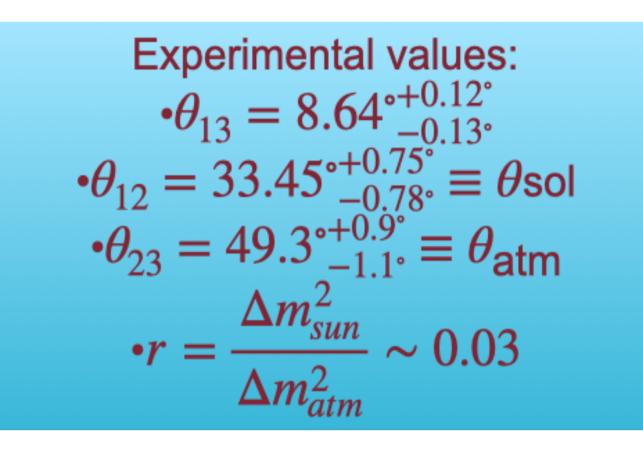
Neutrino masses and leptogenesis in a $L_e - L_u - L_\tau$ model

Simone Marciano^{1,2}

¹Dipartimento di Matematica e Fisica, Università di Roma 3, Via della Vasca Navale, 84, 00146, Roma, Italy ²INFN Sezione Roma 3

Dark Sectors of Astroparticle Physics (AstroDark-2021): Axions, Neutrinos, Black Holes and Gravitational Waves

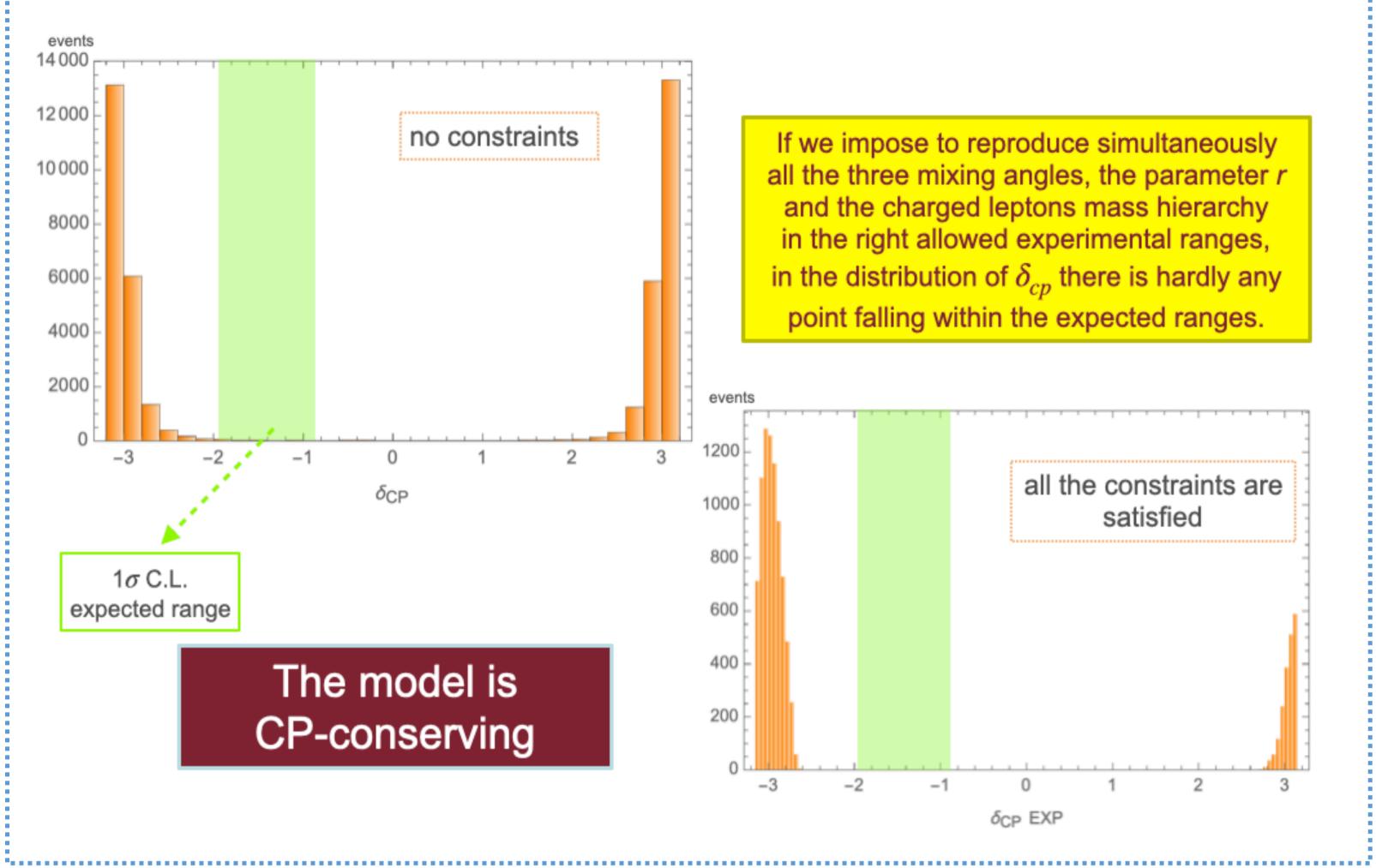
Description


We present a simple extention of the Standard Model with three righthanded neutrinos in a SUSY framework, with an additional U(1) abelian From the experiments we know that $\delta_{cp} = 282^{\circ} + 26^{\circ} + 26^{\circ}$ at 1σ of C.L. flavor symmetry with a non standard leptonic charge for lepton doublet Once we know the entries of the PMNS matrix we can evaluate it as and arbitrary right-handed charges. We show how it is possible to provide the correct prediction for the mixing angles of the PMNS matrix and for the parameters with a moderate fine tuning.

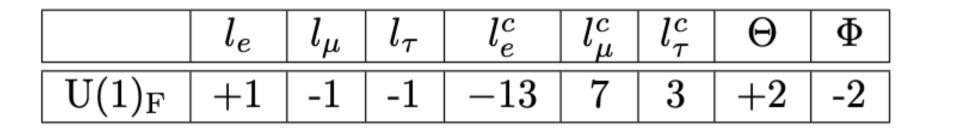
CP-violation

$$\delta_{cp} = -Arg \left(\frac{\frac{U_{ii}^* U_{ji} U_{ij} U_{jj}}{c_{12} c_{13}^2 s_{13} c_{23}} + c_{12} s_{13} c_{23}}{s_{12} s_{23}} \right), \quad \text{with} \quad \begin{cases} c_{ij} = \cos \vartheta_{ij} \\ s_{ij} = \sin \vartheta_{ij} \end{cases}. \\ \{i, j\} \in \{1, 2, 3\}, i \neq j \end{cases}$$

The baryon asymmetry of the Universe is generated via thermal leptogenesis through CP-violating decays of the heavy right-handed neutrinos. We present a detailed numerical solution of the relevant Boltzmann equations for the impact of the distribution of the asymmetry in the three lepton flavors.

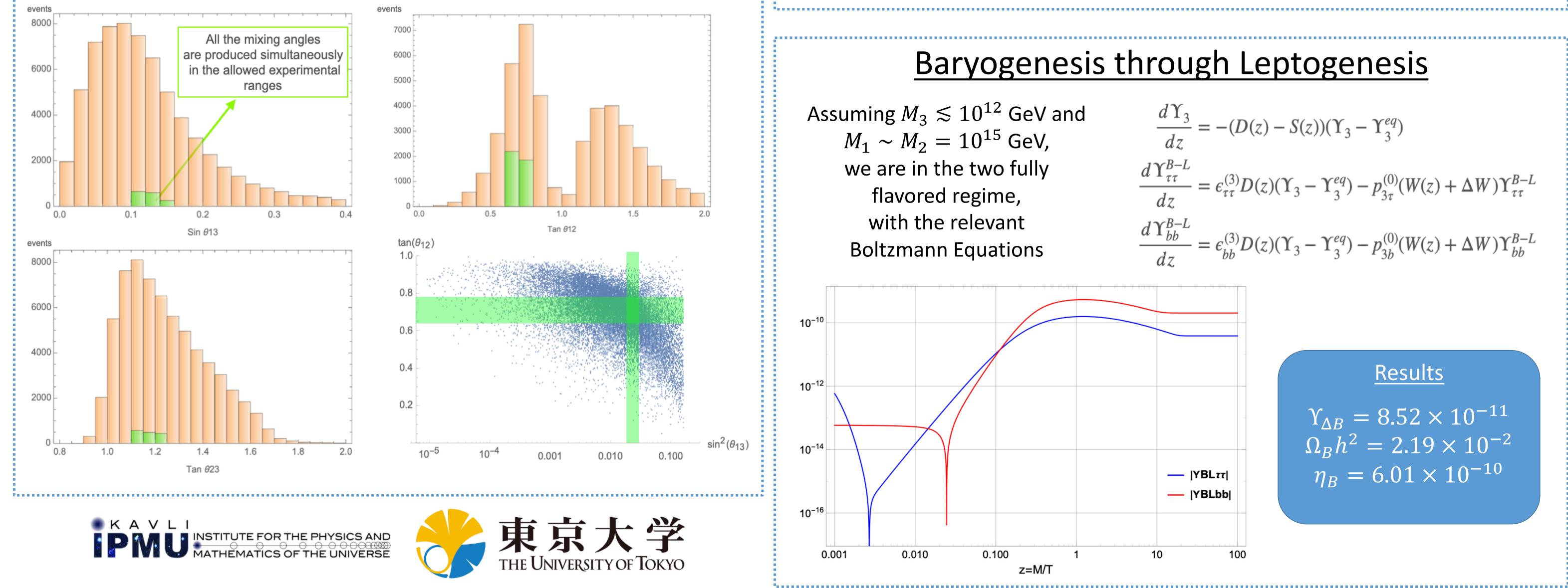

Low Energy Model Building

In order to provide the right values for the mixing angles, the parameter r and the charged lepton mass hierarchy, we introduce two heavy complex scalar fields Θ and ϕ , called flavons, charged under the additional U(1) flavor symmetry and inert under the Standard Model.


After the symmetry-breaking the relevant operators for the lepton masses can be written in the (simplified) form:

$$\mathcal{L} = \frac{x_{ij}}{\Lambda} l_i l_j \left(\frac{\langle \Theta \rangle}{M_F}\right)^{\alpha_{ij}} \left(\frac{\langle \Phi \rangle}{M_F}\right)^{\beta_{ij}} H_u H_u + a_{ij} l_i l_j^c \left(\frac{\langle \Theta \rangle}{M_F}\right)^{\gamma_{ij}} \left(\frac{\langle \Phi \rangle}{M_F}\right)^{\sigma_{ij}} H_d.$$

Type-I seesaw realization


With λ =0.22 being the symmetry-breaking order parameter and the following charge assignment

we have:

$$m_{\upsilon} = m_0 \begin{pmatrix} x_1 \lambda & 1 & x \\ 1 & x_2 \lambda & x_3 \lambda \\ x & x_3 \lambda & x_4 \lambda \end{pmatrix} , \qquad m_l = m_{\tau} \begin{pmatrix} \lambda^5 & \lambda^3 & \lambda \\ \lambda^6 & \lambda^2 e^{i\phi 22} & e^{i\phi 23} \\ \lambda^6 & \lambda^2 e^{i\phi 32} & 1 \end{pmatrix}.$$

The charged lepton mass hierarchy is predicted in the allowed experimental range, as well as the parameter r (after a moderate fine tuning) and the three mixing angles.

We provided a simple type-I seesaw realization introducing three right-handed neutrinos, total singlet under the Standard Model and charged under the additional U(1) flavor symmetry, with charges $N_R \sim (-1, +1, 0)$. We introduce other two *flavons* Δ and Y with charges $\pm 1/2$.

)02 lectures on neutrinos arXiv:hep-ph/0305245v1, 22 May 200

In this way we obtain the following Dirac and Majorana mass matrix:

$$m_{D} = v \begin{pmatrix} \lambda e^{i\alpha} & a e^{i\beta} & b e^{i\gamma} \\ c e^{i\delta} & \lambda e^{i\rho} & \lambda e^{i\sigma} \\ \lambda^{2} e^{i\zeta} & \lambda^{2} e^{i\eta} & \lambda^{2} e^{i\varphi} \end{pmatrix} , \qquad M_{R} = M_{N} \begin{pmatrix} \lambda & W & \lambda^{2} \\ W & \lambda & \lambda^{2} \\ \lambda^{2} & \lambda^{2} & Z \end{pmatrix}$$

Through the type-I seesaw master formula $m_v = -m_D^T M_R^{-1} m_D$ we can reproduce the light neutrino mass matrix studied at low energies, for the price of a moderate fine tuning.

$$\frac{d\Upsilon_3}{dz} = -(D(z) - S(z))(\Upsilon_3 - \Upsilon_3^{eq})$$