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* Primordial Black Holes from First-Order Cosmological Phase Transitions
- a new PBH production mechanism
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Why new DM production mechanisms?

 Favoured production mechanism (thermal freeze-out)
IS under pressure from DD, |ID and colliders

e (Griest-Kamionkowski bound
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 We present a new mechanism which has a large viable
parameter space and goes beyond the GK bound

QOpah? — mpu < 300 TeV




Filtered Dark Matter at a
First Order Phase Transition
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Phase Transitions

https://vimeo.com/255031420 - Cosmic Defects - Gravitational waves from a cosmological vacuum phase transition - scalar field value
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In massless phase, DM in thermal equilibrium, orders of magnitude too much DM

Only high momentum DM pass through bubble wall and survive, reduces abundance



Numerical Calculation

Numerically solve Boltzmann equation L{fx] =Clfy]
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To capture interaction with wall, fr = A(z,ps) x (T, P)
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Numerically solve Boltzmann equation L{fx] =Clfy]

To capture interaction with wall, £y = Alz,p2) x £, P)
Introduce ansatz

dpgdp,dp. _dny
In usual thermal freeze-out approach gx/ (27)3 Lifx] = T T 3y
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Numerical Calculation

Numerically solve Boltzmann equation Lify] =C|fy
1o capture interaction with wall, fr = Alz,p2) x f(Z, 5

INntroduce ansatz

dpxdpydpz dnx
_ L — - 3 H
INn usual thermal freeze-out approaoh gx/ (27_‘_)3 [fx] Tt 3 TVy

We leave z-momentum un-integrated,

. dpzdpy dpzdpy
and look for steady state solution near 9x / 2m)? L{fx] = gx / 2m)? Cl/x]
bubble wall
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Numerical Calculation
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Numerical Calculation
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PBH production mechanisms

o Several possible production mechanisms
- Collapse of density perturbations generated during inflation
- Collapse of topological defects
- Dynamics of scalar condensates
- Collision of bubble walls during a first-order PT

* Previous work on first-order PT has only considered
energy stored in bubble walls. We focus on a
population of particles that interact with the bubble wall
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Primordial Black Holes from First-Order
Cosmological Phase Transitions
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Numerical Calculation

Again numerically solve Boltzmann equation L{fy] = Clfx]
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Numerical Calculation

Again numerically solve Boltzmann equation L|f\] = Clfy]

Now considerably more complicated:
e [ar from equilibrium

e Retain two momentum directions

* [Ime dependence

e Need to solve in whole volume, not just near wall
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Phase Space Evolution

Trapped trajectory
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PBH formation

® BH forémation
T, <10'° TeV




PBH mass and density
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