ION TRAPS AS DARK MATTER DETECTORS

Harikrishnan Ramani Stanford Institute for Theoretical Physics

Based on:

arXiv: 2108.05283 HR with D. Budker, C. Smorra, P. Graham, F. Schmidt-Kaler, S. Ulmer arXiv: 2012.03957 HR with M. Pospelov arXiv: 2010.11190 HR with R. Harnik, M. Pospelov, R. Plestid

DARK MATTER

STABLE PARTICLE

DARK RELIC

- Well motivated stable particles: Monopoles, axions, squarks, heavy quarks (KSVZ), gluinos (SUSY), Milli-charge Particles (mCPs)
- ◆ Robust prediction for relic fractions $f_{\chi} = \frac{\rho_{\chi}}{\rho_{\rm DM}} \ll 1$

- + The only way to access $M_{\gamma} \gg$ TeV?
- Use same concept for Detection?

DARK RELICS STABLE PARTICLE

MILLICHARGE PARTICLES

- \bullet Particles with tiny electric charges: ϵe
- Simple models to write (with or without a dark photon)
- Charge quantization a century old mystery
- ♦ Predictions of explanation: monopoles and/or GUTs not observed yet
- Looked for in various experimental programs
- Recent resurgence due to EDGES anomaly

1905.06348 Emken et al , 1908.06986 Liu et al

KE smaller than threshold

Colliders/Terrestrial : no reach for small charge : no reach for large charge (Overburden blocks it) Direct Detection

PARAMETER SPACE

 m_m [MeV]

SMALL X-SECTION

10⁰

1905.06348 Emken et al

LARGE X-SECTION

- Reaches detector after
 - thermalizing
- ♦ KE=300 Kelvin (26 meV)
- Current DD threshold : eV

1905.06348 Emken et al

TERRESTRIAL ABUNDANCE

- DM thermalizes, but stuck on Earth if $v_{th} < v_{esc}$
- Accumulation over the age of the Earth causes

tremendous enhancement

$$\bullet \eta = \frac{\pi R_E^2 v_{\text{vir}}}{\frac{4}{3}\pi R_E^3} T_E \approx 10^{16}$$

- DM lighter than GeV evaporates $v_{th} > v_{esc}$
- Heavier than GeV sinks due to gravity

from: 2012.03957 HR M.Pospelov

Virial velocity

✦ Sinking not immediate.

Downward drift

 $V_{\text{term}} \ll v_{\text{th}} \ll v_{\text{vir}}$

TRAFFICJAM

Boundary Terminal velocity

Traffic Jam on the way

TRAFFIC JAM DENSITIES

True for charges $\epsilon \gtrsim 10^{-6}$

EXISTING LIMITS

FIG. 1. SiO_2 spheres are levitated in high vacuum between a pair of parallel electrodes to search for a violation of charge neutrality by, e.g., a mCP electrostatically bound to a Si or O nucleus in the sphere.

2012.08169 G. Afek, F. Monteiro, J. Wang, B. Siegel, S. Ghosh, D.C. Moore

DETECTION NIGHTMARE

- Despite large number density & cross-section
- + Small energy deposit: 300 Kelvin ≈ 26 meV
- Small momentum transfers: See neutral atom
- Low threshold detectors have low temperature walls to reduce background
- Small MFP~ micron, rapidly thermalize with walls

12

- + Detect Small energy deposit: 300 Kelvin ≈ 26 meV
- If target charged, then huge Rutherford x-sections

 $d\sigma$ $\frac{1}{da^2} \propto \frac{1}{a^4}$ at small momentum transfer

$$\bullet T_{\rm wall} \gg E_{\rm thr}$$

✦ Large number of targets … not required

WISHLIST

IONS IN COLD TRAPS

DATA SUMMARY

Experiment	Type	Ion	V_{z}	T_{wall}	$\omega_p [{\rm neV}]$	$T_{\rm ion}[{\rm neV}]$	Heating Rate (neV/s)
Hite et al, 2012 [40]	Paul	$^{9}\mathrm{Be}^{+}$	$0.1 \mathrm{~V}$	300 K	$\omega_z = 14.8$	14.8	640
Goodwin et al, $2016 [43]$	Penning	$^{40}\mathrm{Ca}^+$	$175\mathrm{V}$	$300\mathrm{K}$	$\omega_z = 1.24$	1.24	0.37
Borchert et al, $2019[44]$	Penning	$ar{p}$	$0.633\mathrm{V}$	$5.6\mathrm{K}$	$\omega_{+} = 77.4$	7240	0.13
					$\omega_{-}=0.050$		

No reach fo

or
$$\epsilon \gtrsim \frac{T_{\text{wall}}}{V_z}$$

HEATING RATE

$$\frac{dE_{dep}}{dt} = \int E_{dep}(q^2) \frac{4\pi\alpha^2 \epsilon^2}{\nu^2 q^4} dq^2 \approx 10^{-10}$$

TERRESTRIAL POPULATION CONSTRAINTS

 $\frac{E_{\min}^2 m_T}{16 \mathsf{T}_{\text{trap}} \mathsf{T}_{\text{wall}}}$ m_Q^{\min} -

$$m_Q^{\max} = \frac{16m_T T_{\text{trap}} T_{\text{trap}}}{E_{\min}^2}$$

- arXiv: 2108.05283 HR with D. Budker, C. Smorra, P. Graham, F. Schmidt-Kaler,
- S. Ulmer

17

arXiv: 2108.05283 HR with D. Budker, C. Smorra, P. Graham, F. Schmidt-Kaler,

S. Ulmer

POSSIBLE IMPROVEMENTS

- Single Event Measurement instead of cumulative heating rate
- Requires high cadence data and energy resolution
- Highly Charged Ions
- Using electron targets less momentum transfer for same energy transfer

PROJECTIONS

1 event/ year unless otherwise stated

LIMITS ON DARK MATTER

OUTLOOK

- Repeating experiment in deep mine
- Collective excitations in Ion lattices
- Accumulating mCPs in an electric field bottle

SIGNALS

SYMMETRIC POPULATION

ANNIHILATIONS IN SUPER-K

MEASUREMENT

 $\star \nu_+, \nu_-, \nu_z \approx MHz \approx 4 neV \approx 50 \mu K$

+ Strong inhomogeneous magnetic field B_2

$$\Delta \nu_z(n_+, n_-, m_s) = \frac{h\nu_+}{4\pi^2 m_p \nu_z} \frac{B_2}{B_0} \left[\left(n_+ \right) \right]$$

+ $\Delta \nu_z$ measured with image current detection to detect Δn_+

