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The DSNB search with Super-Kamiokande
Latest analysis results using SK-1-11-11I-1V data

The future: SK-Gd



The DSNB search with Super-Kamiokande



The Diffuse Supernova Neutrino Background

Neutrino flux from all distant core-collapse supernovae
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- Detection and characterization would allow for the study of aggregate
properties of core-collapse supernovae, while probing the history of the
universe and neutrino properties

+ All flavors of neutrinos produced during CC SN, reaching Earth redshifted
- Expected signal is ~10s of MeVs and has so far proved elusive



The Super-Kamiokande Detector

A 50-kton water Cherenkov detector in Japan’s Kamioka mine

Super-Kamiokande

Gifu Prefecture, Japan

Located under Mt. Ikeno in Gifu
Prefecture, Japan

+ Shielded from cosmic ray activity by
under Mt. lkeno ~1 km of rock

Inner Detector: 11129 PMTs
+ Resolution: 50cm, 3 ns

~1,000 m (~3,300 ft)

Energy coverage: 4 MeV < ~TeV

Water constantly recirculated and
purified

+ SK phases I-V: ultrapure water

SK phases VI+ (starting summer
I 2020): water doped with Gadolinium
ulza pure water sulfate, enhancing the signature of a

et multler neutron in the detector

tubes (PMTs)




The Super-Kamiokande Detector

A 50-kton water Cherenkov detector in Japan’s Kamioka mine

Located under Mt. lkeno in Gifu
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+ SK phases I-V: ultrapure water

SK phases VI+ (starting summer
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sulfate, enhancing the signature of a
neutron in the detector



Detection Channel

Detection of DSNB 77; via Inverse Beta Decay (IBD) in water
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Detection Channel
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Radioactive spallation backgrounds

Radioactivity induced by cosmic muon spallation in water

+ One spallation muon every two minutes
+ Needs to be reduced by O(10%)

+ Main signatures

> 99% B decays: A — e + v
< 1% 1BD-like °Li): A — e* +n

Isotopes’ half-lives up to 13 s

neutron captures

isotopes = correlations over large time scales

+ No simulation in WC detectors ready at time
of analysis

[FLUKA simulation, A. Coffani]

Reduction strategy:

- Identify isotope clusters and neutrons from muon showers
- Investigate correlations between muons and candidate events



Spallation backgrounds reduction

Pair each candidate event with muons up to 30 s before
Investigate correlations using a likelihood analysis
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Interaction types
Neutral Current (NC)

Charged Current (CC) vy,

Light patterns in SK

Energetic photon(s)  Energetic /1 Electrons (w/w decays, CC v,)

e
W‘“L . e
e Small Cherenkov angle

Specific light pattern

Large Cherenkov angle Double signal if decay

Irreducible background

Atmospheric backgrounds after cuts

NC
(Monte-Carlo)

Arbitrary units

Decay electrons
(Michel spectrum)

/\/

ve CC

Estimating normalization and spectral shapes:

20 60

E (MeV)

+ O(100%) uncertainties on rates and spectral shapes below 100 MeV except for
decay electrons (measured Michel spectrum from stopping muons).

- Strategies: Use T2K to estimate cross-sections and efficiencies (NC
backgrounds), or use sidebands in energy and Cherenkov angle.

[Y. Ashida, Ph D. thesis (2019)]



Neutron tagging

A faint neutron capture signal amid a sea of low-energy background

Neutron tagging performance
Nositron neutron time -
_Lm 1100 000 900 100 1 M0 0 Wi .

SHE trigger [40 ps] AFT trigger [500 ps] [ T
I S 1 S B
10 ns time - time of flight ; .............................
+ 2.2 MeV neutron capture signal ol ew aw om o am om ow o
Sl Efcency

extremely weak; easily lost among

abundant low-energy backgrounds (4 + Maximally exploit correlations with

kHz PMT noise, radioactivity, flasher well-reconstructed primary vertex
events...): vertex not readily - Use a BDT (a Machine Learning
reconstructed method) to classify neutron

- Wide trigger scheme (540 s time candidates, achieving ~20%-30%
window), makes detection of neutron overall efficiency
captures in water (rcap ~ 20045) * Gd has recently been dissolved inside
feasible. the tank, producing brighter, 8 MeV

- Up to O(10*) reduction required after capture signals. Efficiency is

expected to increase to >80% for
future analyses.

candidate selection



Latest analysis results using SK-1-11-11I-1V data



Binned, model-independent analysis

SK-IV 2970 days, Observed 90% C.L. (This work)

SK-IV 2970 days, Expected 90% C.L. (This work)

|

SK-IV 960 days (2015)

>
3 25 2o —e—— K 2853 days (2012)
H — 10%= e KamLAND 4520 days 2021)
& [ Amospneric. (ronNCQE) E
2 [0 Amosphericy (NGQE) L DSNB Theoretical Predictions
g U i =
5 204 [ seaaton i L
i E reacony L e

[ Accidental coincidence

=== 1= DSNB (Horiuchi+08 6-MeV, Maximu) 10 = ™7 e T

E -

v, Flux Upper Limit [fcm?sec/MeV]

s —.—_._
107t —

Erec [MeV]

et
|
|

V, Energy [MeV]

+ Bin-by-bin cut optimization and limit extraction

 SK-1V is the first data perdiod where neutron tagging is possible,
allowing to lower the energy threshold down to E,=9.3 MeV



Unbinned, model-dependent spectral fit

« Fit the spectral shapes of remaining
background contributions and various
DSNB models to the data

+ Simultaneous unbinned extended
maximum likelihood fit in 6 regions:

Cherenkov angle
Neutrons [20,38]° [38,50]° [78,90]°

Oor>1 pu/=w Signal NC
1 pu/m - Signal - NC | ij:%%@# i

- Results are combined with fits from
previous SK data periods

- Neutron tagging defines cleaner, more sensitive 1-neutron signal region.
With the introduction of Gd in the tank, a much larger fraction of our signal will be
contained in the clean signal region.



Unbinned, model-dependent spectral fit

SK-I-1I-11I-IV DSNB unbinned spectral fit
SK-I-I-111 90% CL limit (2011)
SK-IHII-II-IV 90% CL limit (this work)
=== 90% Sensitivity
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- Fit the spectral shapes of remaining
background contributions and various
DSNB models to the data
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+ Simultaneous unbinned extended
maximum likelihood fit in 6 regions:
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+ Neutron tagging defines cleaner, more sensitive 1-neutron signal region.
With the introduction of Gd in the tank, a much larger fraction of our signal will be

contained in the clean signal region.



Summary of results

Combined SK-I-1I-11I-1V analysis complete, using roughly double the livetime of
previous (SK-I-11-111) 2007 analysis

Model-independent differential upper limits are placed down to E, = 9.3 MeV,
obtaining the current tightest sensitivities for E, > 11.3 MeV. The latest 2021
KAMLAND results reach tighter sensitivities for E, < 11.3 MeV
Model-dependent spectral fits performed on the data after reduction cuts,

reaching a combined 90% SK-I-1I-11I-1V flux sensitivity of 1.5 Ze cm—2.sec™". A
1.50 excess leads to a best-fit of 1.3012-%2 and an observed upper limit of

—0.85
2.6 e cm—2.sec™ .
The most optimistic models still excluded, by wider margins (Totani+96, upper
range of Kaplinghat+00)

« Sensitivity is now comparable to predictions for more realistic models (e.g.
Ando+03, Horiuchi+09, Galais+09, Kresse+20)

— Pre-print available at arxiv.org/abs/2109.11174


arxiv.org/abs/2109.11174

The future: SK-Gd



The SK-Gd project

Ve e

+ Since 2020 SK has started dissolving Gd

sulfate in the tank to enhance the neutron wt

capture signal <30 ps
+ n capture on Gd is faster (r ~30us) and ¢ .

brighter (~8 MeV total photon energy) P n

+ Current Gd concentration: 0.01%
(50% neutrons captured on Gd)

+ 2022 target concentration: 0.03%

(75% neutrons captured on Gd) oe i = acaena
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Neutron tagging BDT (still unoptimized)

o Neutron tagging BDT ROC curve
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Neutron tagging BDT (still unoptimized)
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Sensitivity projection study

* Project SK-Gd performance for future DSNB spectral fit searches
+ Assume atmospheric background PDFs after cuts are the same as in SK-IV
- Reweight PDFs according to ntag efficiency at desired Gd concentration

+ Starting with a pure-background hypothesis, study expected exclusion power



Sensitivity projection: nominal 0.1% Gd concentration

DSNB spectral fit sensitivity at SK with 0.1% Gd
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Sensitivity projection: 0.03% Gd concentration

DSNB spectral fit sensitivity at SK with 0.03% Gd
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+ Sensitivity to the DSNB with Gd limited by
neutron-producing atmospheric
backgrounds in the signal region

+ Important neutron multiplicity observed
for all atmospheric categories

« In particular, neutral current backgrounds
are the most problematic, as they
frequently produce neutrons, and their
spectrum peaks at low energies, as does
the DSNB spectrum.

on multiplicity
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Analysis of the full SKIV dataset complete, integrating neutron tagging for the first time. To
be fully capitalized on with SK-Gd.

SK-Gd project set to increase neutron tagging efficiency 3-4 fold, and preliminary study
shows DSNB exclusion sensitivity set to improve 4-fold

Neutron tagging still far from optimized: performance improvements possible

For further gains in sensitivity, need better characterization of atmospheric backgrounds.

— At the prompt level: to what extent can we characterize and remove neutral current
backgrounds?

— At the delayed level: to what extent can we differentiate neutron capture signals from
atmospheric interactions?

Looking further ahead: the larger statistics afforded by Hyper-K, as well as combined efforts
with other neutrino observatories, will allow for more precise characterization of the DSNB
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Atmospheric CC v, spectral shape uncertainty

()

0.5¢(E — 16 MeV)
PDFqew = PDFgg x N [14 —— — — ="/

74 MeV

B = ’ L(€)G(e) de. (2)

With asymmetric Gaussian function G(e)



Atmospheric NC relative normalization uncertainty

PDF'NC, = PDFhGy x (1+ €) 3)
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SK-I-11-111-1V DSNB flux limits (7 cm—2s~" E,, > 17.3 MeV)

Best fit 90% CL limit Pred.
Model SK& All|SK1 SK2 SK3 SK& All
Totani+95 Constant 2.54:11'_1’3 1.3t%_99 23 63 7.0 45 2.6| 4.67
Kaplinghat+00 HMA (max) 2.67%% 137991 2.3 6.7 7.1 47 2.6 3.00
Horiuchi+09 6 mev,max  2.67%% 13705 | 2.4 6.0 7.0 4.6 2.6| 1.94
Ando+03 (updated 05)  2.7°%5, 1.47%5 1 23 6.6 7.2 47 2.7| 174
Kresse+21 (High, NO) 27703 147951 23 67 7.2 47 27| 157
Galais+09 (NO) 25704 13799 ] 23 63 7.0 45 26| 156
Galais+09 (10) 26704 13799 23 6.4 7.0 45 26| 1.50
Horiuchi+18 ¢, 5 = 0.1 2.67%% 147051 2.4 61 7.1 46 27| 1.23
Kresse+21 (High, 10) 27105 147951 23 67 7.1 47 27| 121
Tabrizi+21 (NO) 27705 14799 | 24 66 7.0 4.7 27| 092
Lunardinio9 Failed SN 2.87%5 1.479%| 2.4 6.8 7.3 4.8 2.8| 0.73
Hartmann+97 CE 2.64:11'_1'3 1.3t%_99 23 6.5 7.1 46 2.6| 0.63
Nakazato+15 (max, 10) ~ 2.77%5, 1.475% | 2.4 6.5 7.2 4.8 2.7| 053
Horiuchi+21 21173 127991 3.4 43 59 3.9 25| 0.28
Malaney97 CGI 27155 137991 23 68 7.1 47 26| 0.26
Nakazato+15 (min,NO) ~ 2.87%35 147001 2.3 68 7.2 48 2.7 0.19




BDT trained on 0.01% Gd: Feature importance

Feature importance
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Sensitivity projection: nominal 0.1% Gd, 12 MeV threshold

E)OSNB spectral fit sensitivity at SK with 0.1% Gd
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Sensitivity projection: nominal 0.1% Gd, 16 MeV threshold

DSNB spectral fit sensitivity at SK with 0.1% Gd
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