# Exploring the multi-dimensional space of dark neutrinos at the T2K near detector Nicolò Foppiani – Harvard University, <u>nicolofoppiani@g.harvard.edu</u>

## **One Minute Summary**

Heavy neutrinos coupled to a dark photon - dark neutrinos - as a solution to short-baseline anomalies. Multiple studies have shown how minimal solutions are not enough to explain the MiniBooNE-LSND puzzle. Here we exploit data from the T2K near detector to place constraints on a non-minimal model. We conclude that T2K data is incompatible with such an explanation for the MiniBooNE anomaly, unless dark neutrinos decay in less than O(1) cm.





[1] Search for heavy neutrinos with the T2K near detector ND280, T2K collaboration, arXiv:2007.11813 [3] Dark Neutrino Portal to Explain MiniBooNE excess, 

# with Carlos Argüelles (Harvard) and Matheus Hostert (Minnesota & Perimeter)

 $10^{-8}$  $10^{-10}$ 

Where is the decay?

and on the HNL lifetime.

lifetimes of O(1-500) cm.

case is not constrained.

The number of signal events

e+e- showers are selected if the

Prompt decays are vetoed from

the analysis, so the light mediator

decay vertex lies within the TPC

depends on the upscattering rate

### The dark photon parameter space

- The region of interest for MiniBooNE in  $10^{-2}$ the heavy mediator case is excluded, except for the largest decay couplings at large N masses and/or lighter Z'  $_{\rm \odot}$   $^{10^{-3}}$ masses.
- We will explore the entire parameter space of the model in the future, including the light mediator case.







### The HNL parameter space

 $10^{-2}$ 

 $10^{-3}$ 

 $10^{-1}$   $10^{-3}$   $10^{-1}$ 

Geometric

acceptance

- interesting Most the of for the parameter space MiniBooNE explanation is ruled out by this analysis.
- only available corner The requires short-lived HNL and larger HNL mass.

 $10^{-4}$ 

 $10^{-5}$ 

Preliminary

 $-10^{-1}$ 

