Fermion-induced Electroweak Symmetry Non-restoration via Temperature-dependent Masses

Motivations and Challenges

Motivations:

- In SM, EW symmetry is restored around T=160 GeV^[1]. What kind of BSM theories can have distinctly different electroweak epoch? What are the predictions of these theories?
- Intimate relationship between EW symmetry and baryon • asymmetry of the universe (BAU).
 - $U(1)_B$ and $U(1)_L$ are anomalous symmetry in SM

$$\partial_{\mu} j_{B}^{\mu} = \partial_{\mu} j_{L}^{\mu} = \frac{N_{f}}{32\pi^{2}} \left(g^{2} W \tilde{W} - g'^{2} Y \tilde{Y} \right)$$

$$\Gamma = 4\pi f \left(\lambda/g^{2} \right) g T^{4} \xi^{7} \exp \left(-\frac{4\pi B}{g} \xi \right), \quad \text{if} \quad v_{h} \neq 0$$

$$\Gamma = k \left(\alpha_{W} T \right)^{4}, \quad \text{if} \quad v_{h} = 0$$

$$\xi \equiv v_{h}(T)/T$$

Challenges:

At high temperatures, EW symmetry was always broken or only temporarily restored in some scalars models (e.g. $SM+O(N_s)$) singlet scalars^[2], I2HDM+O(N_s) singlet scalars^[3], 2HDM+real singlet scalar^[4]).

$$V = V_{SM} + \frac{1}{2}\mu_s^2(s_i s_i) + \frac{1}{4}\lambda_s(s_i s_i)^2 + \frac{1}{2}\lambda_{hs}h^2(s_i s_i)$$
$$\frac{\partial^2 V_1^{th}}{\partial h^2}\Big|_{h=0} = T^2 \left(\frac{3}{16}g^2 + \frac{1}{16}g'^2 + \frac{1}{4}\lambda_t^2 + \frac{1}{2}\lambda + \frac{N_s}{12}\lambda_{hs}\right)$$

• Difficult to induce EWSB by fermions from renormalizable models: (When $m_i^2 \ll T^2$)

$$\frac{\partial^2 V_{1,F}^{th}}{\partial h^2}\Big|_{h=0} = \sum_i T^2 \frac{n_F}{48} \frac{\partial^2 m_i^2}{\partial h^2} = T^2 \frac{n_F}{48} \frac{\partial^2}{\partial h^2} \sum_i m_i^2$$
$$= T^2 \frac{n_F}{48} \frac{\partial^2}{\partial h^2} \operatorname{Tr}\left(M_f^{\dagger} M_f\right) = T^2 \frac{n_F}{48} \frac{\partial^2}{\partial h^2} \sum_{i,j} |M_{ij}|$$

In renormalizable models, $M_{ij} = a_0 + a_1 h$, hence $\frac{\partial v_1}{\partial h^2}$ \geq 0. Thus, it is impossible to achieve EWSNR by adding only new fermions.

But what if some of the new fermions have $m^2(T) \gg T^2$?

- [1] D'Onofrio etc., 1508.07161. [4] Heinemeyer et at.,2103.12707
- [2] Meade, Ramani, 1807.07578. [5] Schmitz, 2002.04615
- [3] Carena et al.,2104.00638

Mechansim and models

$$L_{L,R}^{i} = \begin{bmatrix} N^{i} \\ E^{i} \end{bmatrix}_{L,R} \sim$$

 $E_{L,R}^{\prime i} \sim (1,1)_{-1}$

$$\mathcal{L}_{yuk}^{i} = -y_{NN'1}^{i} \overline{L_{L}^{i}} \widetilde{\phi} N_{R}^{\prime i} - y_{NN'2}^{i} \overline{N_{L}^{\prime i}} \widetilde{\phi}^{\dagger} L_{R}^{i}$$

$$-y_{EE'1}^{i} \overline{L_{L}^{i}} \phi E_{R}^{\prime i} - y_{EE'2}^{i} \overline{E_{L}^{\prime i}} \phi^{\dagger} L_{R}^{i}$$

$$-m_{Li}(\sigma) \overline{L_{L}^{i}} L_{R}^{i} - m_{N'i}(\sigma) \overline{N_{L}^{\prime i}} N_{R}^{\prime i}$$

$$-m_{E'i}(\sigma) \overline{E_{L}^{\prime i}} E_{R}^{\prime i} + h.c.$$

W-complete models, $m_{X} (X = N', E', L)$ can be parameterized as

$$m_{X}(\sigma) = m_{X0} + y_{X}\sigma.$$

$$-y_{NN'1}^{i}\overline{L_{L}^{i}}\widetilde{\phi}N_{R}^{\prime i} - y_{NN'2}^{i}\overline{N_{L}^{\prime i}}\widetilde{\phi}^{\dagger}L_{R}^{i}$$

$$-y_{EE'1}^{i}\overline{L_{L}^{i}}\phi E_{R}^{\prime i} - y_{EE'2}^{i}\overline{E_{L}^{\prime i}}\phi^{\dagger}L_{R}^{i}$$

$$-m_{Li}(\sigma)\overline{L_{L}^{i}}L_{R}^{i} - m_{N'i}(\sigma)\overline{N_{L}^{\prime i}}N_{R}^{\prime i}$$

$$-m_{E'i}(\sigma)\overline{E_{L}^{\prime i}}E_{R}^{\prime i} + h.c.$$

els, $m_{X}(X = N', E', L)$ can be parameterized as

$$m_{X}(\sigma) = m_{X0} + y_{X}\sigma.$$

$$-y_{NN'1}^{i}\overline{L_{L}^{i}}\widetilde{\phi}N_{R}^{\prime i} - y_{NN'2}^{i}\overline{N_{L}^{\prime i}}\widetilde{\phi}^{\dagger}L_{R}^{i}$$

$$-y_{EE'1}^{i}\overline{L_{L}^{i}}\phi E_{R}^{\prime i} - y_{EE'2}^{i}\overline{E_{L}^{\prime i}}\phi^{\dagger}L_{R}^{i}$$

$$-m_{Li}(\sigma)\overline{L_{L}^{i}}L_{R}^{i} - m_{N'i}(\sigma)\overline{N_{L}^{\prime i}}N_{R}^{\prime i}$$

$$-m_{E'i}(\sigma)\overline{E_{L}^{\prime i}}E_{R}^{\prime i} + h.c.$$

dels, $m_{X} (X = N', E', L)$ can be parameterized as

$$m_{X}(\sigma) = m_{X0} + y_{X}\sigma.$$

$$= -y_{NN'1}^{i} \overline{L_{L}^{i}} \widetilde{\phi} N_{R}^{\prime i} - y_{NN'2}^{i} \overline{N_{L}^{\prime i}} \widetilde{\phi}^{\dagger} L_{R}^{i}$$

$$-y_{EE'1}^{i} \overline{L_{L}^{i}} \phi E_{R}^{\prime i} - y_{EE'2}^{i} \overline{E_{L}^{\prime i}} \phi^{\dagger} L_{R}^{i}$$

$$-m_{Li}(\sigma) \overline{L_{L}^{i}} L_{R}^{i} - m_{N'i}(\sigma) \overline{N_{L}^{\prime i}} N_{R}^{\prime i}$$

$$-m_{E'i}(\sigma) \overline{E_{L}^{\prime i}} E_{R}^{\prime i} + h.c.$$

models, $m_{X} (X = N', E', L)$ can be parameterized as

$$m_{X}(\sigma) = m_{X0} + y_{X}\sigma.$$

In UV

$$v_{\sigma}(T) = \begin{cases} b_0, & \text{if } T < T_1 \\ b_0 + b_1 (T - T_1)^{n_1} + b_2 (T - T_2)^{n_2}, & \text{if } T_1 \le T \le T_2. \end{cases}$$

When $m_L^2 \gg m_{N'}^2, \ m_{E'}^2, \ \frac{1}{2} |y_{NN'1} y_{NN'2}| h^2$, the mass eigenvalues are

$$egin{array}{lll} m_{N1}^2 &pprox & m_{N'}^2 - rac{m_{N'} \operatorname{Re}(y_{NN'1}y_{NN'2})}{m_L} h^2 \,, \ m_{N2}^2 &pprox & m_L^2 \,, \end{array}$$

$$m_{N1}^2 \approx m_{N'}^2 - \frac{m_{N'} \operatorname{Re}(y_{NN'1}y_{NN'2})}{m_L}h^2,$$

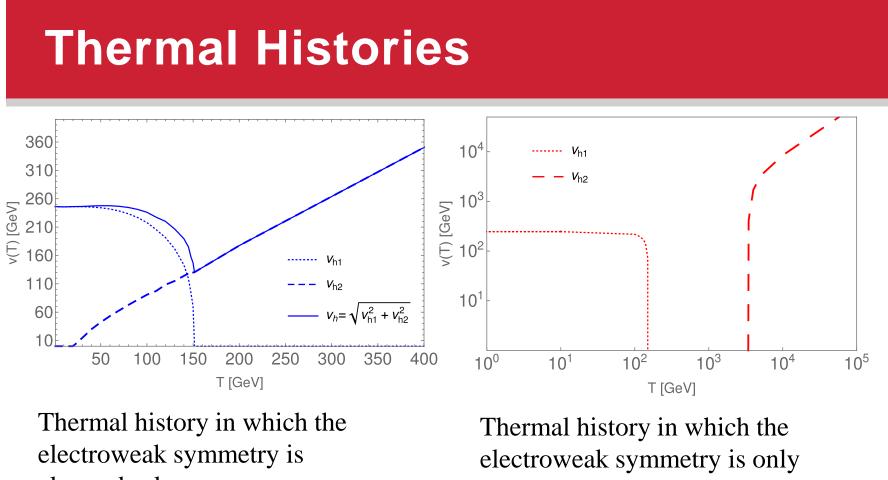
 $m_{N2}^2 \approx m_L^2,$

and similarly for m_{E1} , m_{E2} .

where

$$a_h = \frac{N_f}{6n} - \left(\frac{1}{2}\right)$$

In parameter space where $a_h > 0$, EW symmetry remains broken at high temperature.



always broken.

UNIVERSITY of NEBRASKA-LINCOLN

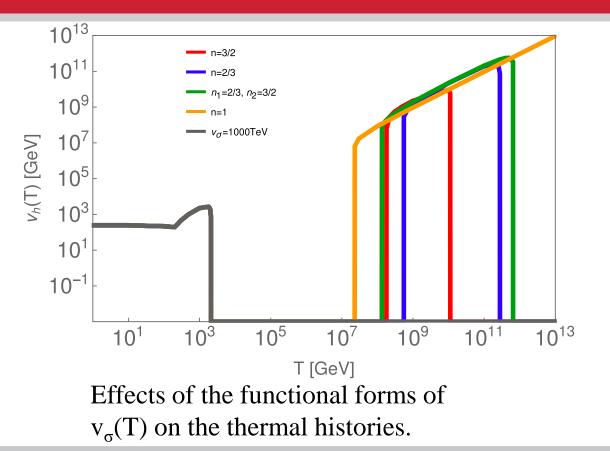
 $V(1,2)_{-\frac{1}{2}}, \ N_{L,R}^{\prime i} \sim (1,1)_0,$

$$\frac{\partial^2 V_1^{th}}{\partial h^2}\Big|_{h=0} = -a_h T^2$$

 $\frac{F}{m}(m_{N'}y_{NN'1}y_{NN'2} + m_{E'}y_{EE'1}y_{EE'2})$

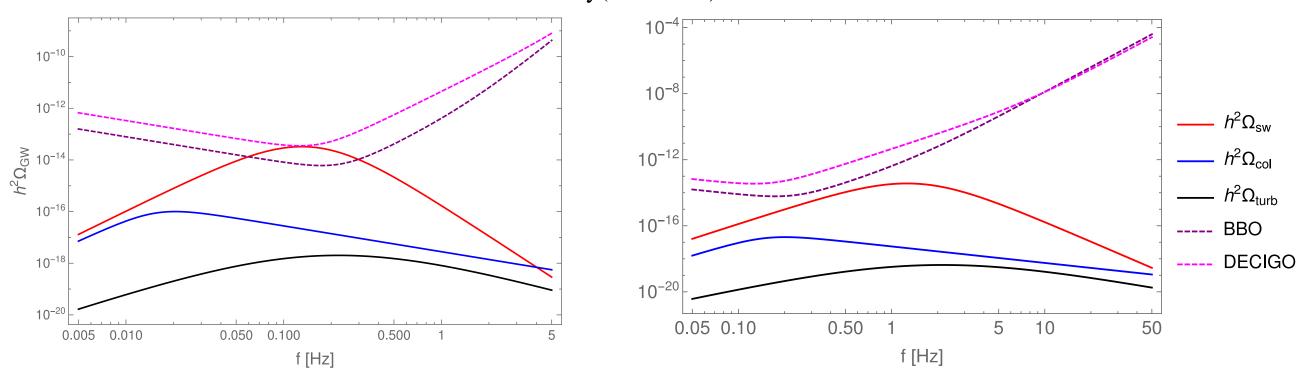
$$\frac{3}{16}g^2 + \frac{1}{16}g'^2 + \frac{1}{4}y_t^2 + \frac{1}{2}\lambda_h\right) \ .$$

temporarily restored.

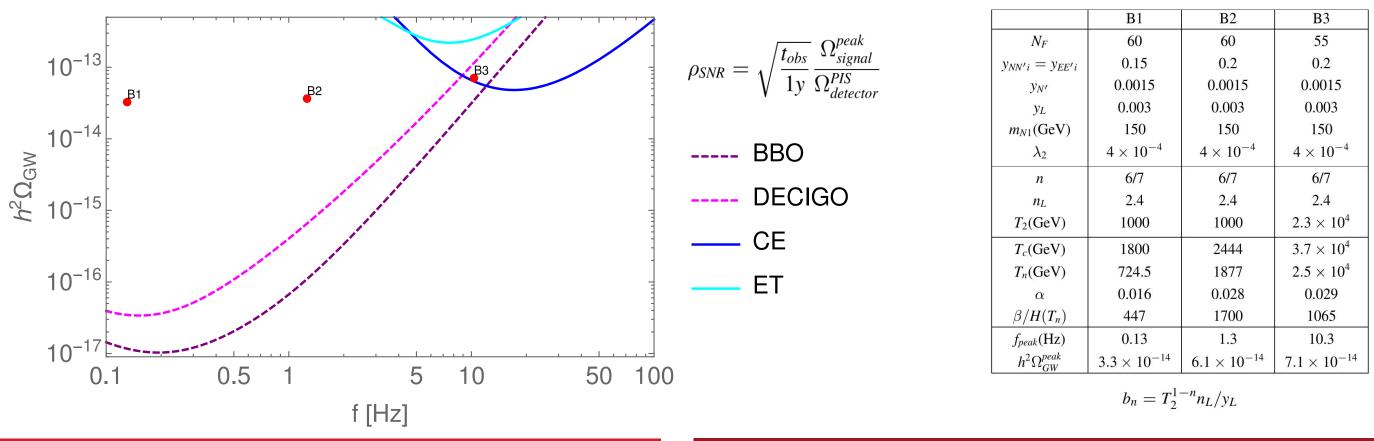


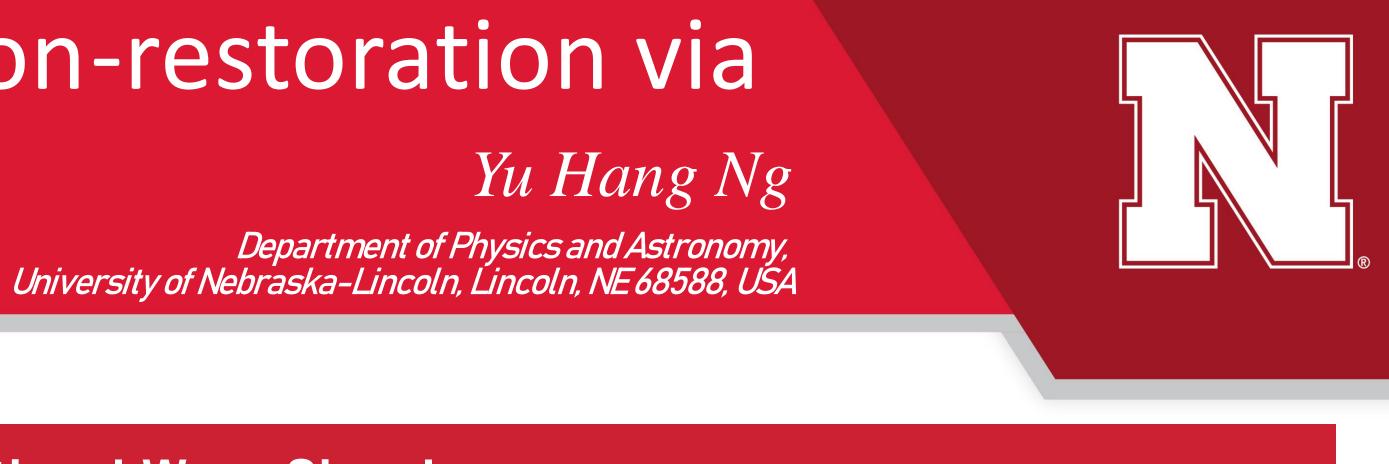
Gravitational Wave Signals

and DECi-hertz Interferometer Gravitational wave Observatory(DECIGO).



Peak-integrated sensitivity curves (left panel) for several future gravitational wave observatories^[5]. The red dots are some benchmarks (some details are given in the table on right panel). The x-coordinate of each benchmark is its peak frequencies, and y-coordinate is its peak GW strength.





The gravitational wave spectrum of benchmarks B1 (left panel), B2 (right panel), and the noise spectrum of the Big Bang Observer(BBO)

Summary

- New fermions from renormalizable models can induce EW symmetry non-restoration, or push the EWPT temperature well above the EW scale.
- These models have intriguing cosmological implications: origin of matter-antimatter asymmetry (e.g. high-temperature EWBG), gravitational wave signatures.

Contact: yu-hang.ng@huskers.unl.edu