GRGUEj ss.

Search for black holes in the Galactic Halo by Gravitational Microlensing

AstroDark-2021. 9 dec 21

Tristan Blaineau Marc Moniez IN2P3-CNRS

Gravitational microlensing effect

Description of a microlensing event

Point-lens, point source, rectilinear relative motion

The optical depth $\boldsymbol{\tau}$

- probability for a star to be behind an Einstein disk

- disk surface $\alpha \, R_E{}^2 \, \alpha \, M_{lens}$
- $\Rightarrow \tau \; \alpha \; \Sigma \; M_{\text{lens}}$

 α total mass of the probed structure

The number of events with $u_0 < 1$ in T_{obs}

 $\alpha\,$ surface swept by Einstein disks

$$\alpha \Sigma R_{\rm E}$$
 . Vt . N_{star} . T_{obs}

$$2u_T R_E \begin{bmatrix} Surface covered by a \\ lens during T_{obs} & \downarrow \\ \hline T_{obs} v_{\perp} \end{bmatrix}$$

The LMC is monitored for microlensing since the 90s'

-> search for massive compact objects within the galactic DM halo At this epoch: *sub-stellar and stellar mass objects*

Pseudo-isothermal spherical halo model determine the constraints on the quantity of MACHOs in the halo.

$$\rho(r) = \rho_0 \frac{R_c^2 + R_o^2}{R_c^2 + r^2} \qquad p(v) = \frac{4\pi v^2}{(2\pi v_0^2)^{3/2}} e^{-\frac{v^2}{2v_0^2}}$$

$$\rho_0 = 0.008 \text{ M}_{sol}/\text{pc}^2 \text{ R}_c = 5\text{kpc} \text{ R}_{sol} = 8.5\text{kpc} \text{ R}_{sol} = 8.5\text{kpc} \text{ N}_{sol} - 155 \text{ km/s} \text{ N}_{sol} / \text{V}_{LMC} \dots$$

$$\tau \sim 4.5 \times 10^{-7}$$

The Milky way halo: LMC surveys

The Milky way halo: LMC surveys

Detected black holes are just heavier

Detected black holes are just heavier

Search for very long events with joined data analysis: MEMO project

Heavy lenses produce long duration events $\langle t_E \rangle \sim 70 \text{ days x sqrt}(M_{\text{lens}}/M_{\text{sol}})$ (2yrs for 100M_{sol} lens) Detection efficiency of the past surveys vanishes for such durations, because:

- Limited duration Δt of each survey (3-8 yrs)
- Multi-year search suffer from telescope/filter ageeing/transmission variations
- Observation/Analysis optimized for light lenses

MoaErosMachOgle combined lightcurves provides much more extended light-curves.

Here only the combination of EROS2 and MACHO has been performed

Great Melbourne Telescope (MACHO).

EROS2 and MACHO

Systematic surveys towards the LMC

MACHO

- **1.27m** telescope in Australia
- 2 cameras with dichroic
- 4 CCD 2Kx2K pixels each
- Field of view: **0.5 deg**²

EROS2

- **1m** telescope in Chile
- 2 cameras with dichroic
- 8 CCD 2Kx2K pixels each
- Field of view: **1 deg**²

Telescope MarLy (EROS).

LMC fields

- 2+2 wide bandwidth filters
- ► ≈ 1 To light curves databases (~25 To of images)
- between 500 and 4000 total individual measurements overall per source
- directly available databases
- light curves already partly processed

	EROS only	MACHO only	common
Dates (m/yr)	7/92-1/00	7/96-2/03	7/92-2/03
Duration (year)	6.7	7.7	10.6
Sources $\times 10^6$	15.8	6.9 ^(a)	14.1

 \implies 14.1×10⁶ stars in common over 10.6 years.

Does parallax complicate the analysis?

Due to Earth orbiting, apparent trajectory of the lens w/r line-of-sight is an hypocycloid
u(t) (and magnification) shows modulations with 1 year caracteristic time

In the worst scenario, less than **7%** of events could be missed by a simple search algorithm. (*Blaineau & Moniez (2020)*)

-> We neglect this effect in the search, but simulate it in the efficiency calculation

Association, cleaning...

- Cross-identification EROS-MACHO catalogs (using GAIA)
 - To better than 0.1 arcsec in (α, δ)
 - To the photometric precision in flux

• Improved cleaning

- 3% of MACHO and 1% of EROS problematic 1000000 measurements removed 500000
- Keep light-curves with > 200 points

Homogenize photometric uncertainties

- Underestimated by MACHO
- Overestimated by EROS for faint stars
- Global normalization to have errors
 compatible with the point-to-point dispersion

Nmes

Total number of observations for each source.

Combined light-curve

Discriminant analysis

Based on the comparison of the χ^2 of a constant fit and a microlensing fit, **simultaneous to the 4 light curves**.

- Constant fit (flat) : 4 parameters, **1 mean flux/colour**.

- Microlensing fit (μ) : 7 parameters, common u_0 , t_0 , t_E , 1 base flux/colour (could be more than 4 when adding OGLE/MOA)

Goodness of microlensing difference (flat – microlensing)

Require long events but well contained \downarrow \downarrow \downarrow 100 days < t_E fitted < $T_{obs}/2 \sim 2000$ days $T_{start} + 200$ days < t_0 < T_{end}

Main remaining artefacts

← examples of *blue bumpers* red EROS : black red MACHO : red blue EROS : green blue MACHO : blue

Blue bumpers

- Short variables were known in past surveys
- Increase faster than it decrease
- Can last several years
- ► Be stars ?

Other remaining artefacts

• SN1987A echoes

- Diffusion of the light emitted by the SN, superimposed on a monitored star
- Remove a small patch of sky
- One **QSO** (catalogued)
- One **YSO** (Young Stellar Object variable, catalogued)
- One clear SN (not catalogued)

Positions of the remaining candidates relative to EROS fields. Removed area $\approx 0.14^{\circ} \times 0.14^{\circ}$

Candidates: only 2

We cannot formally reject these « low quality » candidates without using more criteria.

Expected signal from the standard halo (S model)

Simulation based on the observed (stable) light-curves modified by simulated microlensing according to the standard DM halo :

- Preserving the initial deviations from the base flux
- Taking into account the variation of photometric precision with the flux

Since MACHO or EROS objects are blends of several stars

- Use **HST** images to infer the content of MACHO and EROS objects
- Microlensing is simulated on each component and the resulting light curve is the sum of a magnified and stable components

New: Blend in binary systems (not resolved by HST in LMC) ? For microlensing by **heavy lenses** (long time scale, large R_E):

- Using the GAIA database, we estimate < 7% of the sources are binaries separated by more than 50AU, inducing blend effect for long duration events (to be published) - binaries closer than 50AU are ~ identically magnified by a large Eintein disk.

-> Impact of binarity neglected (conservative)

Expected signal from the standard halo (S model)

Depends on Halo model for compact objects

- Spatial distribution -> derive optical depth to LMC $\tau \sim 4.5 \times 10^{-7}$
- **V**_T distribution
- Mass distribution (here $\delta(M)$) -> derive t_E distribution

Mean detection efficiency

Estimated as a **function of t_E**

Proportional to

- T_{obs}
- N_{star in LMC} = 0.95 x N_{star catalog} (< 5% Milky Way stars –from GAIA data)

Final correction: max 10% of events can escape detection because they are exotic (double lens...)

Exclusion limit

This analysis

- ~ 0.64 events expected from self-lensing+disk (with 100 < t_E < 200 days)
- 2 events observed
- Likelihood analysis to find
 95% CL exclusion limit

If we further require $t_E > 200$ days

- 0 events expected from self-lensing+disk
- **0** event observed
- Poissonian analysis:3 events excluded at 95%CL

Agree for high mass exclusion

Several sources of gain

- Previous analysis explicitely rejected long events
 - To have a long enough baseline / reject LPV
 - Here we use published catalogs
- Cumulate EROS + MACHO statistics
- 14.1 million light-curves monitored for 10.6 years
 - Detection efficiency for these curves is x by 1.6
 - Contribute for $\frac{1}{2}$ of the expected detections for a halo made of $1000.M_{sol}$ lenses

Conclusions, perspectives

Microlensing observations and the Galactic halo

- ✓ We have combined EROS2 + MACHO data towards LMC
 - ✓ SMC not analyzed (only 5.2 million sources)
- ✓ Objects with M < 1000. M_{sol} do not dominate the Galactic DM halo (@95%CL)

What about the black holes responsible for the GW?

- \checkmark Either they are scarce and do not explain the DM
- And/or they are in the visible structures of the Milky Way? -> microlensing towards the Galatic Bulge and spiral arms

Perspectives

- ✓ Short term: do combined analysis from **all** databases (incl. MOA and OGLE)
- \checkmark Make database ready for looking back in the case of emerging events
- ✓ Long term LSST
 - 10 year wide field monitoring from 2024
 - Includes repeated observations towards Galactic plane + LMC/SMC
 - Median repetition rate: 3 days between observations
 - 6 different filters
 - Combine LSST with the historical surveys -> > 30years