ν} =9.3 MeV

Unbinned, model-dependent spectral fit

- Fit the spectral shapes of remaining background contributions and various DSNB models to the data
- Simultaneous unbinned extended maximum likelihood fit in 6 regions:

	Cherenkov angle					
Neutrons	$[20,38]^\circ$	$[38, 50]^\circ$	$[78,90]^\circ$			
0 or >1	μ/π	Signal	NC			
1	μ/π	Signal	NC			

 Results are combined with fits from previous SK data periods

• Neutron tagging defines cleaner, more sensitive 1-neutron signal region. With the introduction of Gd in the tank, a much larger fraction of our signal will be contained in the clean signal region.

Unbinned, model-dependent spectral fit

- Fit the spectral shapes of remaining background contributions and various DSNB models to the data
- Simultaneous unbinned extended maximum likelihood fit in 6 regions:

	Cherenkov angle					
Neutrons	$[20,38]^\circ$	$[38, 50]^\circ$	$[78,90]^\circ$			
0 or >1	μ/π	Signal	NC			
1	μ/π	Signal	NC			

 Results are combined with fits from previous SK data periods

• Neutron tagging defines cleaner, more sensitive 1-neutron signal region. With the introduction of Gd in the tank, a much larger fraction of our signal will be contained in the clean signal region.

- Combined SK-I-II-III V analysis complete, using roughly double the livetime of previous (SK-I-II-III) 2007 analysis
- Model-independent differential upper limits are placed down to E_{\u03c0} = 9.3 MeV, obtaining the current tightest sensitivities for E_{\u03c0} > 11.3 MeV. The latest 2021 KAMLAND results reach tighter sensitivities for E_{\u03c0} < 11.3 MeV
- Model-dependent **spectral fits** performed on the data after reduction cuts, reaching a combined 90% SK-I-II-III-IV flux sensitivity of 1.5 $\overline{\nu}_e$ cm⁻²·sec⁻¹. A 1.5 σ excess leads to a best-fit of 1.30^{+0.90}_{-0.85} and an **observed upper limit of 2.6** $\overline{\nu}_e$ cm⁻²·sec⁻¹.
- The most optimistic models still excluded, by wider margins (Totani+96, upper range of Kaplinghat+00)
- Sensitivity is now comparable to predictions for more realistic models (e.g. Ando+03, Horiuchi+09, Galais+09, Kresse+20)

 \rightarrow Pre-print available at arxiv.org/abs/2109.11174

The DSNB search with Super-Kamiokande

Latest analysis results using SK-I-II-III-IV data

The future: SK-Gd

The SK-Gd project

- Since 2020 SK has started dissolving Gd sulfate in the tank to enhance the neutron capture signal
- n capture on Gd is faster ($\tau \sim 30 \mu$ s) and brighter (~ 8 MeV total photon energy)
- Current Gd concentration: 0.01% (50% neutrons captured on Gd)
- 2022 target concentration: 0.03% (75% neutrons captured on Gd)
- Ultimate target concentration: 0.1% (90% neutrons captured on Gd)

	Efficiency (%)		
	Н	Gd	
N10 > 5	59	99.5	
dt∈[1-535]	54.4	96.7	

Neutron tagging BDT (still unoptimized)

Neutron tagging BDT (still unoptimized)

- Project SK-Gd performance for future DSNB spectral fit searches
- Assume atmospheric background PDFs after cuts are the same as in SK-IV
- Reweight PDFs according to ntag efficiency at desired Gd concentration
- Starting with a pure-background hypothesis, study expected exclusion power

- Sensitivity to the DSNB with Gd limited by neutron-producing atmospheric backgrounds in the signal region
- Important neutron multiplicity observed for all atmospheric categories
- In particular, neutral current backgrounds are the most problematic, as they frequently produce neutrons, and their spectrum peaks at low energies, as does the DSNB spectrum.

Outlook

- Analysis of the full SKIV dataset complete, integrating neutron tagging for the first time. To be fully capitalized on with SK-Gd.
- SK-Gd project set to increase neutron tagging efficiency 3-4 fold, and preliminary study shows DSNB exclusion sensitivity set to improve 4-fold
- · Neutron tagging still far from optimized: performance improvements possible
- For further gains in sensitivity, need better characterization of atmospheric backgrounds.
- $\rightarrow\,$ At the prompt level: to what extent can we characterize and remove neutral current backgrounds?
- $\rightarrow\,$ At the delayed level: to what extent can we differentiate neutron capture signals from atmospheric interactions?
 - Looking further ahead: the larger statistics afforded by Hyper-K, as well as combined efforts with other neutrino observatories, will allow for more precise characterization of the DSNB

Backup

<u>De</u>cay e PDF

 $(20 < \theta_{C} < 38)$

NC PDF

 $(20 < \theta_{\rm C} < 38)$

CC μ / π PDF

 $(20 < \theta_{C} < 38)$

$(38 < \theta_{\rm C} < 50)$

 $\mathbf{CC} \ \nu_{\mathbf{e}} \ \mathbf{PDF}$

 $(20 < \theta_{\rm C} < 38)$

$$\mathsf{PDF}_{\mathsf{new}} = \mathsf{PDF}_{\mathsf{old}} \times \mathsf{N} \left[1 + \frac{0.5\epsilon(\mathsf{E} - \mathsf{16}\,\mathsf{MeV})}{\mathsf{74}\,\mathsf{MeV}} \right] \tag{1}$$

$$\mathcal{L}' = \int_{-1}^{3} \mathcal{L}(\epsilon) \mathsf{G}(\epsilon) \,\mathrm{d}\epsilon.$$
⁽²⁾

With asymmetric Gaussian function $G(\epsilon)$

$$\begin{split} \mathsf{PDF}_{\mathsf{hed}}^{\mathsf{NC}} &= \mathsf{PDF}_{\mathsf{ned}}^{\mathsf{NC}} \times (1 + \epsilon) \\ \mathsf{PDF}_{\mathsf{high}}^{\mathsf{NC}} &= \mathsf{PDF}_{\mathsf{high}}^{\mathsf{NC}} \times (1 - f_{\mathsf{high}} \epsilon) \\ \mathsf{PDF}_{\mathsf{low}}^{\mathsf{NC}} &= \mathsf{PDF}_{\mathsf{low}}^{\mathsf{NC}} \times (1 - f_{\mathsf{low}} \epsilon) \end{split}$$

(3)

(4)

where

$$\begin{split} f_{high} &= \frac{\int \text{PDF}_{med}^{NC} \int \text{PDF}_{high}^{NC}}{(\int \text{PDF}_{high}^{NC})^2 + (\int \text{PDF}_{low}^{NC})^2} \\ f_{low} &= \frac{\int \text{PDF}_{med}^{NC} \int \text{PDF}_{low}^{NC}}{(\int \text{PDF}_{high}^{NC})^2 + (\int \text{PDF}_{low}^{NC})^2} \end{split}$$

SK-I-II-III-IV DSNB flux limits ($\overline{\nu}$ cm⁻²s⁻¹ E_{ν} > 17.3 MeV)

	Best fit		90%	CL li		Pred.		
Model	SK4	All	SK1	SK2	SK3	SK4	All	
Totani+95 Constant	$2.5^{+1.4}_{-1.3}$	$1.3^{+0.9}_{-0.9}$	2.3	6.3	7.0	4.5	2.6	4.67
Kaplinghat+00 HMA (max)	$2.6^{+1.5}_{-1.3}$	$1.3^{+0.9}_{-0.9}$	2.3	6.7	7.1	4.7	2.6	3.00
Horiuchi+09 6 MeV, max	$2.6^{+1.4}_{-1.3}$	$1.3^{+0.9}_{-0.9}$	2.4	6.0	7.0	4.6	2.6	1.94
Ando+03 (updated 05)	$2.7^{+1.5}_{-1.4}$	$1.4^{+0.9}_{-0.9}$	2.3	6.6	7.2	4.7	2.7	1.74
Kresse+21 (High, NO)	$2.7^{+1.5}_{-1.3}$	$1.4^{+0.9}_{-0.9}$	2.3	6.7	7.2	4.7	2.7	1.57
Galais+09 (NO)	$2.5^{+1.4}_{-1.3}$	$1.3^{+0.9}_{-0.9}$	2.3	6.3	7.0	4.5	2.6	1.56
Galais+09 (IO)	$2.6^{+1.4}_{-1.3}$	$1.3^{+0.9}_{-0.9}$	2.3	6.4	7.0	4.5	2.6	1.50
Horiuchi+18 $\xi_{2.5} = 0.1$	$2.6^{+1.4}_{-1.3}$	$1.4^{+0.9}_{-0.9}$	2.4	6.1	7.1	4.6	2.7	1.23
Kresse+21 (High, IO)	$2.7^{+1.5}_{-1.3}$	$1.4^{+0.9}_{-0.9}$	2.3	6.7	7.1	4.7	2.7	1.21
Tabrizi+21 (NO)	$2.7^{+1.5}_{-1.3}$	$1.4^{+0.9}_{-0.9}$	2.4	6.6	7.1	4.7	2.7	0.92
Lunardini09 Failed SN	$2.8^{+1.5}_{-1.4}$	$1.4^{+0.9}_{-0.9}$	2.4	6.8	7.3	4.8	2.8	0.73
Hartmann+97 CE	$2.6\substack{+1.4\\-1.3}$	$1.3^{+0.9}_{-0.9}$	2.3	6.5	7.1	4.6	2.6	0.63
Nakazato+15 (max, IO)	$2.7^{+1.5}_{-1.4}$	$1.4^{+1.0}_{-0.9}$	2.4	6.5	7.2	4.8	2.7	0.53
Horiuchi+21	$2.1^{+1.3}_{-1.2}$	$1.2^{+0.9}_{-0.9}$	3.4	4.3	5.9	3.9	2.5	0.28
Malaney97 CGI	$2.7^{+1.5}_{-1.3}$	$1.3^{+0.9}_{-0.9}$	2.3	6.8	7.1	4.7	2.6	0.26
Nakazato+15 (min, NO)	$2.8\substack{+1.5\\-1.4}$	$1.4\substack{+1.0\\-0.9}$	2.3	6.8	7.2	4.8	2.7	0.19

BDT trained on 0.01% Gd: Feature importance

Feature importance

