1. Introduction

Motivation:

- After the Higgs searches at the LHC, the dark matter searches is the most important physics problem to be tackled at Linear Collider and LHC.
- Interacts gravitationally, charge neutral, stable.
- Limited knowledge on other properties.

Search Strategy:

- Direct Detection: XENON1T, SuperCDMS, PANDAX-4T etc.
- Indirect Detection: AMS-02, Fermi-LAT etc.
- Collider Seach: LHC, Belle, ILC, CLIC etc.

direct

2. Effective Model

- Lepton collider is a good place to probe the effective theories compared to a hadron one
- New physics (NP) scale will be greater the hard scattering CM energy.
- Definite energy initial states can be controlled, polarisation of beams possible.

3. Leptophilic Effective Model

$$\mathcal{L}_{\text{eff}} = \frac{1}{\Lambda^2} \sum_{j} \left(\overline{\chi} \Gamma_{\chi}^j \chi \right) \left(\overline{\ell} \Gamma_{\ell}^j \ell \right)$$

Scalar-Pseudoscalar (SP) type : $\Gamma_{\chi} = c_S^{\chi} + i c_P^{\chi} \gamma_5$, Vector-Axial vector (VA) type : $\Gamma^{\mu}_{\chi} = (c_V^{\chi} + c_A^{\chi} \gamma_5) \gamma^{\mu}, \qquad \Gamma_{\ell\mu} = (c_V^e + c_A^e \gamma_5) \gamma_{\mu},$ Tensor-Axial Tensor (TAT) type : $\Gamma_{\chi}^{\mu\nu} = (c_T^{\chi} + i c_{AT}^{\chi} \gamma_5) \sigma^{\mu\nu}, \ \Gamma_{\ell\mu\nu} = \sigma_{\mu\nu},$

- For an e^+ - e^- collider, $\ell = e$ and we took $c_i = 1$.
- No specific realization of the operators model-independent.
- Cut-off scale, $\Lambda = \frac{m_{med}}{\sqrt{g_e g_{\chi}}}$
- Need for a visible particle.

4. Mono-photon Channel

Backgrounds

- Irreducible: (radiative) neutrino pair-prooduction $(\nu \overline{\nu} + \gamma)$, (radiative) Bhabha scattering $(e^+e^- + \gamma)$
- Higher order: $\nu \overline{\nu} + N\gamma$, $e^+e^- + N\gamma$; neglected.

Simulation:

- Signals and the neutrino-pair background events are generated using CalcHEP with proper implementation of *ISR* and *beamstrahlung*.
- Bhabha events are simulated with Whizard. ISR photons are simulated with standard routine in Whizard and *beamstrahlung* effects are simulated with the **CIRCE2** beam spectrum files.
- Fast Detector simulation with **Delphes 3** with a **SiD**-based configuration card.

 $\Gamma_\ell = c_S^e + i c_P^e \gamma_5 \,,$

Leptophilic Dark Matter at International Linear Collider

¹BITS Pilani, K.K. Birla Goa Campus, India

²Chungnam National University, Republic of Korea Based on arXiv:2110.06903 [hep-ph]

Process	Unpolarized	Polarization	Polarized cross-section (fb)					
type	cross-section (fb)	$P(e^-,e^+)$	(+,+)	(+, -)	(-,+)	(-,-)		
		(80, 0)	1106	1106	8506	8506		
$\nu\overline{\nu}\gamma$	4782	(80, 20)	1268	963	10160	6793		
		(80, 30)	1393	860	10993	5931		
		(80,0)	67920	67920	68867	68867		
$e^-e^+\gamma$	68439	(80, 20)	67909	68386	69285	68297		
		(80, 30)	67809	68566	69502	68181		
		(80,0)	25.5	25.5	25.5	25.5		
SP-type	25.5	(80, 20)	29.6	21.4	21.4	29.6		
		(80, 30)	31.6	19.4	19.4	31.6		
		(80, 0)	61.7	61.7	6.9	6.9		
VA-type	34.3	(80, 20)	49.4	74.1	5.5	8.2		
		(80, 30)	43.2	80.3	4.8	8.9		
		(80, 0)	36.5	36.5	36.5	36.5		
TAT-type	36.5	(80, 20)	42.3	30.6	30.6	42.3		
		(80, 30)	45.2	27.7	27.7	45.2		

5. Effect of Polarisation

Electron Beam:

- 1. Neutrino pair background reduced considerably (23%) by RH electron polarisation.
- 2. Bhabha background is NOT affected by beam polarisation.
- 3. Electron beam polarisation doesn't affect the signals (SP, TAT).
- 4. VA type behaves otherwise.

Positron Beam:

- 1. LH positron beams further reduces the neutrino background.
- 2. SP and TAT-type CSs get better with RH positron beam.
- 3. VA-type are best with $P(e^{-}, e^{+}) = (+80\%, +30\%).$

SP-Type P(¢, ¢*) = F Radiati BP-1 BP-2 BP-3 BP-3 50 100 150 200 250 300 350 400	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $	VA-Type $P(e^{*}, e^{*}) = P(0, 0)$ Neutrino Reatinitive Bhaba = BP-1 = BP-2 = BP-3 10^{-3} 10^{-4} 10^{-5} 250 300 350 400 450 500 E_{γ} [GeV]	TAT-Type P(¢, ¢') = P(Neutrino PR-2 BP-3 PB-2 BP-3 PC PC PC PC PC PC PC PC PC PC			
	BP1	BP2	BP3			
Definition	$m_{\chi} = 100 \text{ GeV},$ $\Lambda = 3 \text{ TeV}$	$m_{\chi} = 250 \text{ GeV},$ $\Lambda = 3 \text{ TeV}$	$m_{\chi} = 350 \text{ GeV},$ $\Lambda = 3 \text{ TeV}$			
Baseline selection	$E_{\gamma} > 10 \text{ GeV}, \ \eta_{\gamma} < 2.45, \ P_T^{\text{miss}} > 10 \text{ GeV}$					
SP-type						
Cut-1	$E_{\gamma} < 450 \text{ GeV}$	$E_{\gamma} < 340 \text{ GeV}$	$E_{\gamma} < 250 \text{ GeV}$			
Cut-2		$ \eta_{\gamma} < 1.6$	·			
Cut-3	$P_T^{\rm miss} < 450 { m ~GeV}$	$P_T^{\text{miss}} < 340 \text{ GeV}$	$P_T^{\text{miss}} < 240 \text{ GeV}$			
Cut-4		$P_T^{\rm frac} < 1.3$				
Cut-5	$1.1 < \Delta R_{\gamma, \text{MET}} < 4.5$					

6. Analysis and Results

BeamCal veto is effected using the selection efficiency from full detector simulation performed by M. Habermehl et. al. [PRD 101 (2020) 075053].

Operator type	Signal significance for $\mathcal{L}_{int} = 1000 \mathrm{fb}^{-1}$							
	Unp	olarized bea	ams	Polarized beams				
	BP-1	BP-2	BP-3	BP-1	BP-2	BP-3		
SP-type	8.1(0.6)	5.8(0.4)	3.5(0.3)	18.1 (2.4)	13.0(1.7)	7.8(1.0)		
VA-type	10.9(0.8)	8.5(0.6)	5.6(0.4)	24.9 (3.2)	19.4(2.5)	12.9(1.7)		
TAT-type	11.8(0.8)	10.8(0.8)	8.5(0.6)	26.2(3.5)	24.1(3.2)	19.2(2.6)		

Figure 1. Signal significance without (with) 1% systematics.

Saumyen Kundu¹ Atanu Guha² Prasanta Kumar Das¹ P.S. Bhupal Dev³

³Washington University, St. Luis, USA

7. Sensitivities

- The VA-type operator delivers best sensitivity with optimally polarised beams Λ reaches up to 6.5 TeV (4 TeV) without (with) 1% systematics.
- χ - e^- scattering (~ $\mathcal{O}(10^{-47})$ cm²) translates into very weak direct bound from Indirect searches like Xenon1T (~ $\mathcal{O}(10^{-39})$ cm²) or DARKSPHERE $(\sim \mathcal{O}(10^{-42}) \text{cm}^2).$
- χ -N scattering dominates over χ - e^- scattering. (J. Kopp et.al. PRD 80 (2009) 083502)
- Indirect detection (e.g. AMS-02) and thermal relic bounds put strong constraints.
- Lighter mass dark matter is allowed with non-thermal history.

8. Mono-Z

Backgrounds

• Leptonic:

- $\nu \overline{\nu} \ell^+ \ell^- \ (\ell^\pm \equiv e^\pm, \mu^\pm)$
- Hadronic:
- $\nu \overline{\nu} j j$, $\ell \nu j j$ $(j \equiv u, c, d, s, b)$
- Reducible: $e^+e^- \rightarrow t\bar{t}$; neglected.

Simulation:

- Signals and background events are generated with MadGraph5.
- Hadronizations are done with **Pythia8**.
- Fast Detector simulation is done with **Delphes 3**.
- anti-kT jet clustering algorithm, $p_T > 10$ GeV and R = 0.4 using FastJet.

9. Effect of Polarisation

• Under beam polarisation the behaviour of signal and backgrounds are identical for both the channels as it is for the mono-photon channel.

10.Analysis and Results

Leptonic:

SP-Typ	$P(e, e^*) = P(0, 0)$ $BP-1$ $BP-2$ $BP-3$ $BP-3$ $BP-3$ $BP-3$ $P_{T}^{miss} [GeV]$		VA-Typ	$P(e, e^{+}) = P(0, 0)$ $P(e, e^{+}) = P(0, 0)$ $P(e, e^{+}) = P(0, 0)$ $P^{0} = \frac{1}{2} + \frac{1}$	$1 \\ 1 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 2$	TAT-Typ	$P(e, e^{+}) = P(0, 0)$ $P(e, e^{+}) = P(0, 0)$ $P(e, e^{+}) = P(0, 0)$ $P^{0} = P(0, 0)$
Operator	Signal significance for $\mathcal{L}_{int} = 1000 \text{fb}^{-1}$						
Type	Unpolarized beams		Po	plarized bea			
	BP-1	BP-2	BP-3	BP-1	BP-2	BP-3	
SP-type	1.7(1.3)	0.7~(0.5)	0.1(0.1)	3.8(3.6)	1.7(1.5)	0.3(0.3)	
VA-type	0.2(0.1)	0.1(0.1)	0.1(0.1)	0.5(0.4)	0.4(0.3)	0.2(0.2)	

 TAT-type
 4.5 (3.9) 2.4 (1.9) 0.6 (0.5) 9.4 (9.1) 5.4 (5.1) 1.3 (1.3)

Hadronic:

11. Sensitivities

Leptonic:

 $\checkmark f = \ell^{-},$

- ILC is a good choice to probe EFT theory with cut-off scale larger than CM energy.
- Mixed couplings show off better performance than single operators.
- Higher mass region highly constrained by direct and indirect detection experiments allowed by relic density bound.
- Low mass region disfavoured by thermal relic bound.
- Non-thermal DMs are still valid and doesn't affect our model.