New Neutrino Interactions at COHERENT

ASTRODARK-2021: Axions, Neutrinos, Black Holes, and **Gravitational Waves**

Based on: *JHEP* (2020), arXiv: 2002.12342, L. Flores, NN, E. Peinado, JHEP (2021), arXiv: 2107.04037, de la Vega, L. Flores, NN, E. Peinado, arXiv: 2112.0XXXX, L. Flores, NN, E. Peinado

AstroDark2021

INFN Bari, Italy

7-10 December 2021, Tokyo

CE_VNS: Coherent Elastic Neutrino-Nucleus Scattering

PHYSICAL REVIEW D

National Accelerator Laboratory, Batavia, Illinois 60510 and Institute for Theoretical Physics, State University of New York, Stony Brook, New York 11790 (Received 15 October 1973; revised manuscript received 19 November 1973)

If there is a weak neutral current, then the elastic scattering process $\nu + A \rightarrow \nu + A$ should

AstroDark2021

VOLUME 9, NUMBER 5

1 MARCH 1974

Coherent effects of a weak neutral current

Daniel Z. Freedman[†]

 $E_{\nu} \lesssim 50 \,\mathrm{MeV}$

 $q.R \ll 1$

3-momentum transfer

Nuclear radius

Cross Section:

 $\frac{d\sigma}{dT} = \frac{G_F^2}{2\pi} M_N Q_w^2 \left(2 - \frac{M_N T}{E_w^2}\right)$

Weak Nuclear Charge:

 $Q_w^2 = \left[Zg_p^V F_Z(q^2) + Ng_n^V F_N(q^2) \right]^2$ $g_p^V = 1/2 - 2\sin^2\theta_W, \ g_n^V = -1/2$

AstroDark2021

Higher cross-section

COHERENT Collaboration, Science 357,1123 (2017)

Cont...

Main challenge to observe nuclear recoils with a very small kinetic energy of a few keV

$$T_{\max}(E_{\nu}) = \frac{2E_{\nu}^2}{M + 2E_{\nu}}.$$

For $E_{\nu} \sim 50 MeV$, $T_{max}(E_{\nu}) \approx 40 keV$

For $CE\nu NS$:

- a low nuclear-recoil-energy threshold detector,
- a low-background environment,
- an intense neutrino flux.

At nuclear reactors,

 $n \to p e \overline{\nu_e}$

COHERENT Collaboration:

Spallation Neutron Source (SNS) at Oak Ridge National Laboratory (ORNL)

AstroDark2021

Results:

- 134 \pm 22 events at 6.7 σ CL (Csl)
- 306 \pm 20 events at 11.6 σ CL (Csl)
- 159 \pm 43 and 121 \pm 36 events at 3 σ CL (LAr)

COHERENT Collaboration, Science 357,1123 (2017), arXiv: 2110.07730 [hep-ph], arXiv: 2006.12659 [nucl-ex]

Observed cross-section consistent with N^2 dependence

COHERENT Collaboration, arXiv: 2006.12659 [nucl-ex]

Importance: The SM differential cross-section:

AstroDark2021

$$+ N g_{n}^{V} F_{N}(q^{2}) \Big]^{2} \left(2 - \frac{M_{N}T}{E_{\nu}^{2}} \right) + \dots$$

$$2 - 2 \sin^{2} \theta_{W}, g_{n}^{V} = -1/2$$
Sterile
Neutrino
NSI/GNI
CEUNS
Our Focus
Dark
Matter

Non-standard interactions

- The effective Lagrangian: $\mathscr{L}^{eff} = \mathscr{L}_{SM} + \frac{1}{\Lambda} \delta \mathscr{L}^{d=5} + \frac{1}{\Lambda^2} \delta \mathscr{L}^{d=6} + \dots$
- The effective dimension-6 term: $\supset (\overline{\nu}_{\alpha}\gamma^{\rho}P_{L}\nu_{\beta})(\overline{f}\gamma_{\rho}P_{C}f')2\sqrt{2}G_{F}\epsilon_{\alpha\beta}^{fC} + h.c.$

[Wolfenstein, '78, Valle '87]

NSI @ $CE\nu NS$:

The SM differential cross-section:

In SM: Q

$Q^{2}_{W,\alpha\alpha} = \left[Z(g^{V}_{p} \\ Q^{2}_{W,\alpha\beta} = \sum_{\beta \neq \alpha} \left| Z \right| \right]$ In presence of NSI:

of events: $N_i = \int_{E_r^i}^{E_r^{i+1}} A(E_r)$

AstroDark2021

$$\frac{d\sigma}{dT} = \frac{G_F^2}{2\pi} M_N Q_w^2 \left(2 - \frac{M_N T}{E_\nu^2}\right)$$
$$Q_w^2 = \left[Zg_p^V F_Z(q^2) + Ng_n^V F_N(q^2)\right]^2$$

NSI

$$\left[2\varepsilon_{\alpha\alpha}^{u} + \varepsilon_{\alpha\alpha}^{d} + N(g_{n}^{V} + 2\varepsilon_{\alpha\alpha}^{d} + \varepsilon_{\alpha\alpha}^{u}) \right]^{2},$$

$$\left[2\varepsilon_{\alpha\beta}^{u} + \varepsilon_{\alpha\beta}^{d} + N(2\varepsilon_{\alpha\beta}^{d} + \varepsilon_{\alpha\beta}^{u}) \right]^{2}.$$

$$\sum_{\alpha} N_a \int_{E_{\nu}^{\min}}^{E_{\nu}^{\max}} \phi_{\alpha}(E_{\nu}) \frac{d\sigma}{dE_r} dE_{\nu} dE_r$$

NSI in U(1)' Models:

 $\mathcal{L}_{\text{eff}} = -\frac{g'^2}{Q^2 + M_{Z'}^2} \left[\sum_{\alpha} \right]$

AstroDark2021

$$\sum_{\alpha} x_{\alpha} \bar{\nu}_{\alpha} \gamma^{\mu} P_L \nu_{\alpha} \left[\sum_{q} x_{q} \bar{q} \gamma_{\mu} q \right]$$

leads to

$$\frac{g'^2 x_{\alpha} x_q}{\sqrt{2} G_F (Q^2 + M_{Z'}^2)} \,.$$

Flores, NN, Peinado, JHEP 06 (2020) 045

Cont...

x_e	x_{μ}	$x_{ au}$	Neutrino mass matrix	Type	NSI parameters		
0	-1	-2	$\left \begin{array}{ccc} 0 & 0 & \times \\ 0 & \times & \times \\ \times & \times & \times \end{array} \right $	A_1	$\varepsilon_{\mu\mu}~\&~\varepsilon_{ au au}$		
0	-2	-1	$\left \begin{array}{ccc} 0 \times 0 \\ \times \times \\ 0 \times \end{array} \right)$	A_2	$\varepsilon_{\mu\mu}~\&~\varepsilon_{ au au}$	Consistent with neutrino	
-1	0	-2	$ \left(\begin{array}{ccc} \times & 0 & \times \\ 0 & 0 & \times \\ \times & \times & \times \end{array}\right) $	B_3	$\varepsilon_{ee}~\&~\varepsilon_{ au au}$		
-1	-2	0	$ \left(\begin{array}{ccc} \times \times & 0 \\ \times & \times & \times \\ 0 & \times & 0 \end{array}\right) $	B_4	$\varepsilon_{ee}~\&~arepsilon_{\mu\mu}$		

Flores, NN, Peinado, JHEP 06 (2020) 045

Cont...

$g' = 2.8 \times 10^{-5}$ $v_1 \approx 3 \,\mathrm{TeV}$ $v_2 \approx 1 \,\mathrm{TeV}$

CEvNS and DM searches in U(1)' models

Extend the SM with a Dirac fermion χ with $Q_{\chi} = 1/3$

Z_3 symmetry stabilises χ

$\mathscr{L} \supset M_D \bar{\chi} \chi + \bar{\chi} \gamma^\mu (\partial_\mu + ig' Q_\chi Z'_\mu) \chi$

AstroDark2021

Cont...

SBC: Scintillating Bubble Chamber, a reactor-based $CE\nu NS$ experiment

AstroDark2021

The dark matter-nucleus SI cross-section per nucleon: $\sigma_{\rm SI} \approx \frac{\mu_{\chi n}^2}{\pi} \frac{g'^4}{9M_{Z'}^4}$.

de la Vega, Flores, NN, Peinado, JHEP 09 (2021) 146

Generalized Neutrino Interactions (GNI):

	j	$\widetilde{arepsilon}^{j}$	$ $ \mathcal{O}_j	\mathcal{O}_j'
	1	$arepsilon_L$	$\gamma_{\mu}(1-\gamma^5)$	$\gamma^{\mu}(1-\gamma^5)$
	2	$\widetilde{arepsilon}_L$	$\gamma_{\mu}(1+\gamma^5)$	$\gamma^{\mu}(1-\gamma^5)$
	3	$arepsilon_R$	$\gamma_{\mu}(1-\gamma^5)$	$\gamma^{\mu}(1+\gamma^5)$
	4	$\widetilde{arepsilon}_R$	$\gamma_{\mu}(1+\gamma^5)$	$\gamma^{\mu}(1+\gamma^5)$
	5	$arepsilon_S$	$(1-\gamma^5)$	1
	6	$\widetilde{arepsilon}_S$	$(1+\gamma^5)$	1
	7	$-arepsilon_P$	$(1-\gamma^5)$	γ^5
	8	$-\widetilde{arepsilon}_P$	$(1+\gamma^5)$	γ^5
	9	$arepsilon_T$	$\sigma_{\mu u}(1-\gamma^5)$	$\sigma^{\mu u}(1-\gamma^5)$
	10	$\widetilde{arepsilon}_{T}$	$\sigma_{\mu u}(1+\gamma^5)$	$\sigma^{\mu u}(1+\gamma^5)$
Another parametrization: \mathscr{L}_{GI}	$S_{\rm NI} \supset \frac{G_F}{\sqrt{2}}$	$\overline{\nu}$	$\Gamma^{a}\nu\left[\overline{q}\Gamma^{a}(C_{a}^{(q)}+\overline{D}_{a}^{(q)})\right]$	$\left[q^{i}i\gamma^{5}\right]q$; $\Gamma^{a} = \{I, i\gamma\}$

AstroDark2021

 $\mathscr{L}_{\text{NSI}} \supset 2\sqrt{2}G_F \epsilon_{\alpha\beta}^{fC} \quad (\overline{\nu}_{\alpha} \gamma^{\mu} P_L \nu_{\beta}) (\overline{f} \gamma_{\mu} P_C f') \quad \text{Bergmann, Grossman, Nardi, PRD 60, 093008 (1999)}$

E E $\{i\gamma^5, \gamma^\mu, \gamma^\mu\gamma^5, \sigma^{\mu\nu}\}; \sigma^{\mu\nu} \equiv \frac{1}{2}[\gamma^\mu, \gamma^\nu]$

Generalized Neutrino Interactions (GNI):

AstroDark2021

Bergmann, Grossman, Nardi, PRD 60, 093008 (1999)

\mathcal{O}_{j}	\mathcal{O}_j'	_
$\gamma_{\mu}(1-\gamma^5)$	$\gamma^{\mu}(1-\gamma^5)$	
$\gamma_{\mu}(1+\gamma^5)$	$\gamma^{\mu}(1-\gamma^5)$	> NSI
$\gamma_{\mu}(1-\gamma^5)$	$\gamma^{\mu}(1+\gamma^5)$	J
$\gamma_{\mu}(1+\gamma^5)$	$\gamma^{\mu}(1+\gamma^5)$	
$(1-\gamma^5)$	1	
$(1+\gamma^5)$	1	
$(1-\gamma^5)$	γ^5	
$(1+\gamma^5)$	γ^5	
$\sigma_{\mu u}(1-\gamma^5)$	$\sigma^{\mu u}(1-\gamma^5)$	
$\sigma_{\mu u}(1+\gamma^5)$	$\sigma^{\mu u}(1+\gamma^5)$	

 $\mathcal{L}_{\text{GNI}} \supset \frac{G_F}{\sqrt{2}} \sum_{a=S,P,V,A,T} \overline{\nu} \, \Gamma^a \nu \left[\overline{q} \Gamma^a (C_a^{(q)} + \overline{D}_a^{(q)} i \gamma^5) q \right]; \Gamma^a = \{I, i \gamma^5, \gamma^\mu, \gamma^\mu \gamma^5, \sigma^{\mu\nu}\}; \sigma^{\mu\nu} \equiv \frac{i}{2} [\gamma^\mu, \gamma^\nu]$

GNI @ $CE\nu NS$:

• Differential cross-section:

$$\left(\frac{d\sigma}{dE_{r}}\right)^{f} = \frac{G_{F}^{2}}{4\pi}M_{N}N^{2}F^{2}(Q^{2}) \times \left[\xi_{S}^{f\,2}\frac{E_{r}}{E_{r}^{\max}} + (\xi_{V}^{f} + A_{SM})^{2}\left(1 - \frac{E_{r}}{E_{r}^{\max}} - \frac{E_{r}}{E_{\nu}}\right) \pm 2\xi_{V}^{f}\xi_{A}^{f}\frac{E_{r}}{E_{\nu}} + \xi_{A}^{f\,2}\left(1 + \frac{E_{r}}{E_{r}^{\max}} - \frac{E_{r}}{E_{\nu}}\right) + \xi_{T}^{f\,2}\left(1 - \frac{E_{r}}{2E_{r}^{\max}} - \frac{E_{r}}{E_{\nu}}\right) \mp R\frac{E_{r}}{E_{\nu}} + \mathcal{O}\left(\frac{E_{r}^{2}}{E_{\nu}^{2}}\right)\right]$$

$$\frac{G_F^2}{4\pi} M_N N^2 F^2(Q^2) \times \left[\xi_S^{f\,2} \frac{E_r}{E_r^{\max}} + (\xi_V^f + A_{\rm SM})^2 \left(1 - \frac{E_r}{E_r^{\max}} - \frac{E_r}{E_\nu} \right) \pm 2\xi_V^f \xi_A^f \frac{E_r}{E_\nu} + \xi_A^{f\,2} \left(1 + \frac{E_r}{E_r^{\max}} - \frac{E_r}{E_\nu} \right) + \xi_T^{f\,2} \left(1 - \frac{E_r}{2E_r^{\max}} - \frac{E_r}{E_\nu} \right) \mp R \frac{E_r}{E_\nu} + \mathcal{O}\left(\frac{E_r^2}{E_\nu^2} \right) \right]$$

where $A_{\text{SM}} = 1 - (1 - 4 \sin^2 \theta_w) Z/N$, and

 $\xi_{S}^{f\,2} = \frac{1}{N^{2}}$ $\xi_{A}^{f} = \frac{1}{N} (r)$ $R = \frac{2}{N^{2}} (r)$

• # of events:

 $N_{i} = \int_{E_{r}^{i}}^{E_{r}^{i+1}} A(E_{r}) \, Z_{r}^{i}$

where
$$\alpha = \nu_{\mu}, \overline{\nu_{\mu}}, \nu_{e}$$

AstroDark2021

Lindner, Werner Rodejohann, Xu, JHEP 03 (2017) 097 Aristizabal Sierra, De Romeri, Rojas, PRD 98 (2018) 075018

$$\xi_{T2}(C_S^2 + D_P^2), \quad \xi_V^f = \frac{1}{N}(C_V + D_A),$$

 $(C_A + D_V), \quad \xi_T^{f\,2} = \frac{8}{N^2}(C_T^2 + D_T^2),$
 $(C_S C_T - C_P C_T + D_S D_T - D_P D_T).$

$$\sum_{\alpha} N_a \int_{E_{\nu}^{\min}}^{E_{\nu}^{\max}} \phi_{\alpha}(E_{\nu}) \frac{d\sigma}{dE_r} dE_{\nu} dE_r$$

• # of events:

Flores, NN, Peinado, (in preparation)

One-parameter analysis:

AstroDark2021

I (

$$\frac{d\sigma}{dE_r} \propto \xi_S^2 \frac{E_r}{E_r^{\text{max}}} + (\xi_V + A_{\text{SM}})^2 \left(1 - \frac{E_r}{E_r^{\text{max}}} - \frac{E_r}{E_\nu}\right)$$
$$\xi_T^2 \left(1 - \frac{E_r}{2E_r^{\text{max}}} - \frac{E_r}{E_\nu}\right)$$

- ξ_e 's are less constrained than ξ_μ 's given the lower ve flux at the SNS
- Limits from CsI measurement are better than the LAr

Two-parameter analysis:

Note: combined analysis of COHERENT+SBC significantly constrained different ξ_e 's

AstroDark2021

Final Comments:

- has been explored
- constrain GNI parameters

NSI coming from U(1)' models have been studied for the COHERENT data

Complementarity between dark-matter direct searches and $CE\nu NS$ experiments

Combined analysis using COHERENT and reactor data has been performed to

