Dark Matter, Black Holes and Phase Transitions

Michael J. Baker

AstroDark 2021 - 09 December 2021

1912.02830 (PRL) - MJB, J. Kopp, A. Long

2105.07481 - MJB, M. Breitbach, J. Kopp, L. Mittnacht

2110.00005

- MJB, M. Breitbach, J. Kopp, L. Mittnacht

Introduction I

- Introduction I
- Filtered Dark Matter at a First-Order Cosmological Phase Transition
 - a new DM production mechanism

- Introduction I
- Filtered Dark Matter at a First-Order Cosmological Phase Transition
 - a new DM production mechanism
- Introduction II

- Introduction I
- Filtered Dark Matter at a First-Order Cosmological Phase Transition
 - a new DM production mechanism
- Introduction II
- Primordial Black Holes from First-Order Cosmological Phase Transitions
 - a new PBH production mechanism

Introduction

 Favoured production mechanism (thermal freeze-out) is under pressure from DD, ID and colliders

- Favoured production mechanism (thermal freeze-out) is under pressure from DD, ID and colliders
- Griest-Kamionkowski bound

$$\Omega_{\rm DM} h^2 \stackrel{\rm f.o.}{\sim} \frac{1}{\langle \sigma v \rangle} \stackrel{\rm p.w.}{\sim} \frac{1}{\left(\frac{4\pi}{m_{\rm DM}^2 v_{\rm rel}}\right)} \implies m_{\rm DM} \lesssim 300 \text{ TeV}$$

- Favoured production mechanism (thermal freeze-out) is under pressure from DD, ID and colliders
- Griest-Kamionkowski bound

$$\Omega_{\rm DM} h^2 \stackrel{\rm f.o.}{\sim} \frac{1}{\langle \sigma v \rangle} \stackrel{\rm p.w.}{\gtrsim} \frac{1}{\left(\frac{4\pi}{m_{\rm DM}^2 v_{\rm rel}}\right)} \implies m_{\rm DM} \lesssim 300 \text{ TeV}$$

 We present a new mechanism which has a large viable parameter space and goes beyond the GK bound

Filtered Dark Matter at a First Order Phase Transition

Toy Model

$$\mathcal{L} \supset -y_{\chi}\phi\bar{\chi}\chi - \beta\,\phi^2 H^{\dagger}H - V(\phi)$$

$$\mathcal{L} \supset -y_{\chi}\phi\bar{\chi}\chi - \beta\,\phi^2 H^{\dagger}H - V(\phi)$$

Assume potential gives first-order phase transition with large order parameter $\langle \phi \rangle > T$ (e.g., from a conformal potential)

$$\mathcal{L} \supset -y_{\chi}\phi\bar{\chi}\chi - \beta\,\phi^2 H^{\dagger}H - V(\phi)$$

Assume potential gives first-order phase transition with large order parameter $\langle \phi \rangle > T$ (e.g., from a conformal potential)

$$-y_{\chi}\phi\bar{\chi}\chi \stackrel{\text{PT}}{\to} -y_{\chi}\langle\phi\rangle\bar{\chi}\chi = -m_{\chi}\bar{\chi}\chi$$

$$(\phi) = 0 \\ m_{\chi} = 0$$

$$\hat{y} \xrightarrow{\hat{x}} \hat{z}$$

$$v_{w} \leftarrow$$

In massless phase, DM in thermal equilibrium, orders of magnitude too much DM Only high momentum DM pass through bubble wall and survive, reduces abundance

Numerically solve Boltzmann equation

$$\mathbf{L}[f_{\chi}] = \mathbf{C}[f_{\chi}]$$

Numerically solve Boltzmann equation

$$\mathbf{L}[f_{\chi}] = \mathbf{C}[f_{\chi}]$$

To capture interaction with wall, introduce ansatz

$$f_{\chi} = \mathcal{A}(z, p_z) \times f_{\chi}^{\text{eq}}(\vec{x}, \vec{p})$$

Numerically solve Boltzmann equation

$$\mathbf{L}[f_{\chi}] = \mathbf{C}[f_{\chi}]$$

To capture interaction with wall, introduce ansatz

$$f_{\chi} = \mathcal{A}(z, p_z) \times f_{\chi}^{\text{eq}}(\vec{x}, \vec{p})$$

In usual thermal freeze-out approach

$$g_{\chi} \int \frac{dp_x dp_y dp_z}{(2\pi)^3} \mathbf{L}[f_{\chi}] = \frac{dn_{\chi}}{dt} + 3Hn_{\chi}$$

Numerically solve Boltzmann equation

$$\mathbf{L}[f_{\chi}] = \mathbf{C}[f_{\chi}]$$

To capture interaction with wall, introduce ansatz

$$f_{\chi} = \mathcal{A}(z, p_z) \times f_{\chi}^{\text{eq}}(\vec{x}, \vec{p})$$

In usual thermal freeze-out approach

$$g_{\chi} \int \frac{dp_x dp_y dp_z}{(2\pi)^3} \mathbf{L}[f_{\chi}] = \frac{dn_{\chi}}{dt} + 3Hn_{\chi}$$

We leave z-momentum un-integrated, and look for steady state solution near bubble wall

$$g_{\chi} \int \frac{dp_x dp_y}{(2\pi)^2} \mathbf{L}[f_{\chi}] = g_{\chi} \int \frac{dp_x dp_y}{(2\pi)^2} \mathbf{C}[f_{\chi}]$$

Distance from bubble wall z [TeV⁻¹]

Parameter Space and Constraints

Introduction: Black Holes

Primordial Black Holes

• Several possible production mechanisms

- Several possible production mechanisms
 - Collapse of density perturbations generated during inflation

- Several possible production mechanisms
 - Collapse of density perturbations generated during inflation
 - Collapse of topological defects

- Several possible production mechanisms
 - Collapse of density perturbations generated during inflation
 - Collapse of topological defects
 - Dynamics of scalar condensates

- Several possible production mechanisms
 - Collapse of density perturbations generated during inflation
 - Collapse of topological defects
 - Dynamics of scalar condensates
 - Collision of bubble walls during a first-order PT

- Several possible production mechanisms
 - Collapse of density perturbations generated during inflation
 - Collapse of topological defects
 - Dynamics of scalar condensates
 - Collision of bubble walls during a first-order PT

 Previous work on first-order PT has only considered energy stored in bubble walls. We focus on a population of particles that interact with the bubble wall

Primordial Black Holes from First-Order Cosmological Phase Transitions

Again numerically solve Boltzmann equation

$$\mathbf{L}[f_{\chi}] = \mathbf{C}[f_{\chi}]$$

Again numerically solve Boltzmann equation

$$\mathbf{L}[f_{\chi}] = \mathbf{C}[f_{\chi}]$$

Again numerically solve Boltzmann equation

$$\mathbf{L}[f_{\chi}] = \mathbf{C}[f_{\chi}]$$

Now considerably more complicated:

Far from equilibrium

Again numerically solve Boltzmann equation

$$\mathbf{L}[f_{\chi}] = \mathbf{C}[f_{\chi}]$$

- Far from equilibrium
- Retain two momentum directions

Again numerically solve Boltzmann equation

$$\mathbf{L}[f_{\chi}] = \mathbf{C}[f_{\chi}]$$

- Far from equilibrium
- Retain two momentum directions
- Time dependence

Again numerically solve Boltzmann equation

$$\mathbf{L}[f_{\chi}] = \mathbf{C}[f_{\chi}]$$

- Far from equilibrium
- Retain two momentum directions
- Time dependence
- Need to solve in whole volume, not just near wall

Phase Space Evolution

PBH mass and density

 Presented a new DM production mechanism, with large viable parameter space above the GK bound

 Presented a new DM production mechanism, with large viable parameter space above the GK bound

 Presented a new PBH production mechanism, which can produce BHs with a wide range of masses and density fractions

 Presented a new DM production mechanism, with large viable parameter space above the GK bound

 Presented a new PBH production mechanism, which can produce BHs with a wide range of masses and density fractions

Thank you!