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Why not “low-scale”?

Let us review the basics…

This workshop:
“High-scale” baryogenesis
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characterized in terms of 
the baryon to photon ratio η ≡

nB − nB

nγ
~ 6. 10

 10 000 000 001 
Matter

 The  great annihilation

 10 000 000 000 
Anti-matter

1 
(us)

Matter-antimatter asymmetry
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Sakharov’s conditions for baryogenesis (1967)

Γ(∆B > 0) > Γ(∆B < 0)

1) Baryon number violation 

2) C (charge conjugation) and CP (charge conjugation × Parity) violation

3) Loss of thermal equilibrium

(we need a process which can turn antimatter into matter)

(we need to prefer matter over antimatter)

(we need an irreversible process since in thermal equilibrium, the 
particle density depends only on the mass of the particle  and on 
temperature --particles & antiparticles have the same mass, so no 

asymmetry can develop)



- so far, no baryogenesis mechanism that  
 works with only Standard Model  CP violation (CKM phase)

double failure:

- lack of out-of-equilibrium condition

remains unexplained within the Standard Model⌘
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Baryon number violation in the Standard Model

From the Electroweak anomaly
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EW field strength

due to chirality + topology of electroweak theory



Im(g
1

g⇤
2

g
3

g⇤
4

) (281)

↵X ⌧ MX

MP l

p
g⇤ (282)

MX ⌧ MP l
p
g⇤ (283)

⌦Xh
2 / 1

h�vi (284)

⌦Xh
2 / h�vi (285)

⌦Xh
2 / ⌘X (286)

E =

Z
d3x[

1

4
F a
ijF

a
ij + (Di�)

†(Di�) + V (�)] (287)

V (�) = �(�†�� v2

2
)2 (288)

E
sph

=
2MW

↵W

B(x) (289)

B(x) = 1.58 + 0.32x� 0.05x2 (290)

x =
mH

MW

(291)

B = 1.958 ! E
sph

= 9.3 TeV (292)

� ⇠ e�4⇡/↵W ⇠ 10�165 (293)

↵W ⇠ 1/30 (294)

�B = �L = NF�NCS (295)

17

Baryon number violation in the Standard Model
due to chirality + topology of electroweak theory

9 TeV

Energy of gauge field  
configuration as a function  
of Chern Simons number

 baryons are created by transitions between topologically  
distinct vacua of the SU(2)L gauge field 

⇒ Baryon number violation is totally suppressed in the 

Standard Model  at zero temperature but very efficient at 
high temperatures
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the magnitude of its baryon asymmetry.) It is easy to see why these conditions
are necessary. The need for B (baryon) violation is obvious. Let’s consider some
examples of B violation.

2.1. B violation

In the standard model, B is violated by the triangle anomaly, which spoils con-
servation of the left-handed baryon+ lepton current,

∂µJµ
BL+LL

=
3g2

32π2
ϵαβγδW

αβ
a W γδ

a (2.1)

where Wαβ
a is the SU(2) field strength. As we will discuss in more detail in

section 4, this leads to the nonperturbative sphaleron process pictured in fig. 4.
It involves 9 left-handed (SU(2) doublet) quarks, 3 from each generation, and 3
left-handed leptons, one from each generation. It violates B and L by 3 units
each,

∆B = ∆L = ±3 (2.2)

L

L
L

Q

Q

Q
τ

e

µ

1

2

3
Fig. 4. The sphaleron.

In grand unified theories, like SU(5), there are heavy gauge bosons Xµ and
heavy Higgs bosons Y with couplings to quarks and leptons of the form

Xqq, Xq̄l̄ (2.3)

and similarly for Y . The simultaneous existence of these two interactions imply
that there is no consistent assignment of baryon number to Xµ. Hence B is
violated.

 The sphaleron

∆B = Nf∆NCS

Each transition creates 9 LH-quarks and 3 LH leptons.
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Baryon number violation in the Standard Model due to sphalerons
at finite temperature

 T> 1012   GeV

● In the EW symmetric phase, T>Tc            

 out-of-equilibrium if: 

● In the EW broken phase, T<Tc             

Tc: Temperature of the EW 
phase transition

  <φ>: Higgs vacuum expectation value

 out-of-equilibrium if:   <φ>/T > 1
February 2, 2008 8:54 World Scientific Review Volume - 9in x 6in tasi06proc-MCC

16 M.-C. Chen

where

cs =
8Nf + 4

22Nf + 13
. (1.57)

For models with NH Higgses, the parameter cs is given by,

cs =
8Nf + 4NH

22Nf + 13NH
. (1.58)

For T = 100 GeV ∼ 1012 GeV, which is of interest of baryogenesis,
gauge interactions are in equilibrium. Nervertheless, the Yukawa interac-
tions are in equilibrium only in a more restricted temperature range. But
these effects are generally small, and thus will be neglected in these lec-
tures. These effects have been investigated recently; they will be discussed
in Sec. 1.5.

1.1.4. Mechanisms for Baryogenesis and Their Problems

There have been many mechanisms for baryogenesis proposed. Each has
attractive and problematic aspects, which we discuss below.

1.1.4.1. GUT Baryongenesis

The GUT baryogenesis was the first implementation of Sakharov’s B-
number generation idea. The B-number violation is an unavoidable con-
sequence in grand unified models, as quarks and leptons are unified in the
same representation of a single group. Furthermore, sufficient amount of
CP violation can be incorporated naturally in GUT models, as there ex-
ist many possible complex phases, in addition to those that are present in
the SM. The relevant time scales of the decays of heavy gauge bosons or
scalars are slow, compared to the expansion rate of the Universe at early
epoch of the cosmic evolution. The decays of these heavy particles are thus
inherently out-of-equilibrium.

Even though GUT models naturally encompass all three Sakharov’s con-
ditions, there are also challenges these models face. First of all, to generate
sufficient baryon number asymmetry requires high reheating temperature.
This in turn leads to dangerous production of relic particles, such as grav-
itinos (see Sec. 1.2.3). As the relevant physics scale MGUT ∼ 1016 GeV is
far above the electroweak scale, it is also very hard to test GUT models ex-
perimentally using colliders. The electroweak theory ensures that there are
copious B-violating processes between the GUT scale and the electroweak

B =                  (B-L)At equilibrium:



2 main possibilities for baryogenesis:

1) B-L= 0 
theory 

2) B-L≠ 0 
theory 

High-scale baryogenesis possible.

Baryogenesis must take place at EWPT. 
Advantage: connected to EW physics, 

testable

Disadvantage: hard to test

Sphalerons’ implications

(this talk)



Baryogenesis Recap

GUT Baryogenesis : 

-requires too high reheat temperature
-requires (B-L) violation due to washout by sphalerons

-> Leptogenesis as the most viable baryogenesis through 
out-of equilibrium decays of heavy right-handed Majorana 
neutrinos (L-violating).
Appealing as it requires hardly any new physics ingredients 
beyond those needed to explain neutrino masses by the seesaw 
mechanism. 
Drawback: hard to test

—> Only way to achieve baryogenesis in (B-L) conserving theory: 
At the electroweak phase transition: Electroweak baryogenesis
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History of baryogenesis papers
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Two leading candidates 
for baryogenesis:

--> Leptogenesis by out of equilibrium decays of RH 
neutrinos before the EW phase transition

--> Baryogenesis at a first-order EW phase transition

2

FIG. 1: Slices of fluid energy density E/T 4
c at t = 400 T−1

c ,
t = 800 T−1

c and t = 1200 T−1
c respectively, for the η = 0.2

simulation. The slices correspond roughly to the end of the
nucleation phase, the end of the initial coalescence phase and
the end of the simulation.

W ϵ, contracting [∂µT µν ]
fluid

with Uν yields

Ė + ∂i(EV i) + p[Ẇ + ∂i(WV i)]−
∂V

∂φ
W (φ̇+ V i∂iφ)

= ηW 2(φ̇+ V i∂iφ)
2. (5)

The equations of motion for the fluid momentum density
Zi = W (ϵ+ p)Ui read

Żi+∂j(ZiV
j)+∂ip+

∂V

∂φ
∂iφ = −ηW (φ̇+V j∂jφ)∂iφ. (6)

The principal observable of interest to us is the power
spectrum of gravitational radiation resulting from bub-
ble collisions. One approach is to project Tij at every
timestep and then making use of the Green’s function to
compute the final power spectrum [34, 35]; this is quite
costly in computer time. Instead, we use the procedure
detailed in Ref. [36]. We evolve the equation of motion
for an auxiliary tensor uij ,

üij −∇2uij = 16πG(τφij + τ fij), (7)

where τφij = ∂iφ∂jφ and τ fij = W 2(ϵ+ p)ViVj . The phys-
ical metric perturbations are recovered in momentum
space by hij(k) = λij,lm(k̂)ulm(t,k), where λij,lm(k̂) is
the projector onto transverse, traceless symmetric rank 2
tensors. We are most interested in the metric perturba-
tions sourced by the fluid, as the fluid shear stresses gen-
erally dominate over those of the scalar field, although it
will be instructive to also consider both sources together.
Having obtained the metric perturbations, the power

spectrum per logarithmic frequency interval is

dρGW(k)

d ln k
=

1

32πGL3

k3

(2π)3

∫

dΩ
∣

∣

∣
ḣlm(t,k)

∣

∣

∣

2

. (8)

We simulate the system on a cubic lattice of N3 = 10243

points, neglecting cosmic expansion which is slow com-
pared with the transition rate. The fluid is imple-
mented as a three dimensional relativistic fluid [37], with
donor cell advection. The scalar and tensor fields are

evolved using a leapfrog algorithm with a minimal sten-
cil for the spatial Laplacian. Principally we used lat-
tice spacing δx = 1T−1

c and time step δt = 0.1T−1
c ,

where Tc is the critical temperature for the phase tran-
sition. We have checked the lattice spacing dependence
by carrying out single bubble self-collision simulations for
L3 = 2563 T−3

c at δx = 0.5T−1
c , for which the value of

ρGW at t = 2000T−1
c increased by 10%, while the final

total fluid kinetic energy increased by 7%. Simulating
with δt = 0.2T−1

c resulted in changes of 0.3% and 0.2%
to ρGW and the kinetic energy respectively.

Starting from a system completely in the symmet-
ric phase, we model the phase transition by nucleat-
ing new bubbles according to the rate per unit volume
P = P0 exp(β(t − t0)). From this distribution we gener-
ate a set of nucleation times and locations (in a suitable
untouched region of the box) at each of which we insert a
static bubble with a gaussian profile for the scalar field.
The bubble expands and quickly approaches an invariant
scaling profile [23].

We first studied a system with g = 34.25, γ = 1/18,
α =

√
10/72, T0 = Tc/

√
2 and λ = 10/648; this allows

comparison with previous (1 + 1) and spherical studies
of a coupled field-fluid system where the same parameter
choices were used [23]. The transition in this case is rela-
tively weak: in terms of αT , the ratio between the latent
heat and the total thermal energy, we have αTN

= 0.012
at the nucleation temperature TN = 0.86Tc. We also
performed simulations with γ = 2/18 and λ = 5/648, for
which αTN

= 0.10 at the nucleation temperature TN =
0.8Tc, which we refer to as an intermediate strength tran-
sition. We note that αTN

∼ 10−2 is generic for a first
order electroweak transition, while αTN

∼ 10−1 would
imply some tuning [38].

For the nucleation process, we took β = 0.0125Tc,
P0 = 0.01 and t0 = tend = 2000T−1

c . The simulation vol-
ume allowed the nucleation of 100-300 bubbles, so that
the mean spacing between bubbles was of order 100T−1

c .
The wall velocity is captured correctly, but the fluid ve-
locity did not quite reach the scaling profile before col-
liding. Typically, the peak velocity prior to collision is
20-30% below the scaling value for the deflagrations.

For the weak transition we chose η = 0.1, 0.2, 0.4 and
0.6. The first gives a detonation with wall speed vw ≃
0.71, and the others weak deflagrations with vw ≃ 0.44,
0.24, and 0.15 respectively. The shock profiles are found
in Figs. 2 and 3 of Ref. [23]; slices of the total energy
density for one of our simulations are shown in Fig. 1.
The intermediate transition was simulated at η = 0.4,
for which the wall speed is vw ≃ 0.44, very close to the
weak transition with η = 0.2.

Fig. 2 (top) shows the time evolution of two quantities
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Baryogenesis  
at a first-order  

EW phase transition
2

FIG. 1: Slices of fluid energy density E/T 4
c at t = 400 T−1

c ,
t = 800 T−1

c and t = 1200 T−1
c respectively, for the η = 0.2

simulation. The slices correspond roughly to the end of the
nucleation phase, the end of the initial coalescence phase and
the end of the simulation.

W ϵ, contracting [∂µT µν ]
fluid

with Uν yields

Ė + ∂i(EV i) + p[Ẇ + ∂i(WV i)]−
∂V

∂φ
W (φ̇+ V i∂iφ)

= ηW 2(φ̇+ V i∂iφ)
2. (5)

The equations of motion for the fluid momentum density
Zi = W (ϵ+ p)Ui read

Żi+∂j(ZiV
j)+∂ip+

∂V

∂φ
∂iφ = −ηW (φ̇+V j∂jφ)∂iφ. (6)

The principal observable of interest to us is the power
spectrum of gravitational radiation resulting from bub-
ble collisions. One approach is to project Tij at every
timestep and then making use of the Green’s function to
compute the final power spectrum [34, 35]; this is quite
costly in computer time. Instead, we use the procedure
detailed in Ref. [36]. We evolve the equation of motion
for an auxiliary tensor uij ,

üij −∇2uij = 16πG(τφij + τ fij), (7)

where τφij = ∂iφ∂jφ and τ fij = W 2(ϵ+ p)ViVj . The phys-
ical metric perturbations are recovered in momentum
space by hij(k) = λij,lm(k̂)ulm(t,k), where λij,lm(k̂) is
the projector onto transverse, traceless symmetric rank 2
tensors. We are most interested in the metric perturba-
tions sourced by the fluid, as the fluid shear stresses gen-
erally dominate over those of the scalar field, although it
will be instructive to also consider both sources together.
Having obtained the metric perturbations, the power

spectrum per logarithmic frequency interval is

dρGW(k)

d ln k
=

1

32πGL3

k3

(2π)3

∫

dΩ
∣

∣

∣
ḣlm(t,k)
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. (8)

We simulate the system on a cubic lattice of N3 = 10243

points, neglecting cosmic expansion which is slow com-
pared with the transition rate. The fluid is imple-
mented as a three dimensional relativistic fluid [37], with
donor cell advection. The scalar and tensor fields are

evolved using a leapfrog algorithm with a minimal sten-
cil for the spatial Laplacian. Principally we used lat-
tice spacing δx = 1T−1

c and time step δt = 0.1T−1
c ,

where Tc is the critical temperature for the phase tran-
sition. We have checked the lattice spacing dependence
by carrying out single bubble self-collision simulations for
L3 = 2563 T−3

c at δx = 0.5T−1
c , for which the value of

ρGW at t = 2000T−1
c increased by 10%, while the final

total fluid kinetic energy increased by 7%. Simulating
with δt = 0.2T−1

c resulted in changes of 0.3% and 0.2%
to ρGW and the kinetic energy respectively.

Starting from a system completely in the symmet-
ric phase, we model the phase transition by nucleat-
ing new bubbles according to the rate per unit volume
P = P0 exp(β(t − t0)). From this distribution we gener-
ate a set of nucleation times and locations (in a suitable
untouched region of the box) at each of which we insert a
static bubble with a gaussian profile for the scalar field.
The bubble expands and quickly approaches an invariant
scaling profile [23].

We first studied a system with g = 34.25, γ = 1/18,
α =

√
10/72, T0 = Tc/

√
2 and λ = 10/648; this allows

comparison with previous (1 + 1) and spherical studies
of a coupled field-fluid system where the same parameter
choices were used [23]. The transition in this case is rela-
tively weak: in terms of αT , the ratio between the latent
heat and the total thermal energy, we have αTN

= 0.012
at the nucleation temperature TN = 0.86Tc. We also
performed simulations with γ = 2/18 and λ = 5/648, for
which αTN

= 0.10 at the nucleation temperature TN =
0.8Tc, which we refer to as an intermediate strength tran-
sition. We note that αTN

∼ 10−2 is generic for a first
order electroweak transition, while αTN

∼ 10−1 would
imply some tuning [38].

For the nucleation process, we took β = 0.0125Tc,
P0 = 0.01 and t0 = tend = 2000T−1

c . The simulation vol-
ume allowed the nucleation of 100-300 bubbles, so that
the mean spacing between bubbles was of order 100T−1

c .
The wall velocity is captured correctly, but the fluid ve-
locity did not quite reach the scaling profile before col-
liding. Typically, the peak velocity prior to collision is
20-30% below the scaling value for the deflagrations.

For the weak transition we chose η = 0.1, 0.2, 0.4 and
0.6. The first gives a detonation with wall speed vw ≃
0.71, and the others weak deflagrations with vw ≃ 0.44,
0.24, and 0.15 respectively. The shock profiles are found
in Figs. 2 and 3 of Ref. [23]; slices of the total energy
density for one of our simulations are shown in Fig. 1.
The intermediate transition was simulated at η = 0.4,
for which the wall speed is vw ≃ 0.44, very close to the
weak transition with η = 0.2.

Fig. 2 (top) shows the time evolution of two quantities
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this talk:



EW baryogenesis during a first-order EW 
phase transition .

 Baryon asymmetry created at 
vicinity of CP-violating bubble wall.broken phase 

<Φ>≠0

h�(Tn)i
Tn

& 1Strength of EW phase transition ≡

Tn ≡ nucleation temperature
15

Kuzmin, Rubakov, Shaposhnikov’85
Cohen, Kaplan, Nelson’91
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3)  In symmetric phase,<Φ>=0,
very active sphalerons convert chiral 
asymmetry into baryon asymmetry

Chirality Flux  
in front of the wall

Baryon asymmetry and the EW scale

Electroweak baryogenesis mechanism relies on a  
first-order phase transition satisfying     

1)  nucleation  and expansion of 
bubbles of broken phase

broken phase 

<Φ>≠0
Baryon number 

 is frozen

2)  CP violation at phase interface 
 responsible for mechanism   

of charge separation

• B formation cartoon:

CP

Q

U

Q

U

H

yt QHuUc SU(2)L sphaleron

• Osphal ∝
∏

i(QiQiQiLi) is sourced by the Q asymmetry.h�(Tn)i
Tn

& 1

Kuzmin, Rubakov, Shaposhnikov’85

Cohen, Kaplan, Nelson’91
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Broken Symmetric

Figure 1: A cut through the bubble wall, which moves from the left to the right (in the direction

of positive z, i.e. v

w

> 0). In blue we show the profile of the Higgs vev through the bubble

wall. The rate for the sphaleron transitions (yellow, rescaled to one) only becomes important

in front of the bubble wall.

is a measure for the density of left handed quarks in front of the bubble wall. The first term

in the parenthesis on the right hand side of equation (1) represents the excess of left handed

quarks being converted into a net baryon number by the weak sphaleron. The second term

in this parenthesis accounts for the washout, i.e. the fact that the sphaleron tends to relax

any baryon asymmetry to zero if it has enough time to do so. If the bubble wall advances

at a very low speed compared to the typical di↵usion time scale, the sphaleron washes-out

the baryon asymmetry. If, however, the wall has a sizable velocity, a non-negligible fraction

of the baryon asymmetry di↵uses into the bubble, where the weak sphaleron is suppressed

due to the fact that the electroweak symmetry is broken. This way we can freeze the baryon

asymmetry inside the bubble.

The whole mechanism is illustrated figure 1 which also clarifies our notations and conven-

tions.

From equation (1) it is clear that the main di�culty will be to calculate the density of

the excess of left-handed fermions in front of the bubble wall. This will be determined by the

way the fermions are transported through the bubble wall, i.e. how they interact with the

wall and among them selfs while moving through the wall. We therefore want to determine

the profiles of the chemical potentials (µ
i

) of each one of the particle species. It is clear that

their local velocity in the plasma (u
i

) is influencing the di↵usion through the bubble wall.

We therefore have to determine µ
i

and u

i

simultaneously. For electroweak baryogenesis, only

the CP-violating contribution is of interest, which is the only part that we will calculate.

Therefore the (CP-violating part of the) chemical potentials and the local velocities will also

crucially depend on the (new) source of CP-violation that has to be present in order to create

an excess of left-handed particles. This gives rise to a system of coupled di↵erential equations

2
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bubble wall velocity

The EW baryogenesis miracle .

bubble wall
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Kinetic equations
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Konstandin, Prokopec, Schmidt ’04

Kinetic equations Huber Fromme ’06

the so called transport equations, which, as we will see later on, can be brought to the form:

A(z) · r0(z) + B(z) · r(z) = S̄(z) (4)

where r = (µ
1

, µ

2

, . . . , µ

N

, u

1

, u

2

, . . . , u

N

)T is the 2N -dimensional vector of the solutions of

the di↵erential equations, A and B are 2N ⇥ 2N matrices that encode the dynamics and

interactions of the particles and S̄ is the vector containing the CP-violating source. Here

N is the number of particle species that are taken into account in the di↵usion system. As

stated in Appendix A, for our purposes we take N = 9, corresponding to the LH and RH

chiralities of the Top, Bottom, Charm, and Strange quarks as well as the Higgs. Notice that

the matrices A and B are space dependent. Besides, we want to impose that the solution

vector vanishes in both limits z ! ±1. In general it is not guaranteed that such a solution

exists and is unique, but it does in our context as long as the wall velocity is not too large.

We solve this system using textbook techniques. In particular, we want to construct a

Green’s function such that

r(z) =

Z

dy G(z, y) S̄(y) . (5)

For our system the Green’s function is just a suitably normalized linear combination of the

solutions of the homogeneous equations multiplied with a Heaviside step function. The ho-

mogeneous system being r

0 +A

�1

Br = 0. First, we chose two points outside wall, z
0

⌧ �l

w

,

z

1

� l

w

. Since A and B are constant outside the wall, we determine the eigenvalues (�
i
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A

�1

B with the correct sign in the points z

0

and z

1

, such that the corresponding solutions

w

i

(z) = e

��iz go to zero at ±1. Typically one finds half of the solutions with either sign in

both points such that in total one finds the correct number of solutions that vanish beyond

the wall.

The corresponding functions w

i

(z) can then be numerically continued into the wall and

beyond taking the space-dependence of A and B into account. They will blow up exponentially

beyond the wall. Still, when these functions are multiplied with the appropriate Heaviside

functions, ⇥(±(z�y)), one obtains solutions to the equation of motion that vanish at z ! ±1
and contain a discontinuity at z = y. An appropriate linear superposition then yields the

Green’s function G(z, y).

The relation 1 can be inverted yielding
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where s = 2⇡

2

45

g⇤T
3 is the entropy density, N

c

the number of colours (3 in the SM) and µ

L

is

the chemical potential of the left handed quark species and hence is a linear combination of

the entries of the solution vector. Therefore we can write µ
L

= V

T

r(z), where V is the vector

that defines the linear combination (see equation (3)). With this and using equations 5 and 6

we write the total baryon asymmetry as:

⌘

B

=
X

i

Z

+1

�1
dy K

i

(y) S̄
i

(y) (7)

3diffusion effects 
& sphalerons

CP-violating 
source
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Usual CP-violating sources in EW baryogenesis:

-Charginos/neutralinos/sfermions (MSSM)

-Varying phase in effective Top quark Yukawa

SM+singlet,  
Composite Higgs,  

2-Higgs doublet model
Espinosa, Gripaios, Konstandin, Riva, ‘11

Konstandin et al, Cline et al

Fromme-Huber

Cline et al,  
Carena et al,  
Chung et al…
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e.g. Cline’17

Bruggisser et al ’17 + ‘18-Varying Yukawas

-Alternatives: strong CP QCD axion (             ), 
CP violation in Dark sector (            )
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Jarlskog constant

In the SM: Farrar, Shaposhnikov ‘93

Based solely on 
reflection coefficients

the CKM matrix as the CP-violating source 
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3

II. CP VIOLATION IN THE STANDARD MODEL

It is often stated in the literature that the CP violation present in the SM is insufficient to

explain the observed baryon asymmetry. These claims rest usually on the so-called Jarlskog

determinant [21] and we review this argument in the following. The basic observation is that

physical observables cannot depend on the flavor basis chosen for the quarks; in particular

transformations of the right-handed quarks leave the Lagrangian invariant since the weak

interactions are chiral. Besides, the quark fields can be redefined absorbing one complex

phase. The last fact implies that all CP-odd observables in the SM have to be proportional

to

J = s21s2s3c1c2c3 sin(δ) = (3.0± 0.3)× 10−5, (3)

with the Jarlskog invariant J given in terms of the Kobayashi-Maskawa parametrization of

the CKM matrix V with a CP-violating phase δ as defined in refs. [21, 22]. In addition,

if two up- or down-type quark masses were degenerate, there would be no CP violation in

the Standard Model since flavor basis transformation can in this case be used to remove the

complex phase of the CKM matrix altogether from the Lagrangian.

If one further assumes that the observable under consideration is polynomial in the quark

masses, the simplest dimensionless expression that fulfills these constraints is found to be

the Jarlskog determinant that has the form

∆CP = v−12Im Det
[

mum
†
u, mdm

†
d

]

= J v−12
∏

i<j

(m̃u,i − m̃2
u,j)

∏

i<j

(m̃2
d,i − m̃2

d,j) ≃ 10−19, (4)

where v is the Higgs vacuum expectation value and m̃2
u/d denote the diagonalized mass

matrices according to

mdm
†
d = Dm̃2

dD
†, mum

†
u = Um̃2

uU
†. (5)

The identity in eq. (4) results then from the following relation of the CKM matrix (summa-

tion over indices is only performed as explicitly shown)

Im
[

VabV
†
bcVcdV

†
da

]

= J
∑

e,f

ϵaceϵbdf , V = U †D. (6)

According to this argument CP violation in the SM seems to be too small to explain the

observed baryon asymmetry that is of order η ∼ 10−10 and several proposals in the literature

If large masses during EW phase transition
 ->no longer suppression of CKM CP violation

Berkooz, Nir, Volansky ’04
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V is the transformation matrix used in the mass diagonalization (see Eq. (92) in Appendix

B). The subscript ii refers to the diagonal entries and does not stand for the conventional

summation. Note that in order to obtain this result we had to make use of the constraint

equations (Eq. (113) in appendix C) to the lowest order in the gradient expansion.

3.2 CP-violating force from varying yukawas across the bubble wall

Under the hypothesis of diagonal entries as stated above, the commutator terms (terms 2, 6

and 7) in equation (13) do not contribute to equation (21). From the derivative structure,

we can see that the CP-conserving force / [V † �
m

†
m

�0
V ] in equation (21), has to come from

a combination of the terms 3, 4 and 5, whereas the CP-violating force (s/k̃
0

)Im [V †
m

†00
mV ]

follows from terms 8 and 9. It is then easy to show that the CP-violating part vanishes for the

SM which has constant Yukawa couplings. Indeed, for constant Yukawas Im
h

V

†
m

†00
mV

i

/
Im

⇥

V

†
Y

†
Y V

⇤

�

00
� and since V

†
Y

†
Y V is hermitian, the diagonal entries are real.

In summary, the only relevant CP-violating terms in equation (13) are terms 8 and 9.

These are second order terms in the derivative expansion of Ê. In the Standard Model, these

terms vanish since derivatives of the mass matrix are proportional to the mass matrix itself.

In the models we will study, this is no longer true. The purpose of this work is to explore the

possibility that the variation of the mass terms of Standard Model fermions across the bubble

wall provide the only source of CP violation to explain the observed baryon asymmetry. These

new CP-violating sources can be su�cient for baryogenesis provided that the Yukawa coupling

starts with a value of order one in the symmetric phase. This is possible even with only one

fermionic flavor as long as the complex phase of this mass is changing during the electroweak

phase transition, a CP-violating axial current being induced due to a semi-classical force [26].

This source of CP violation is di↵erent from the standard CP violation from the CKM

phase. In this case, CP-violating processes have to involve at least three flavors and accord-

ingly are suppressed by the Jarlskog invariant J
CP

[33, 34]. In principle, the Standard Model

CKM CP violation also enters in our analysis, but it will do so via higher loop contributions

to the self-energy ⌃ in (68) and be very much suppressed [3, 35]. In practice, we neglect the

self-energies and hence the standard CKM type of CP violation.

2We note that in [32] the CP-violating force in the kinetic equation for gs0dii is di↵erent and involves the
combination

Im
h

V †m†0mV
i0

ii
6= Im

h

V †m†00mV
i

ii
, (20)

The discrepancy comes from the fact that we work in the limit where flavor oscillations are relatively fast
and one can neglect all o↵-diagonal in the basis where the masses are diagonal. On the other hand, Ref. [32]
works in the limit where oscillations are very slow and the derivative expansion even holds for the o↵-diagonal
entries of the Wightman function.
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These are second order terms in the derivative expansion of Ê. In the Standard Model, these

terms vanish since derivatives of the mass matrix are proportional to the mass matrix itself.

In the models we will study, this is no longer true. The purpose of this work is to explore the

possibility that the variation of the mass terms of Standard Model fermions across the bubble

wall provide the only source of CP violation to explain the observed baryon asymmetry. These

new CP-violating sources can be su�cient for baryogenesis provided that the Yukawa coupling

starts with a value of order one in the symmetric phase. This is possible even with only one

fermionic flavor as long as the complex phase of this mass is changing during the electroweak

phase transition, a CP-violating axial current being induced due to a semi-classical force [26].

This source of CP violation is di↵erent from the standard CP violation from the CKM

phase. In this case, CP-violating processes have to involve at least three flavors and accord-

ingly are suppressed by the Jarlskog invariant J
CP

[33, 34]. In principle, the Standard Model

CKM CP violation also enters in our analysis, but it will do so via higher loop contributions

to the self-energy ⌃ in (68) and be very much suppressed [3, 35]. In practice, we neglect the

self-energies and hence the standard CKM type of CP violation.

2We note that in [32] the CP-violating force in the kinetic equation for gs0dii is di↵erent and involves the
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The discrepancy comes from the fact that we work in the limit where flavor oscillations are relatively fast
and one can neglect all o↵-diagonal in the basis where the masses are diagonal. On the other hand, Ref. [32]
works in the limit where oscillations are very slow and the derivative expansion even holds for the o↵-diagonal
entries of the Wightman function.
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Special case: 1 flavour
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Nature of 
the EW phase transition
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HEATING UP THE STANDARD MODEL .
 EW sym. restored at T≳160 GeV*** 

through a smooth crossover
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It would have been different if mH≲70 GeV
Electroweak phase transition

Lattice calculations show the SM Higgs mass is too large.

RHW ⌘ mH/mW

Endpoint at:

mH ⇡ 67 GeV

- Csikor, Fodor, Heitger, Phys. Rev. Lett. 82, 21 (1999)

Higgs mass is too large in the SM. The Higgs potential must be modified.
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What makes the EW phase transition 
1st-order ?

> Extra EW-scale scalar(s) coupled to the Higgs  

> O(1) modifications to the Higgs potential  

30



What makes the EW phase transition 
1st-order ?

2 main classes of models
11<1- Standard polynomial potentials, e.g extra singlet S, 2Higgs-

Doublet Model… under specific choices of parameters

2- Higgs emerging after confinement phase transition of 
strongly interacting new sector.

-Effect of cross-quartic
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-Higgs potential is trigonometric function

-Moderate strength  of EW phase transition, 
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-Fate of the Higgs ruled by the dilaton
-Unbounded strength,        can naturally be >>1 
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> Extra EW-scale scalar(s) coupled to the Higgs  
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(textbook cases) 

(discussed in next 
few slides) 



The EW 
baryogenesis 

tension .



Electroweak baryogenesis requires an 
additional scalar S .

111- induces a 1st-order EWPT through 
interplayed dynamics with the Higgs 

2-  also plays a role in CP-violation

33-  contributes to reheating once the transition is 
complete

FoFor these 3 reasons, S must not be much 
heavier than the Higgs

This is the EW baryogenesis tension

Severely constrained 
by EDM bounds!
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Usual way to get 1st order EW phase transition: add a new scalar S

V

S

h

0

EWBG needs T < T of EW restoration

Phase Transition Temperature
work in progress 
Bruggisser,VonHarling,OM,Servant
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Phase Transition Temperature

Usual way to get 1st order EW phase transition: add a new scalar S

EWBG needs T < T of EW restoration

work in progress 
Bruggisser,VonHarling,OM,Servant

 S phase transition releases latent heat 

7

V

S

h

0 S phase transition releases latent heat

T4 ∝ m2
S

Phase Transition Temperature

Usual way to get 1st order EW phase transition: add a new scalar S

EWBG needs T < T of EW restoration

work in progress 
Bruggisser,VonHarling,OM,Servant
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V

S

h

0 S phase transition releases latent heat

T4 ∝ m2
S

⇒ for T restoration ~130 GeV

O(100 GeV)mS ≲

Phase Transition Temperature

Usual way to get 1st order EW phase transition: add a new scalar S

EWBG needs T < T of EW restoration

work in progress 
Bruggisser,VonHarling,OM,Servant

One needs T <TEW restoration to avoid washout 
of baryon asymmetry

Light S -> Very constrained by EDM

Electroweak baryogenesis requires an 
additional light scalar S .
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FIG. 2: Shaded region: for f/b = 500GeV, mh = 120GeV
and ms = 80, 130GeV (upper and lower plots), the ∆Θt

achieved for a given vc/Tc in the Z2-symmetric case (a
tiny explicit breaking is assumed, see Section V). The
black lines (dotted, dot-dashed, dashed, solid, double dashed-
dotted) correspond to explicit examples with fixed λm =
0.25, 0.5, 0.75, 1, 1.5, respectively. Points on the red lines
match the observed baryon asymmetry (solid) or 1.5 (dot-
ted), 0.75 (dashed) times that value. The vertical line marks
vc/Tc = 1, below which the asymmetry would be erased by
active sphalerons.

fulfilled for natural values of the parameters.
We close this Section with a comparison of our

EWBG scenario with previous studies of EWBG in non-
supersymmetric models, such as the two-Higgs doublet
model [48, 53] or the SM with a low cut-off [29–32]. In
the former, CP violation arises already at the level of
renormalizable operators in the Higgs potential, through
a complex phase between the two Higgs VEVs. Very
strong phase transitions (induced by tree-level barriers)
are not possible in that context since, contrary to the
case with a singlet, the second Higgs doublet cannot ac-
quire a VEV prior to the EWPhT by definition. (To
circumvent this problem, ref. [54] studies a 2HDM with
an additional singlet: the two Higgs doublets violate CP ;
the singlet strengthens the EWPhT.) Although the non-
supersymmetric 2HDM does not address the hierarchy
problem, it is worth noting that it can also arise as the

low-energy limit of composite Higgs models [34].
The behaviour at finite temperature of other scenar-

ios that address the hierarchy problem but lead only
to a light single Higgs, such as the Minimal Composite
Higgs [22] or Little Higgs models, have been also ana-
lyzed. Refs. [31] studied the temperature behaviour of a
Higgs that arises as the PNGB of a broken global symme-
try,3 parametrizing the deviations from the SM through
effective operators. A strong EWPhT can result in this
setting from the dimension-six operator h6, which stabi-
lizes a Higgs potential with negative quartic coupling, as
discussed in [29, 30]. This creates a large tree-level bar-
rier but the reliability of the effective-theory description
is not then obvious. Different dimension-six operators are
responsible for sourcing CP violation [31, 32], in a man-
ner similar to our eq. (7), and for generating a complex
mass for the top quark: mt ∼ yt(vh+iv3h/Λ

2). Compared
to the model proposed here, these operators (which would
arise also in our model, in the limit of a heavy singlet)
are dimension-six and hence generally smaller than the
ones involving the singlet.

IV. ELECTRIC DIPOLE MOMENTS AND
OTHER CONSTRAINTS

The presence of a scalar that mixes with the Higgs and
has pseudoscalar couplings to fermions induces an elec-
tric dipole moment (EDM) for the electron and for the
neutron. The electron EDM receives the largest contribu-
tion from the two-loop Feynman diagram [56] of Figure 3,
where the electron flips its chirality by coupling to the

s

h

t t
t

e e e
FIG. 3: Diagram illustrating the largest contribution to the
electron EDM: the dashed line indicates a Higgs that mixes
with the singlet, which then couples with the top.

3 At even higher temperatures, the same mechanism that cuts off
quadratic divergences in the Higgs potential also affects its finite
temperature corrections and could lead to non-restoration of the
EW symmetry [55].

3

SU(2)L ×U(1)Y gauge symmetry forbids such a term in
the Lagrangian and s can interact with the SM fermions
only at the non-renormalizable level, beginning at dimen-
sion five with the operator

s

f
HQ̄3(a+ ibγ5)t+ h.c. , (6)

where f is the analogue of the pion decay constant and
is related to the mass mρ (of order the confinement scale
Λ) and coupling gρ of the strong sector resonances via
mρ = gρf , where gSM ! gρ ! 4π and gSM is a typical SM
coupling [36]. In eq. (6) we have written only the coupling
between the singlet s and the third generation SU(2)L
doublet, Q3, and singlet, t. Indeed, naturalness implies
that the Higgs and top sectors be mostly composite, so
that the strong dynamics is expected to influence mostly
the interactions within and between these two sectors.
Even in this case, interactions with the lighter fermions
will be present in the mass eigenstate basis, but are ex-
pected to be of the order of the corresponding (small)
Yukawa couplings.
Finally, it is useful for what follows to consider how

one may implement CP in this context: If V odd vanishes,
a = 0 and b ̸= 0, the singlet behaves as a pseudoscalar
and CP is conserved; similarly for b = 0 and a ̸= 0
the singlet is scalar-like and CP is also conserved in the
Lagrangian. Other non-trivial choices inevitably violate
CP .

III. ELECTROWEAK BARYOGENESIS

Two conditions need to be fulfilled during the EW-
PhT in order to create enough baryon/antibaryon asym-
metry [37]. First of all, CP violation must be present
within the wall separating the broken from the unbro-
ken phase. This sources an excess of left-handed versus
right-handed fermions2 in front of the wall which is con-
verted into a baryon versus antibaryon excess by non-
perturbative electroweak (sphaleron) processes. For this
excess to be conserved, these sphaleron processes must be
quickly suppressed within the broken phase. This brings
us to the second condition: that the EWPhT be strongly
first-order (if vc ≡ ⟨h⟩ |Tc

is the value of the Higgs VEV
in the broken phase at the critical temperature Tc, then
this condition reads vc/Tc " 1 [38]). Neither of these
conditions is fulfilled in the SM, as the CP violation en-
coded in the CKM matrix is too small and, anyway, the
phase transition is really a crossover [39], given the lower
bound on the Higgs mass from LEP.
The strength of the EWPhT in the SM plus a singlet

has been thoroughly studied [14, 35, 40–44]. Many anal-
yses concentrated on loop effects involving the singlet,

2 With left-handed (right-handed) we mean qL + q̄R (q̄L + qR),
where the subscript L denotes the SU(2)L doublet and R the
singlet.

which enhance the cubic term ETh3 in the Higgs po-
tential at finite temperature, while reducing the quartic
λhh4 (at a given Higgs mass) that enters the above condi-
tion 1 ! vc/Tc ≈ E/λh. LEP bounds on the Higgs mass,
however, suggest that one singlet scalar is not enough,
if it contributes only via loop effects [45]. Furthermore,
it was recently pointed out [8] that magnetic fields gen-
erated during the EWPhT might increase the sphaleron
rate within the broken phase, calling for even stronger
phase transitions in order to have successful baryogenesis.
The strongest phase transitions are achieved when the
singlet contributes through tree-level effects, i.e. when
the tree-level potential for H and s is such that a bar-
rier separates the EW broken and unbroken phases (not
necessarily with vanishing VEV ⟨s⟩ along the singlet di-
rection) [35]. Indeed, in the case of a barrier generated
only at loop-level, the jump in the Higgs VEV is propor-
tional to the critical temperature Tc (times a loop factor),
and is hence constrained to be small at small tempera-
ture. In the case of a tree-level barrier, on the other hand,
the Higgs VEV at the critical temperature depends on a
combination of dimensionful parameters in the potential
and its effect can be present even at small Tc (and is
enhanced by a small Tc appearing in the denominator of
vc/Tc). In what follows we will concentrate on this possi-
bility, assuming that the transition is strongly first-order
and relying on the analysis of [35], which studies strong
phase transitions induced by tree-level effects in the SM
plus a singlet. One important implication of scenarios
with a tree-level barrier is that a strong transition is nec-
essarily accompanied by a variation of the singlet VEV
during the EWPhT. This can be understood by noticing
that, were the singlet VEV constant, the potential would
have the same shape as the SM potential at tree-level
and would have, therefore, no tree-level barrier.
When the EWPhT is strongly first-order, bubbles of

the broken phase nucleate within a universe in the un-
broken phase and expand. CP -violating interactions
can then source EWBG within the wall separating the
two phases. In the composite version of the SM plus
a singlet outlined in the previous section, with non-
vanishing, pseudoscalar couplings between singlet and
fermions [b ̸= 0 in eq. (6)], the source is provided by
a variation in the VEV of s. Indeed, from eq. (6), we can
write the top quark mass, which receives contributions
from both h and s, as

mt =
1√
2
v

[

yt + (a+ ib)
w

f

]

≡ |mt| eiΘt , (7)

where yt is the top Yukawa and we defined the VEVs

v ≡ ⟨h⟩ , w ≡ ⟨s⟩ , (8)

with v = 246 GeV. At vanishing temperature, the phase
Θt can be absorbed in a redefinition of the top quark
field and is thus unphysical; the only effect of a non-
zero w is a shift between the top-mass and the Yukawa
coupling compared to the relation that holds in the SM.

The EW baryogenesis tension .

Well-motivated CP source 
for EW baryogenesis : 
modified Top-yukawa 
(“Top-transport” EW 

baryogenesis)
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threatened by EDM bounds



EDM threat on Electroweak baryogenesis .
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1 Introduction

Electric dipole moments (EDM) provide one of the best indirect probes for new-physics. Since a
non-zero EDM requires a violation of the CP symmetry, and the Standard Model (SM) contributions
are accidentally highly suppressed, the EDM is an exceptionally clean observable to uncover beyond
the SM (BSM) physics. Indeed, if BSM physics lies at the TeV scale, we expect new interactions and
therefore new sources of CP violation to be present,1 inducing sizable EDM to be observed in the
near future. For this reason, experimental bounds on the electron and neutron EDM have provided
the most substantial constraints on the best motivated BSM scenarios, such as supersymmetry or
composite Higgs models.

The ACME experiment has recently released a new bound on the electron EDM that improve
by a factor ⇠ 8.6 their previous bound [1]:

|de| < 1.1 · 10�29 e · cm . (1.1)

1As in the SM, we can expect that any parameter of the BSM that can be complex will be complex, providing
unavoidably large new sources of CP violation.

2
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Evading EDM bounds for EW baryogenesis .

37

— Hide CP in leptons, or dark sector
1811.11104, 1903.11255 1811.09719

—Use the dilaton in Composite Higgs models
-> search for the dilaton at LHC!

—Do EW baryogenesis at higher scales!

7

V

S

h

0 S phase transition releases latent heat

T4 ∝ m2
S

⇒ for T restoration ~1 TeV

O(few TeV)mS ≲

Phase Transition Temperature

Usual way to get 1st order EW phase transition: add a new scalar S

EWBG needs T < T of EW restoration

work in progress 
Bruggisser,VonHarling,OM,Servant

Even if only up to TeV, it considerably relaxes the bounds
1807.08770, 1811.11740, 2002.05174

1804.07314



How to release the tension ?

11 How to induce a 1st-order EWPT with a scalar S 
significantly heavier than H? 

Increase the 
temperature of EW 

symmetry restoration

Non-polynomial 
potential: we can have 

m_S>> T_n

2 options

1(to prevent washout by 
sphalerons at reheating)

11In both cases, S heavier than H —> EDM bounds evaded

(1) (2)



EW  Phase transition in 
Composite Higgs Models :

39

Naturally strongly first-order .

OPTION (1)



EW phase transition 
in Composite Higgs models .

> Higgs potential emerges at E≲f .

For PNGB:
 f~O(TeV): confinement scale of new strongly interacting sector, 
described by VEV of dilaton field <𝛘>, Pseudo-Nambu-Goldstone 

Boson of spontaneously broken conformal symmetry of the strong 
sector
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𝛘𝛘 dominates 
the dynamics

 intertwinned 
dynamics
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EW phase transition in CH
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unbroken EW symmetry

confinement and EWSB
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EW phase transition in CH
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deconfined strong sector
unbroken EW symmetry

confinement and EWSB

7

Higgs-dilaton intertwinned dynamics .

 Which path?

411803.08546 ,1804.07314
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Strongly 1st order TeV scale 
confinement phase transition .

Large number of  massless 
dof in deconfined phase 

Shallow (nearly conformal) 
potential at T=0 with TeV minimum+

26

  

Free energy - 4D

In a thermal system a phase transition will connect the two stable 
phases of the system.

Quarks/gluons that 
are confined in the 
broken phase induce 
a difference in free 
energy between the 
two phases 

tunnel?

Creminelli, Nicolis, Rattazzi’01 
Randall, Servant’06 
Hassanain, March-Russell, Schwellinger’07 
Nardini,Quiros,Wulzer’07 
Konstandin,Servant’11 
Konstandin,Nardini,Quiros’10 

Bunk, Hubisz, Jain’17 
Dillon, El-Menoufi,Huber,Manuel’17 
VonHarling,Servant’17 
Megias, Nardini, Quiros’ 18 
Bruggisser, VonHarling, Matsedonskyi, Servant’18 
Baratella, Pomarol, Rompineve’18

Very strongly 1st order TeV scale 
confinement phase transition .
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Large thermal barrier

 Supercooled confinement phase transition

t1

t2

t3
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EW phase transition in CH
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Impact on EW phase transition 
in Composite Higgs.

 (1) SM-like EW phase transition

 (2)-(3) Joint confinement-EW 
phase transitions: very rich 
pheno for EW baryogenesis

431804.07314

(crossover)

(strongly 1st-order)



N: number of 
colors of 
strong sector
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Figure 2: Black solid (red dashed) contours are for a glueball (meson) dilaton. Left: Phase-transition strength h[Tn]/Tn. We also show the
values of the cutoff m⇤ = g⇤f . The chosen mass range satisfies current experimental constraints [? ]. In the red dashed region, there is no
phenomenologically viable EW minimum for the case of the meson dilaton. The baryon asymmetry is ⌘B ⇥ 1010 ⇠ 3.4 (a), 4.5 (b), 3.8 (c),
5.5 (d). Center: Average Higgs vev during the phase transition relative to the condensate scale today, havg/f . Right: Imaginary part of the
top Yukawa as a function of the present value of y/g1/2

⇤ and its anomalous dimension �y for |�y| = �yy, a complex phase arg �y = �/2 and
ytL =

p
g⇤. N is fixed such that h/T � 1. Contours approximately correspond to the current (2 ⇥ 10�2) [? ] and near future (2 ⇥ 10�4)

experimental sensitivities [? ].

To have the minimum of the Higgs potential at h
0

⌧ f
at present times requires that |↵0/�0| ⌧ 1. From Eq. (12),
on the other hand, we see that generically |↵[�]/�[�]| & 1.
This is a manifestation of the required tuning mentioned be-
fore. For � somewhat away from �

0

, the contributions in
Eq. (12) typically dominate over ↵0 and �0 in Eq. (13) and
the Higgs potential instead has a global minimum at h = 0

(for c↵,� > 0) or h = f⇡/2 (for c↵,� < 0). This minimum
leads to a valley in the Higgs-dilaton potential which can at-
tract the tunneling trajectory during a first-order phase transi-
tion. How closely the tunneling trajectory follows this valley
is controlled by its relative depth (in particular determined by
m� and N ) and the value of � for which it becomes deeper
than the valley along h = h

0

that results from the tuned Higgs
potential (1) (influenced by |c↵,� |, �y, y[0], y[�

0

]). We show
some tunneling trajectories as calculated for example points
in the parameter space in Fig. 1. The form of the trajectory
has major implications for EW baryogenesis. In particular,
trajectories which closely follow h = 0 need to be avoided
since the top mass and thus the CP-violating source vanish
along such trajectories. This can also happen for trajectories
which closely follow h = f⇡/2, however, since the fermion
masses are / sin[h/f ]

1+m
cos[h/f ]

n [? ] with m, n being
model-dependent, and therefore vanish at h = f⇡/2 if n 6= 0.

The top mixings are already quite large at � = �
0

to ensure
a large top Yukawa. Provided that the anomalous dimension
�y for the mixing y is negative, it grows for decreasing � until
it reaches a fixed point whose size is controlled by the constant
cy in the �-function. To obtain a sufficient amount of y varia-
tion and CP violation, we choose �y = �0.3 and fix cy so that
y[0] = 0.7g⇤ in the unbroken phase, while y[�

0

] = 0.3
p

�tg⇤
in the broken phase. We also set c↵ = c� = �1 in which case
the detuned valley is along h = f⇡/2. We have calculated the
action of O(3)-symmetric bubbles for tunneling along straight
lines with constant Higgs vev h which well approximates the
exact tunneling paths (cf. Fig. 1). In the central panel of Fig. 2,

we plot the Higgs vev h
avg

which minimizes the action at the
transition temperature for a meson-like dilaton. We see that,
depending on m� and N , trajectories closely following h = 0

or h = f⇡/2 are possible. We do not show a correspond-
ing plot for the glueball-like dilaton since the trajectory in this
case is always strongly attracted to h = f⇡/2 (which means
that the CP-violating source is non-vanishing only in models
with n = 0).

Thus, as follows from the first two panels in Fig. 2, the
EWPT is strong and our CP-violating source is active for a
wide range of m� and N . We have computed the resulting
baryon asymmetry using the formalism presented in Ref. [?
]. The results are indicated for a few benchmark points, as-
suming a bubble wall velocity of 0.01 (the baryon asymmetry
increases by a factor 3-4 if we increase the bubble wall veloc-
ity to 0.1) and with the varying mixing in Eq. (11) having a
complex phase arg y(1)

tR = arg y[�] = 0.1 and the remaining
mixings being fixed as y(2)

tR = 0.7
p

�tg⇤ and ytL =

p
�tg⇤.

Thus a sufficient amount of baryon asymmetry can be created.
Note that even in the region where h[Tn]/Tn & a few, we can
expect subsonic velocities as a sizeable friction comes from
the large number of degrees of freedom becoming massive
when they go through the bubble wall.

EXPERIMENTAL SIGNATURES

Our predictions can be divided into two types - those re-
lated to the phase-transition strength (only weakly sensitive
to the y running), and those related to the transition path and
CP violation (strongly sensitive to the y running). For the
former, our testable prediction is the correlation between the
dilaton mass and the strong-sector coupling, from the require-
ment of a strong enough EWPT, see Fig. 2. As for the latter,
the running mixing y can have a measurable effect on both the
Higgs and the dilaton phenomenology, as well as on observ-

Figure 2: Results for the meson dilaton. In the red dashed region, no viable EW minimum can be found or the Higgs-dilaton mixing leads
to too large deviations in the Higgs couplings. In the blue dashed region, the baryon asymmetry is washed out after reheating. We also show
the cutoff m⇤ = g⇤f . The chosen mass range satisfies current experimental constraints [35]. Left: Phase-transition strength h[Tn]/Tn. The
baryon asymmetry for benchmark point a (b) is |⌘B | ⇥ 1010 ⇠ 5–5.5 (4–4.5). Center: Average Higgs vev during the phase transition relative
to the condensate scale today, havg/f . Right: Imaginary part of the top Yukawa as a function of the present value of y/g1/2

⇤ and its anomalous
dimension �y for |�y| = �yy, arg �y = 0.1 and ytL =

p
g⇤. The current and near future experimental sensitivities correspond respectively

to approximately 2 ⇥ 10�2 [36] and 2 ⇥ 10�4 [37]. The green bullet indicates the values used for the left and centre plots.

The top mixings are already quite large at � = �
0

to ensure
a large top Yukawa. Provided that the anomalous dimension
�y for the mixing y is negative, it grows for decreasing � until
it reaches a fixed point whose size is controlled by the constant
cy in the �-function. To obtain a sufficient amount of y varia-
tion and CP violation, we choose �y = �0.3 and fix cy so that
y[0] = 0.4g⇤ in the unbroken phase, while y[�

0

] = 0.6
p

�tg⇤
in the broken phase. We also set c↵ = �c� = �0.3 in which
case the detuned valley is along h = f⇡/2. We have cal-
culated the action for tunneling along straight lines with con-
stant Higgs vev h which well approximates the exact tunneling
paths (cf. Fig. 1). In the central panel of Fig. 2, we plot the
Higgs vev h

avg

which minimizes the action at the transition
temperature. We see that, depending on m� and N , different
trajectories are possible.

Thus, as follows from the first two panels in Fig. 2, the
EWPT is strong and our CP-violating source is active for a
wide range of m� and N . We have computed the resulting
baryon asymmetry using the formalism presented in Ref. [21].
The results are indicated for two benchmark points, assum-
ing a bubble wall velocity of 0.01 (the baryon asymmetry in-
creases by a factor 3-4 if we increase the bubble wall veloc-
ity to 0.1) and with the varying mixing in Eq. (8) having a
complex phase arg y(1)

tR = arg y[�] = 0.1 and the remaining
mixings being fixed as y(2)

tR ' 0.4
p

�tg⇤ and ytL =

p
�tg⇤.

Note that even for h[Tn]/Tn & O(few), we can expect sub-
sonic velocities (needed for baryogenesis) as a sizeable fric-
tion comes from the large number of degrees of freedom be-
coming massive when they go through the bubble wall. Our
baryon asymmetry values (which should only be taken as in-
dicative given order one uncertainties) are typically close to
the observed value ⌘B ⇠ 8.5 ⇥ 10

�11. In contrast with phase
transitions studied so far, our Higgs vev grows very large
during the EWPT before decreasing, and since ⌘B scales as
the integral of (h/T )

2 over the bubble wall, this leads to a

large baryon asymmetry. Furthermore, we find that the bub-
ble wall width Lw is small, also contributing to a large baryon
asymmetry. However, we actually enter a regime where the
derivative expansion used in the EW baryogenesis formalism
(LwT � 1) [21] starts to break down.

EXPERIMENTAL SIGNATURES

The experimental signatures of our scenario include those
related to the transition path and CP violation, and those re-
lated to the phase-transition strength. The former are strongly
sensitive to the y running. The running mixing y can have
a measurable effect on both the Higgs and the dilaton phe-
nomenology, as well as on observables which are indirectly
sensitive to the couplings of h and �. Many of these effects
arise from the term responsible for the top mass, which in the
meson case with n = 0 reads

�t[�] � sin

h

f
¯tLtR � ¯tLtR h

✓
�0

t
�

f
+ ��t

� � f

f

◆
, (11)

where �0

t is the SM top Yukawa coupling, and for one vary-
ing mixing we have ��t ⇠ �y (see Eq. (7)). � and h in
this expression are linear combinations of the mass eigen-
states. Importantly, ��t is complex, as required by the varying
Yukawa phase. The highest sensitivity to the resulting com-
plex couplings comes from measurements of the electron elec-
tric dipole moment [40]. These restrict the CP-odd coupling
of the –mass eigen state– Higgs to the top (coming from the
CP-odd coupling of the –non-mass eigen state– dilaton) to be
. 2 ⇥ 10

�2 at 95% CL [36], with a prospect of gaining about
two orders of magnitude in sensitivity in the near future [37].
In the right panel of Fig. 2, we show how the CP-odd tth cou-
pling depends on y[�]. Forthcoming experiments are expected
to probe most of our parameter space.
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the strong sector condensate. The currently preferred value
is around f = 0.8 TeV [25] which we will use in the fol-
lowing. The novel aspect of our work is to promote f to a
dynamical field. Generally, one expects the confined theory to
feature various interconnected condensates, which in particu-
lar break the symmetry G (analogous to the chiral symmetry
in QCD) with strength given by f . Not all of this complex dy-
namics is necessarily relevant. Flavour physics motivates the
strong sector to be nearly conformal above the TeV scale [26].
Confinement is then associated with the spontaneous breaking
of conformal invariance. This gives rise to a pseudo-Nambu-
Goldstone boson, the dilaton, which we denote as �. As moti-
vated in Ref. [27–32], once the explicit breaking of conformal
invariance is sufficiently small, the dilaton can be significantly
lighter than the confinement scale. Its lightness and the fact
that its vev sets all scales in the strong sector then allows to in-
tegrate out other dynamical fields (whose values now become
a function of �) and to describe the confinement phase transi-
tion in terms of � getting a vev. In particular, this links f to �.
We derive the joint potential for the Higgs and the dilaton.The
potential (1) is minimised at h2

0

' �(1/2)(↵0/�0

)f2. This
suggests that the cosmological evolution of the Higgs and the
dilaton are tied to each other, and we show under which con-
ditions both fields obtain a vev simultaneously.

We describe the coupled dynamics of the Higgs and the
dilaton by using a large-N expansion for the underlying
strongly-coupled gauge theory [33], where N represents the
number of colors. Each insertion of � or h is accompanied
by a coupling g� or g⇤, respectively. By large-N counting,
these couplings scale as ⇠ 1/

p
N for mesons and ⇠ 1/N

for glueballs of the gauge theory. The Higgs is expected to
be a meson in analogy with QCD pions while for the dilaton
both meson and glueball cases are possible. Requiring a fully
strongly interacting theory in the limit N ! 1, this gives [1]

g⇤ = g(meson)
� = 4⇡/

p
N, g(glueball)

� = 4⇡/N. (2)

The trigonometric functions in V 0

[h] can be represented as
power series in h/f . Using the large-N scaling together with
dimensional analysis, one finds that this has to correspond to a
power series in g⇤h/(g��

0

), where �
0

is the dilaton vev today.
This fixes the relation between f and �

0

as g⇤f = g��
0

.
To account for the variation of the scale balancing h in

Eq. (1) when � varies, the kinetic terms are fixed by dimen-
sional analysis as

Lkin =

1

2

(�/�
0

)

2

(@µh)

2

+

1

2

(@µ�)

2. (3)

We next turn to the Higgs-independent dilaton potential. In
an exactly conformal theory, only a term �4 can appear which
does not allow for a minimum �

0

6= 0. We therefore break
conformal invariance explicitly in the UV by a term ✏O in the
Lagrangian, where O is an operator with scaling dimension
4 + �✏. If 0 > �✏ � �1, the coefficient ✏ slowly grows when
running from the UV scale down to lower energies until it
triggers conformal-symmetry breaking and confinement. This

is reflected by an additional term in the dilaton potential (see
e.g. [31])

V�[�] = c�g2

��4 � ✏[�]�4 (4)

which allows for a minimum at �
0

6= 0. Here the func-
tion ✏[�] is governed by an RG equation with �-function
� ' �✏✏ + c✏✏2/g2

� and c� and c✏ are order-one coefficients.
We will trade �✏ for the dilaton mass m� and fix the remain-
ing constants as c✏ = 0.1, and c� = 0.5 not far from a naive
order-one estimate.

Temperature corrections provide a potential barrier (which
the potential (4) does not feature) necessary for a first-order
phase transition. Indeed, by dimensional analysis and large-
N counting, the free energy of the deconfined phase is given
by [4–6]

�VT [� = 0] ⇠ �cN2T 4 . (5)

We choose c = ⇡2/8, a value corresponding to N = 4

SU(N) super-Yang-Mills that is representative of a realistic
conformal sector. This is modelled by including the standard
one-loop thermal corrections from 45N2/4 strongly coupled
degrees of freedom with mass m = g�� [5]. As the tempera-
ture drops, � eventually tunnels from 0 to the global minimum
at � ' �

0

corresponding to a confined phase.
Altogether, the potential of our model reads

V
tot

[h, �] = (�/�
0

)

4V 0

h [h] + V�[�] + �V 1-loop
T [h, �] , (6)

where the prefactor �4 indicates that the dilaton vev is the only
source of mass in the theory. Furthermore, �V 1-loop

T includes
the one-loop thermal corrections from SM particles, the Higgs
and dilaton as well as the states reproducing the free energy
(5).

We have calculated the tunnelling trajectory and action for
O(3) and O(4)-symmetric bubbles in the two-dimensional
field space (h, �). The phase transition happens at a tem-
perature Tn for which the bubble euclidean action is SE ⇡
140. In Fig. 1, we show examples of tunneling trajecto-
ries in the meson case. The strength of the phase transition
h[Tn]/Tn, where h[Tn] is at the minimum of the Higgs po-
tential at Tn, needs to be & 1, to ensure that sphalerons
do not wash out the generated baryon asymmetry. After
the phase transition, the system reheats to the temperature
T

rh

= (30�V
tot

/(⇡2gSM

dof

))

1/4 with �V
tot

being the energy
difference between the true and false vacuum. We therefore
also have to impose that h(T

rh

)/T
rh

& 1. This enforces the
light dilaton window. In the left panel of Fig. 2, we show how
the phase transition generally quickly becomes supercooled
with growing N and decreasing dilaton mass, as found in pre-
vious studies of the confinement phase transition focussing
on the glueball, e.g. [12]. This effect is much stronger for
the glueball than for the meson dilaton due to the different
N -scaling of its couplings. This disfavours the glueball case
as the baryon asymmetry is either washed out or diluted by
(T

rh

/Tn)

3 after reheating. We therefore concentrate on the
meson case.
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Lagrangian, where O is an operator with scaling dimension
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e.g. [31])

V�[�] = c�g2

��4 � ✏[�]�4 (4)

which allows for a minimum at �
0

6= 0. Here the func-
tion ✏[�] is governed by an RG equation with �-function
� ' �✏✏ + c✏✏2/g2

� and c� and c✏ are order-one coefficients.
We will trade �✏ for the dilaton mass m� and fix the remain-
ing constants as c✏ = 0.1, and c� = 0.5 not far from a naive
order-one estimate.

Temperature corrections provide a potential barrier (which
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phase transition. Indeed, by dimensional analysis and large-
N counting, the free energy of the deconfined phase is given
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one-loop thermal corrections from 45N2/4 strongly coupled
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at � ' �

0
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where the prefactor �4 indicates that the dilaton vev is the only
source of mass in the theory. Furthermore, �V 1-loop

T includes
the one-loop thermal corrections from SM particles, the Higgs
and dilaton as well as the states reproducing the free energy
(5).

We have calculated the tunnelling trajectory and action for
O(3) and O(4)-symmetric bubbles in the two-dimensional
field space (h, �). The phase transition happens at a tem-
perature Tn for which the bubble euclidean action is SE ⇡
140. In Fig. 1, we show examples of tunneling trajecto-
ries in the meson case. The strength of the phase transition
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the phase transition generally quickly becomes supercooled
with growing N and decreasing dilaton mass, as found in pre-
vious studies of the confinement phase transition focussing
on the glueball, e.g. [12]. This effect is much stronger for
the glueball than for the meson dilaton due to the different
N -scaling of its couplings. This disfavours the glueball case
as the baryon asymmetry is either washed out or diluted by
(T
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3 after reheating. We therefore concentrate on the
meson case.

Case of a varying top quark Yukawa
Figure 10: Results of our numerical study for a meson-like dilaton (red dashed) and a glueball-like

dilaton (solid black). In the red dashed region, there is no phenomenologically viable electroweak

minimum for the meson-like dilaton. Left: The strength h[T
n

]/T
n

of the phase transition as a

function of m
�

and N . Right: The average direction ĥ
avg

of the tunnelling trajectory as a function

of m
�

and N . We also show the cuto↵ m
?

= g
?

f with g
?

= 4⇡/
p
N , where the other composite

states appear.

and O(4)-symmetric bubbles scales like N to a positive power. To see this, note that the

N -dependence in the pure dilaton part of the Lagrangian, given by the dilaton kinetic term

plus the potential in Eqs. (2.22) and (2.27) (ignoring the additional term in Eq. (3.22) which

typically only gives a small correction), enters via g
�

in the potential. Using this, one can

show the aforementioned scaling of the tunnelling action (cf. e.g. [35]). This then delays

the phase transition for larger values of N . Furthermore, a smaller m
�

corresponds to a

smaller �
✏

which makes the pure dilaton potential flatter. This in turn also increases the

tunnelling action and thereby makes the phase transition more supercooled. Notice also

that the strength h[T
n

]/T
n

of the phase transition increases much faster for the glueball-

like dilaton compared to the meson-like dilaton. This can be understood from the di↵erent

N -scalings of the coupling g
�

in the two cases.

For successful electroweak baryogenesis, h[T
n

]/T
n

& 1 is required. Restricting the number

of colors to reasonable values, say N < 15 as in the plot (or equivalently restricting the cuto↵

to m
?

& 2.6TeV), we conclude from the plot that successful electroweak baryogenesis then

implies a dilaton which is lighter than ⇠ 2.5TeV. On the other hand, the fast increase of the

amount of supercooling with decreasing m
�

for the glueball-like dilaton means that it can in

this case not be too light either. Indeed, as we have discussed in the last section, with too

much supercooling the bubble walls accelerate to wall velocities larger than the sound speed

in the surrounding plasma and electroweak baryogenesis is no longer possible. The precise

amount of supercooling for which this happens and the resulting lower bound on m
�

for the

glueball-like dilaton would require a dedicated analysis which is beyond the scope of this
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Figure 2: Black solid (red dashed) contours are for a glueball (meson) dilaton. Left: Phase-transition strength h[Tn]/Tn. We also show the
values of the cutoff m⇤ = g⇤f . The chosen mass range satisfies current experimental constraints [? ]. In the red dashed region, there is no
phenomenologically viable EW minimum for the case of the meson dilaton. The baryon asymmetry is ⌘B ⇥ 1010 ⇠ 3.4 (a), 4.5 (b), 3.8 (c),
5.5 (d). Center: Average Higgs vev during the phase transition relative to the condensate scale today, havg/f . Right: Imaginary part of the
top Yukawa as a function of the present value of y/g1/2

⇤ and its anomalous dimension �y for |�y| = �yy, a complex phase arg �y = �/2 and
ytL =

p
g⇤. N is fixed such that h/T � 1. Contours approximately correspond to the current (2 ⇥ 10�2) [? ] and near future (2 ⇥ 10�4)

experimental sensitivities [? ].

To have the minimum of the Higgs potential at h
0

⌧ f
at present times requires that |↵0/�0| ⌧ 1. From Eq. (12),
on the other hand, we see that generically |↵[�]/�[�]| & 1.
This is a manifestation of the required tuning mentioned be-
fore. For � somewhat away from �

0

, the contributions in
Eq. (12) typically dominate over ↵0 and �0 in Eq. (13) and
the Higgs potential instead has a global minimum at h = 0

(for c↵,� > 0) or h = f⇡/2 (for c↵,� < 0). This minimum
leads to a valley in the Higgs-dilaton potential which can at-
tract the tunneling trajectory during a first-order phase transi-
tion. How closely the tunneling trajectory follows this valley
is controlled by its relative depth (in particular determined by
m� and N ) and the value of � for which it becomes deeper
than the valley along h = h

0

that results from the tuned Higgs
potential (1) (influenced by |c↵,� |, �y, y[0], y[�

0

]). We show
some tunneling trajectories as calculated for example points
in the parameter space in Fig. 1. The form of the trajectory
has major implications for EW baryogenesis. In particular,
trajectories which closely follow h = 0 need to be avoided
since the top mass and thus the CP-violating source vanish
along such trajectories. This can also happen for trajectories
which closely follow h = f⇡/2, however, since the fermion
masses are / sin[h/f ]

1+m
cos[h/f ]

n [? ] with m, n being
model-dependent, and therefore vanish at h = f⇡/2 if n 6= 0.

The top mixings are already quite large at � = �
0

to ensure
a large top Yukawa. Provided that the anomalous dimension
�y for the mixing y is negative, it grows for decreasing � until
it reaches a fixed point whose size is controlled by the constant
cy in the �-function. To obtain a sufficient amount of y varia-
tion and CP violation, we choose �y = �0.3 and fix cy so that
y[0] = 0.7g⇤ in the unbroken phase, while y[�

0

] = 0.3
p

�tg⇤
in the broken phase. We also set c↵ = c� = �1 in which case
the detuned valley is along h = f⇡/2. We have calculated the
action of O(3)-symmetric bubbles for tunneling along straight
lines with constant Higgs vev h which well approximates the
exact tunneling paths (cf. Fig. 1). In the central panel of Fig. 2,

we plot the Higgs vev h
avg

which minimizes the action at the
transition temperature for a meson-like dilaton. We see that,
depending on m� and N , trajectories closely following h = 0

or h = f⇡/2 are possible. We do not show a correspond-
ing plot for the glueball-like dilaton since the trajectory in this
case is always strongly attracted to h = f⇡/2 (which means
that the CP-violating source is non-vanishing only in models
with n = 0).

Thus, as follows from the first two panels in Fig. 2, the
EWPT is strong and our CP-violating source is active for a
wide range of m� and N . We have computed the resulting
baryon asymmetry using the formalism presented in Ref. [?
]. The results are indicated for a few benchmark points, as-
suming a bubble wall velocity of 0.01 (the baryon asymmetry
increases by a factor 3-4 if we increase the bubble wall veloc-
ity to 0.1) and with the varying mixing in Eq. (11) having a
complex phase arg y(1)

tR = arg y[�] = 0.1 and the remaining
mixings being fixed as y(2)

tR = 0.7
p

�tg⇤ and ytL =

p
�tg⇤.

Thus a sufficient amount of baryon asymmetry can be created.
Note that even in the region where h[Tn]/Tn & a few, we can
expect subsonic velocities as a sizeable friction comes from
the large number of degrees of freedom becoming massive
when they go through the bubble wall.

EXPERIMENTAL SIGNATURES

Our predictions can be divided into two types - those re-
lated to the phase-transition strength (only weakly sensitive
to the y running), and those related to the transition path and
CP violation (strongly sensitive to the y running). For the
former, our testable prediction is the correlation between the
dilaton mass and the strong-sector coupling, from the require-
ment of a strong enough EWPT, see Fig. 2. As for the latter,
the running mixing y can have a measurable effect on both the
Higgs and the dilaton phenomenology, as well as on observ-

Figure 2: Results for the meson dilaton. In the red dashed region, no viable EW minimum can be found or the Higgs-dilaton mixing leads
to too large deviations in the Higgs couplings. In the blue dashed region, the baryon asymmetry is washed out after reheating. We also show
the cutoff m⇤ = g⇤f . The chosen mass range satisfies current experimental constraints [35]. Left: Phase-transition strength h[Tn]/Tn. The
baryon asymmetry for benchmark point a (b) is |⌘B | ⇥ 1010 ⇠ 5–5.5 (4–4.5). Center: Average Higgs vev during the phase transition relative
to the condensate scale today, havg/f . Right: Imaginary part of the top Yukawa as a function of the present value of y/g1/2

⇤ and its anomalous
dimension �y for |�y| = �yy, arg �y = 0.1 and ytL =

p
g⇤. The current and near future experimental sensitivities correspond respectively

to approximately 2 ⇥ 10�2 [36] and 2 ⇥ 10�4 [37]. The green bullet indicates the values used for the left and centre plots.

The top mixings are already quite large at � = �
0

to ensure
a large top Yukawa. Provided that the anomalous dimension
�y for the mixing y is negative, it grows for decreasing � until
it reaches a fixed point whose size is controlled by the constant
cy in the �-function. To obtain a sufficient amount of y varia-
tion and CP violation, we choose �y = �0.3 and fix cy so that
y[0] = 0.4g⇤ in the unbroken phase, while y[�

0

] = 0.6
p

�tg⇤
in the broken phase. We also set c↵ = �c� = �0.3 in which
case the detuned valley is along h = f⇡/2. We have cal-
culated the action for tunneling along straight lines with con-
stant Higgs vev h which well approximates the exact tunneling
paths (cf. Fig. 1). In the central panel of Fig. 2, we plot the
Higgs vev h

avg

which minimizes the action at the transition
temperature. We see that, depending on m� and N , different
trajectories are possible.

Thus, as follows from the first two panels in Fig. 2, the
EWPT is strong and our CP-violating source is active for a
wide range of m� and N . We have computed the resulting
baryon asymmetry using the formalism presented in Ref. [21].
The results are indicated for two benchmark points, assum-
ing a bubble wall velocity of 0.01 (the baryon asymmetry in-
creases by a factor 3-4 if we increase the bubble wall veloc-
ity to 0.1) and with the varying mixing in Eq. (8) having a
complex phase arg y(1)

tR = arg y[�] = 0.1 and the remaining
mixings being fixed as y(2)

tR ' 0.4
p

�tg⇤ and ytL =

p
�tg⇤.

Note that even for h[Tn]/Tn & O(few), we can expect sub-
sonic velocities (needed for baryogenesis) as a sizeable fric-
tion comes from the large number of degrees of freedom be-
coming massive when they go through the bubble wall. Our
baryon asymmetry values (which should only be taken as in-
dicative given order one uncertainties) are typically close to
the observed value ⌘B ⇠ 8.5 ⇥ 10

�11. In contrast with phase
transitions studied so far, our Higgs vev grows very large
during the EWPT before decreasing, and since ⌘B scales as
the integral of (h/T )

2 over the bubble wall, this leads to a

large baryon asymmetry. Furthermore, we find that the bub-
ble wall width Lw is small, also contributing to a large baryon
asymmetry. However, we actually enter a regime where the
derivative expansion used in the EW baryogenesis formalism
(LwT � 1) [21] starts to break down.

EXPERIMENTAL SIGNATURES

The experimental signatures of our scenario include those
related to the transition path and CP violation, and those re-
lated to the phase-transition strength. The former are strongly
sensitive to the y running. The running mixing y can have
a measurable effect on both the Higgs and the dilaton phe-
nomenology, as well as on observables which are indirectly
sensitive to the couplings of h and �. Many of these effects
arise from the term responsible for the top mass, which in the
meson case with n = 0 reads

�t[�] � sin

h

f
¯tLtR � ¯tLtR h

✓
�0

t
�

f
+ ��t

� � f

f

◆
, (11)

where �0

t is the SM top Yukawa coupling, and for one vary-
ing mixing we have ��t ⇠ �y (see Eq. (7)). � and h in
this expression are linear combinations of the mass eigen-
states. Importantly, ��t is complex, as required by the varying
Yukawa phase. The highest sensitivity to the resulting com-
plex couplings comes from measurements of the electron elec-
tric dipole moment [40]. These restrict the CP-odd coupling
of the –mass eigen state– Higgs to the top (coming from the
CP-odd coupling of the –non-mass eigen state– dilaton) to be
. 2 ⇥ 10

�2 at 95% CL [36], with a prospect of gaining about
two orders of magnitude in sensitivity in the near future [37].
In the right panel of Fig. 2, we show how the CP-odd tth cou-
pling depends on y[�]. Forthcoming experiments are expected
to probe most of our parameter space.

Too large 
 Higgs 
coupling 

deviations

-> direct searches + Higgs physics

Constraints from reheating .
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Figure 11: The ratio T
c

/T
n

of the critical to the nucleation temperature which measures

the amount of supercooling of the phase transition for a meson-like dilaton (left panel;

red dashed) and a glueball-like dilaton (right panel; black solid). In the red dashed

region, there is no phenomenologically viable electroweak minimum.

and thereby is in particular important for the amount of CP violation that can be generated

from the varying mixings (cf. Eq. (5.1)). As can be seen from the plot, for the meson-like

dilaton ĥ
avg

increases slowly with decreasing m
�

. For the glueball-like dilaton, on the other

hand, this increase is slightly much more rapidand in most of the parameter space

we find either ĥ
avg

⇡ 0 or ĥ
avg

⇡ 1, with a relatively sharp dividing line in the

range m
�

⇡ 1.8...2TeV. In order to obtain enough CP violation, dilaton masses

m
�

. 1.5...2TeV are then preferred in both cases. Su�cient CP-violation for

baryogenesis could therefore be generated in both cases. Note, however, that as

visible in Fig. 8, the minimum in the tunnelling action which determines ĥ
avg

can be very

shallow. This means that tunnelling in directions with somewhat di↵erent ĥ
avg

may not be

much less likely than in the direction with ĥ
avg

at the minimum. The amount of CP violation

can then be larger than what is naively expected from the right panel of Fig. 10. This is

discussed in more detail in the next section.

All the results so far have been obtained for a Goldstone decay constant

f = 800GeV. This is the currently preferred value close to the experimental

lower bound. Larger values of f would worsen the tuning ⇠ v2/f 2. It is

nevertheless interesting to see if our scenario still works if future experiments

constrain f to larger values. To address this question, we have computed

the strength h[T
n

]/T
n

of the phase transition for a Goldstone decay constant

f = 2TeV and a glueball-like dilaton (and all other parameters as before). The

results are reported in the right panel of Fig. 11. For comparison, we also

show the corresponding results for f = 800GeV. From Eq. (4.4) we see that the

critical temperature scales linearly with f . One would therefore expect that

38

glueball

Amount of supercooling .

-> Large GW signal .

1804.07314
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Figure 14: Real (left panel) and imaginary (right panel) parts of the top Yukawa modification in the

benchmark model with a varying top mixing for a meson-like dilaton (red dashed) and a glueball-like

dilaton (black solid). The real part can be tested by CLIC at the 4% level at 1� [66], and a pure

composite Higgs contribution to it (with no Higgs-dilaton mixing) is -0.05. For the tests of the

imaginary part see text.

obtained with the full 7 TeV and 8 TeV data sets does not show a dramatic improvement. We

therefore start our plots at m
�

= 50 GeV, leaving a more thorough study of the experimental

bounds for future work.

7.2 Flavour violation

There is another important type of experimental constraints that our scenario has to face –

the bounds on flavour-changing four-fermion operators. It is well known that these bounds

bring severe constraints on composite Higgs models. A set of solutions has been proposed in

the literature, with additional symmetries which can suppress these unwanted e↵ects. We

have discussed one such solution, which makes use of U(1) flavour symmetries, in Sec. 6.4.

One may also investigate whether U(2) symmetric constructions [48, 63, 64] can be incorpo-

rated into our scenario, or a proposal [65] to impose a CP symmetry on the strong sector

and most of the elementary-composite mixings, with the exception of those of the third gen-

eration. This and a more rigorous study of flavour constraints in general deserve a separate

analysis, which we leave for future work. Additionally, we should mention that the scenario

with a varying top mixing (see [1]) can accommodate any of the flavour or CP symmetries

mentioned above.

7.3 Higgs couplings and CP violation

Last but not least, information about the dilaton sector can come from Higgs physics. As was

discussed in Sec. 3.4, the deviations of the Higgs couplings depend explicitly, and potentially

sizeably, on the dilaton-Higgs mixing. In particular, one of the smoking guns of our scenario

44
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Figure 15: Relative deviation of the Higgs couplings to electroweak gauge bosons (left panel) and

of the triple Higgs coupling (right panel) for a meson-like dilaton (red dashed) and a glueball-like

dilaton (black solid). Future (1�) sensitivity to the former is expected to be 0.8% at CLIC [73] and

0.15% at FCC [74], while the expected precision for the latter is order-one at the high-luminosity

LHC [75] and 10� 40% at future leptonic colliders [66,76].

current experimental sensitivity for the lowest dilaton masses, while future experiments are

expected to have a good sensitivity to a large fraction of the parameter space. Notice that

in the case where only the charm mixings vary, the imaginary part of the charm Yukawa is

suppressed by both the small charm Yukawa itself and by the small Higgs-dilaton mixing,

therefore we do not expect that the resulting CP violation [72] can be testable in the near

future.

Furthermore, the CP-violating Higgs-top interactions can be measured directly at the

LHC. These are, however, expected to give much weaker sensitivity by at least one order

of magnitude. This situation will not improve significantly even at the high-luminosity

LHC [77, 78]. Therefore the first signs of CP-violation in Higgs-top interactions arising in

a scenario with varying top mixings are expected to come from EDM experiments. For

completeness, in Fig. 15 we also show the predicted deviations of the Higgs couplings to the

electroweak gauge bosons, and in the triple Higgs couplings.

7.4 Gravitational waves

Cosmological first-order phase transitions can lead to a stochastic background of gravita-

tional waves (GWs) [79–82]. Towards the end of the phase transition, the bubbles take up

a large fraction of space and start to collide. During this collision, some of the free energy

released during the phase transition is converted into GWs. The GWs hence created are then

present today as a stochastic background characterized by its energy-frequency spectrum. It

turns out that a strong first-order phase transition happening around the electroweak scale

generates a spectrum of GWs that lie in the observable frequency bands of the Laser Inter-

46



Top-transport typically ruled out in 2HDM 
and other models with polynomial potentials 

but still viable in Composite Higgs  
with nearly-conformal dynamics

Take-away message



Using strong CP violation from QCD axion 
in COLD baryogenesis

Another way-out of EDM bounds:

2

arise via dimensional transmutation, i.e. from an addi-
tional coupling of the axion to the gauge fields of some
strongly coupled hidden sector. Given a dynamical scale
⇤H in this hidden sector, the axion mass is then of
O �

⇤2

H/fa
�
. For consistency, we require ma to be smaller

than H
inf

, the Hubble rate at the end of inflation:

ma . H
inf

. (3)

When inflation is over, the axion field remains practically
at rest until the Hubble parameter drops to H

osc

= ma.
Once the axion field is in motion, the e↵ective Lagrangian
contains the term

L
e↵

� g2
2

32⇡2

a(t)

fa
FF̃ = � a(t)

Nffa
@µ

�
 ̄�µ 

�
(4)

=
@ta(t)

Nffa

�
 ̄�0 

�
+ · · · = µ

e↵

j0 + · · · , (5)

with g
2

being the SU(2) gauge coupling and Nf = 3 the
number of fermion generations in the standard model,
where we have used the anomaly equation in Eq. (4), and
integration by parts in Eq. (5). In the following, we will
absorb Nf in our definition of fa and simply determine
the e↵ective chemical potential as µ

e↵

= ȧ/fa.
Now the necessary conditions for generating a lepton

asymmetry are satisfied. A nonzero e↵ective chemical
potential shifts the energy levels of particles as compared
to antiparticles. If lepton number is not conserved, the
minimum of the free energy in the plasma is reached for a
di↵erent number density of leptons than for antileptons,
i.e. for nL ⌘ n` � n

¯` 6= 0. Instead, if the lepton number
violation is very rapid, the minimum of the free energy
is obtained for an equilibrium number density of

neq

L =
4

⇡2

µ
e↵

T 2. (6)

Lepton number violation is mediated by the exchange
of right-handed neutrinos. In contrast to thermal lepto-
genesis [13], we will assume all heavy right-handed neu-
trino masses to be close to the scale of grand unification
(GUT), Mi ⇠ O �

10�1 · · · 1�⇤
GUT

⇠ 1015 · · · 1016 GeV,
so that the heavy neutrinos are never thermally pro-
duced on the mass shell, i.e. T ⌧ Mi at all times. In
the expanding universe, the evolution of the lepton num-
ber density nL is described by the Boltzmann equation

ṅL + 3HnL ' �4neq

` �
e↵

(nL � neq

L ) , (7)

where neq

` = 2/⇡2 T 3 and with �
e↵

⌘ h�
�L=2

vi denoting
the thermally averaged cross section of two-to-two scat-
tering processes with heavy neutrinos in the intermediate
state that violate the lepton number by two units,

�L = 2 : `i`j $ HH , `iH $ ¯̀
jH̄ , (8)

`Ti =
�
⌫i ei

�
, HT =

�
h
+

h
0

�
, i, j = 1, 2, 3 .

We note that the term proportional to neq

L now acts as a
novel production term for the lepton asymmetry, as long
as the axion field is in motion. For center-of-mass ener-
gies much smaller than the heavy neutrino mass scale,p
s ⌧ Mi, the e↵ective cross section �

e↵

is practically
fixed by the experimental data on the light neutrino sec-
tor [14], assuming the seesaw mass matrix [15]:

�
e↵

⇡ 3

32⇡

m̄2

v4
ew

' 1⇥ 10�31 GeV�2 , m̄2 =
3X

i=1

m2

i , (9)

where v
ew

' 174GeV and where we have assumed that
the sum of the light neutrino masses squared is of the
same order of magnitude as the atmospheric neutrino
mass di↵erence, �m2

atm

' 2.4⇥ 10�3 eV2 [16].
For a

0

⌧ M
Pl

, and as long as H � ma, i.e. prior to the
onset of the axion oscillations, the axion energy density
⇢a is much smaller than the total energy density ⇢

tot

=
⇢'+ ⇢R + ⇢a ⇡ ⇢'+ ⇢R, where ⇢' and ⇢R are the energy
densities of the inflaton and of radiation. Reheating is
described by a system of equations:

⇢̇' + 3H⇢' = ��'⇢' , ⇢̇R + 4H⇢R = +�'⇢' , (10)

H2 ⌘ �
Ṙ/R

�
2

=
⇢
tot

3M2

Pl

, ⇢
tot

⇡ (⇢' + ⇢R) , (11)

where �' is the inflaton decay rate. The inflaton must
not decay before the end of inflation, which implies

�' . H
inf

. (12)

The solution for the temperature, T 4 ⌘ ⇡2/3/g⇤ ⇢R,
according to Eqs. (10) and (11) shows the following char-
acteristic behavior: within roughly one Hubble time after
the end of inflation, T quickly rises to its maximal value,

T
max

' 5⇥ 1013 GeV

✓
�'

109 GeV

◆
1/4✓

H
inf

1011 GeV

◆
1/2

, (13)

after which the temperature decreases because the en-
ergy density is dominated by the inflaton oscillations
(which scale as matter). During reheating, the tempera-
ture drops as T / R�3/8 until radiation comes to dom-
inate at time t = t

rh

' ��1

' , when ⇢R = ⇢', and the
reheating temperature is

T
rh

' 2⇥ 1013 GeV

✓
�'

109 GeV

◆
1/2

. (14)

After the end of reheating, i.e. for t > t
rh

, the expansion
is then driven by relativistic radiation and the tempera-
ture simply decreases adiabatically, T / R�1. In the case
of a large axion decay constant, this phase of radiation
domination, however, does not last all the way to the time
of primordial nucleosynthesis. Instead, the axion comes
to dominate the total energy density at some time prior
to its decay, which marks the beginning of yet another

EW field strength

Time variation of axion field can be large CP violating source 
for baryogenesis if EW phase transition is supercooled

to QCD temperatures

Cold Baryogenesis

Servant, 1407.0030

requires a coupling between the Higgs and an additional light scalar: testable @ LHC 
& compatible with usual QCD axion Dark matter predictions

QCD axion

|⇥̄| ⇠ 1 at QCD epoch
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Supercooled EW phase transition induced 
by TeV-scale confinement phase transition .
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Can we push up the 
temperature of the EW phase 

transition ?

OPTION (2)



High-temperature EW  
symmetry non-restoration .
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HIGH TEMPERATURE EW SYM. RESTORATION.
EW Symmetry restoration comes from the competition 

of two opposite terms in Higgs mass parameter
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2 Toy Example

High temperature symmetry non-restoration was studied some time ago [21–32], mainly in
the context of GUT theories or in the context of SUSY flat directions [34]. The phenomenon
has been confirmed by lattice simulations [35, 36] and non-perturbative methods [37]. For
the electroweak symmetry, it was considered only a few times. The possible existence of a
broken phase of electroweak symmetry at high temperature in Little Higgs extensions of the
Standard Model was investigated in [38, 39]. The theory, however, exhibits a restoration of
electroweak symmetry as long as temperatures are not pushed beyond the range of validity
of the EFT for a finite temperature calculation [40]. This conclusion is generalised to Twin
Higgs models in [41] and confirms earlier findings in [32]. The case of composite Higgs models
with partial fermion compositeness in which the Higgs is a PNGB has been studied recently
in and these models also lead to EW symmetry restoration [18, 19].

Here we will implement the ideas illustrated in Fig. 1, and show how a phase transition
or crossover can occur at a high scale, i.e. above the zero-temperature minimum of the
scalar potential, using an extension of the symmetry non-restoration e↵ect. Unlike in earlier
realisations of the symmetry non-restoration e↵ect, the symmetry is actually restored at a
su�ciently large temperature, i.e. above some mass threshold. Here, by symmetry non-
restoration, we mean that at temperatures below the phase transition one of the scalar fields
obtains a VEV proportional to the temperature.

The main idea is to induce a negative thermal mass for the Higgs through a negative cross-
quartic coupling between the Higgs and a large number of additional scalar fields. Consider
a toy model of scalar fields, �, S, and �i, where i = 1, ..., NGen is a generational index (the
reason for considering multiple generations will be made clear below). We denote the degrees
of freedom with N�, NS, and N�i (the � sector therefore has in total N� = NGenN�i degrees
of freedom). In this section � is acting as a placeholder for the EW Higgs, though we switch
o↵ the usual SM Yukawa and gauge interactions for the discussion in this section. For the
purposes of our example, the relevant terms in the tree level potential are given by

V (�,�) =
µ2
S

2
S2+

µ2
�

2

X

i

�2
i+

µ2
�

2
�2+

��

4
�4+

��

4

X

i

�4
i+

�S

4
S4+

���

4
�2

X

i

�2
i+

��S

4
�2S2, (1)

where for simplicity we assume degenerate masses and couplings for the �i generations and
that the cross quartic ��S is negligible. As we shall be choosing ��� < 0, stability of the tree
level potential requires

��� > �2

r
����

NGen
. (2)

At high temperatures, T � µ�, µ�, the thermal masses of the fields are [42]
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Figure 1: Sketch of the e↵ect illustrated in the toy model. At high temperature the thermal
mass of �, c�T 2, is positive and the VEV is zero. The temperature drops below a mass threshold
of a field S, removing a positive contribution to the thermal mass of �. The thermal mass of �
is then negative due to the contributions from some additional scalars �i and the VEV becomes
proportional to the temperature. Finally, at su�ciently low temperatures, the VEV is set by the
usual minimization conditions of the zero temperature potential.

makes model building in this framework challenging. It would therefore be helpful to raise
the scale of EWBG, so we can in turn also raise the flavour scale and hence more easily
satisfy the flavour constraints.

More broadly, raising the scale of EW symmetry breaking is anyway an exciting theoret-
ical possibility, not limited to the context of the flavour model considered below. The aim
of this paper therefore is to study the possibility of high scale EWBG, in which the Higgs �
first obtains a large vacuum expectation value (VEV), which is later gradually decreased to
v� = 246 GeV while in the broken electroweak phase. The VEV can be gradually decreased
using a symmetry non-restoration e↵ect, in which the Higgs — through the coupling to
other scalar fields — gains a negative thermal mass squared and hence a VEV proportional
to the temperature [21–32].1 In the models of symmetry non-restoration considered so far,
the broken symmetry is not restored at any temperature. For electroweak baryogenesis,
however, we want the Higgs to start in the symmetric phase and undergo a phase transition
into the broken phase. Here, we will first show the two conditions can be realised together
generically, through a simple toy model example, sketched in Fig. 1.

Motivated by our findings, we then return to flavour considerations in a more complete
model, in which the Yukawa couplings are field-dependent and large at early times. The
flavor sector contains extra fermions whose mass is controlled by the VEV of a scalar field �
that sets the flavour scale, & O(10) TeV, today. The broken EW phase minimum develops at
large Higgs values once the temperature drops to the flavour scale. The Higgs then undergoes
a strong first order phase transition from a point in field space in which the Yukawa couplings

1For brevity, we omit “squared” when discussing the thermal masses of scalar fields from now on.
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High-scale (T>TeV) EW phase transition .

Figure 3: Left: The evolution of the e↵ective potential with the temperature in the toy model
showing a crossover at Tc ⇡ 8 TeV. Right: The e↵ective potential in the toy model at Tc ⇡ 8 TeV.
The positive thermal contributions from the daisy resummation and S, and the negative thermal
contribution from the �i are also shown.

Now consider a judicious choice of parameters so that: (i) �i and S always have positive
thermal masses, (ii) c� is positive at high temperature, (iii) c� becomes negative when the
contribution of S to its thermal mass becomes negligible, i.e. once T . µS. The e↵ective
potential in the � direction, when T � µ� can be approximated as c�T 2�2/2 + ���4/4.
Positive c� returns a minimum at � = 0, but for negative c� we will find a minimum at
� =

p
c�/��T . The latter solution is the usual symmetry non-restoration e↵ect [21–29, 32].

What is new here is the presence of the additional field S which can switch the sign of c�
when T reaches a mass threshold, leading to a phase transition or crossover. (Similarly, the
symmetry non-restoration e↵ect disappears if T falls su�ciently below µ�.) Eventually, for
T ⌧ |µ�|, the VEV is set by the usual zero-temperature minimization conditions.

We numerically evaluate the e↵ective potential including the tree-level terms, zero and
finite-temperature one-loop terms, and the daisy resummation.2 The latter is crucial and
weakens the phase transition. To give a concrete example, consider the choice of parameters3

N� = 1, NGen = 12, N�i = 4, NS = 12,

�� = 0.1, �� = 0.5, �S = 1, ��� = �0.1, ��S = 1, (6)

µ� = i⇥ 0.1 TeV, µ� = 0.1 TeV, µS = 20 TeV.

In Fig. 3 we show the resulting cross over, together with the thermal contributions from the
S and �i scalars and the daisy resummation. In Fig. 4 we plot the evolution of the VEV

2We use the Arnold-Espinosa method of implementing the daisy resummation [43]. We cut o↵ the
contribution of S to the thermal masses with an exponential factor, e�mS/T , in order to avoid spurious
contributions to the daisy resummation. We checked that the thermal mass estimated using the high-
temperature expansion is consistent with the second derivative of the one loop thermal terms. In fact, the
phase transition is stronger when using the numerical value rather than the high-temperature expansion
value.

3Motivated by flavour bounds, we take a characteristic scale µS ⇠ O(10) TeV for illustration. The scale
of the transition, however, can be taken much larger. The main limit for baryogenesis is around T ⇠ 1012

GeV when the sphalerons become out-of-equilibrium in the symmetric phase.
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Pushing up the temperature of the EW 
phase transition ?

58

> Major implications even if pushed by only a few hundreds of GeV !

> opens large new windows of theory space for successful EW 
baryogenesis !

> Early baryon asymmetry safe from sphaleron wash-out 
even in models with B-L=0 !

> Motivation: EW baryogenesis using high-scale sources     
of CP violation, allowed by data !

> GW peak at LISA shifted to higher frequencies !
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FIG. 2: The evolution of the effective potential with temperature
in the SM (top) and with varying Yukawas (bottom). The vary-
ing Yukawa calculation includes all SM fermions with y1 = 1,
n1 = 1 and their respective y0, chosen to return the observed fermion
masses today (for the neutrinos we have assumed Dirac neutrinos and
m⌫ = 0.05 eV). In the varying Yukawa case we find a first-order
phase transition with �c = 230 GeV and Tc = 128 GeV (second
order transition at Tc = 163 GeV for the constant Yukawa case).

different speeds. Large values of n mean the Yukawa cou-
pling remain large for a greater range of � away from zero.
We will see that large n strengthen the phase transition.

We study the strength of the EWPT for different choices of
n, y1 ⇠ O(1) and the number of degrees of freedom, g, of the
species with the �-dependent Yukawa coupling. The results
do not depend strongly on the choice of y0 as long as y0 ⌧ 1.
The top Yukawa is assumed to be constant and take its SM
value.

Of course, in a realistic model the different fermion species
will take on different values of n, y1 and y0 (also the underly-
ing model determines whether only quarks, only leptons or all
fermion masses are controlled by the same flavon). Our aim
here is to simply illustrate the effect through a simple ansatz
and an overall variation of n, g and y1.

The possibility that the Yukawa couplings could change
during the EWPT was raised in [35] but the impact on the na-
ture of the EWPT was ignored, the emphasis was on the pos-
sibility to get large CP violation from the CKM matrix during
the EWPT. We show in the next section the three main effects

FIG. 3: Solid lines: Contours of �c/Tc = 1 for different choices of
y1 and y0 = 0.02, areas above these lines allow for EW baryoge-
nesis. Dashed lines: areas above these lines are disallowed (for the
indicated choices of y1 and y0) due to the EW minimum not being
the global one.

that Eq. (2) has on the Higgs effective potential.

IV. EFFECTIVE HIGGS POTENTIAL WITH VARYING
YUKAWAS

We consider the effective potential given by the sum of the
tree level potential, the one-loop zero temperature correction,
the one-loop finite temperature correction and the daisy cor-
rection [36]

Ve↵ = Vtree(�) + V

0
1 (�) + V

T
1 (�, T ) + VDaisy(�, T ). (4)

In the framework we have in mind, this potential depends
as well on the additional flavon field(s) coupling to the
Higgs. However, for the generic points we want to stress,
we should ignore the flavon(s) degrees of freedom and take
the SM tree level potential. We study the evolution of the
effective potential with temperature numerically, including
the SM fermionic dof with varying Yukawas, in addition to
the usual bosonic SM fields. An example of the evolution of
the effective potential with varying Yukawa couplings, with a
comparison to the SM case (constant Yukawas), is shown in
Fig. 2. We next scan over n and g for different choices of y1
and find the strength of the phase transition, as characterised
by the ratio of the critical VEV to temperature, �c/Tc

(successful EW baryogenesis requires �c/Tc & 1 [37]).
Our results are summarised in Fig. 3. Below we discuss
the different terms of the effective potential and identify the

At one-loop:
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For high-T, m/T<<1:
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FIG. 2: The evolution of the effective potential with temperature
in the SM (top) and with varying Yukawas (bottom). The vary-
ing Yukawa calculation includes all SM fermions with y1 = 1,
n1 = 1 and their respective y0, chosen to return the observed fermion
masses today (for the neutrinos we have assumed Dirac neutrinos and
m⌫ = 0.05 eV). In the varying Yukawa case we find a first-order
phase transition with �c = 230 GeV and Tc = 128 GeV (second
order transition at Tc = 163 GeV for the constant Yukawa case).

different speeds. Large values of n mean the Yukawa cou-
pling remain large for a greater range of � away from zero.
We will see that large n strengthen the phase transition.

We study the strength of the EWPT for different choices of
n, y1 ⇠ O(1) and the number of degrees of freedom, g, of the
species with the �-dependent Yukawa coupling. The results
do not depend strongly on the choice of y0 as long as y0 ⌧ 1.
The top Yukawa is assumed to be constant and take its SM
value.

Of course, in a realistic model the different fermion species
will take on different values of n, y1 and y0 (also the underly-
ing model determines whether only quarks, only leptons or all
fermion masses are controlled by the same flavon). Our aim
here is to simply illustrate the effect through a simple ansatz
and an overall variation of n, g and y1.

The possibility that the Yukawa couplings could change
during the EWPT was raised in [35] but the impact on the na-
ture of the EWPT was ignored, the emphasis was on the pos-
sibility to get large CP violation from the CKM matrix during
the EWPT. We show in the next section the three main effects

FIG. 3: Solid lines: Contours of �c/Tc = 1 for different choices of
y1 and y0 = 0.02, areas above these lines allow for EW baryoge-
nesis. Dashed lines: areas above these lines are disallowed (for the
indicated choices of y1 and y0) due to the EW minimum not being
the global one.

that Eq. (2) has on the Higgs effective potential.

IV. EFFECTIVE HIGGS POTENTIAL WITH VARYING
YUKAWAS

We consider the effective potential given by the sum of the
tree level potential, the one-loop zero temperature correction,
the one-loop finite temperature correction and the daisy cor-
rection [36]

Ve↵ = Vtree(�) + V

0
1 (�) + V

T
1 (�, T ) + VDaisy(�, T ). (4)

In the framework we have in mind, this potential depends
as well on the additional flavon field(s) coupling to the
Higgs. However, for the generic points we want to stress,
we should ignore the flavon(s) degrees of freedom and take
the SM tree level potential. We study the evolution of the
effective potential with temperature numerically, including
the SM fermionic dof with varying Yukawas, in addition to
the usual bosonic SM fields. An example of the evolution of
the effective potential with varying Yukawa couplings, with a
comparison to the SM case (constant Yukawas), is shown in
Fig. 2. We next scan over n and g for different choices of y1
and find the strength of the phase transition, as characterised
by the ratio of the critical VEV to temperature, �c/Tc

(successful EW baryogenesis requires �c/Tc & 1 [37]).
Our results are summarised in Fig. 3. Below we discuss
the different terms of the effective potential and identify the
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 By adding new weak-scale (m<~300 GeV) singlet scalars 
[1807.08770, Baldes], [1807.07578, Meade, Ramani], [1811.11740, Gliotto, Rattazzi, Vecchi]

whose mass has a non-standard dependence on Higgs VEV
 or singlet fermions [2002.05174, Matsedonskyi] 



>  SUMMARY OF PRINCIPLE: Massless or sufficiently 
light (m<T) particles coupled to the Higgs produce a dip  

in the Higgs potential of the size  ~ -T^4 !3
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FIG. 1: Schematic plot of the thermal correction to Higgs potential (left panel) derived from the plasma with the
particle whose mass depends on the Higgs field as shown on the right panel.

II. THERMAL CORRECTIONS AND SNR

A. One-Loop Thermal Corrections

The standard model Higgs doublet induces spontaneous breaking of the EW symmetry at zero temperature,
provided by a negative mass2 parameter in the scalar potential

V SM
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4
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where h is the Higgs boson, µ ' 90 GeV and � ' 0.13, with h = 246 GeV and m2

h

= 126 GeV at the V SM

h

minimum. The e↵ect of the Higgs field interaction with high-temperature plasma can be accounted for by
modifying the Higgs potential. The leading “one-loop” thermal corrections to the Higgs potential are given
by

�V T

b

=
T 4

2⇡2

J
b

[m2/T 2], �V T

f

= �2T 4

⇡2

J
f

[m2/T 2] (II.2)

respectively for one thermalized bosonic degree of freedom and one Dirac fermion with mass m. Their
interactions with the Higgs field are encoded in the Higgs-dependent masses m. The thermal loop functions
are defined as
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The corrections (II.2) have minima at m2 = 0 (within m2 � 0 region). In the high-temperature limit
m2/T 2 ⌧ 1 they simplify to
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The first terms of the expansions (II.4) define the depth of the negative correction to the Higgs potential at
m2 = 0. The second terms set the size of the correction to Higgs mass in the vicinity of the minimum

�m2

h

(T ) / T 2(m2(h))00. (II.5)

On the other hand, for m2/T 2 � 1 the thermal corrections vanish. Corresponding schematic picture of one-
loop thermal potential is shown in Fig. 1. In that figure we assumed the particle mass to gradually decrease

2 Mass squared should be understood whenever we mention negative scalar mass.
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loop thermal potential is shown in Fig. 1. In that figure we assumed the particle mass to gradually decrease
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EW symmetry non-restoration at T>MH .



EW symmetry non-restoration 
at T>MH  from new scalars  .



Figure 4: Left: The VEV of � as a function of T in the toy model. Right: The e↵ective mass
squared of the �, i.e. the second derivative of the potential, at the origin in field space.

and e↵ective mass of � as a function of T , showing the various stages discussed above. As
mentioned previously, the mass threshold is naively at T ⇠ µS, however, additional factors
which enter the full expressions lead to the non-zero VEV only developing at T ⇡ µS/2 in
our example. We have checked the �i VEVs remain zero throughout due to positive thermal
contributions in the �i field directions.

The reason for requiring multiple generations of �i is revealed by considering the thermal
mass of the �i, Eq. (3). A large thermal mass spoils the symmetry non-restoration e↵ect
once it enters the e↵ective potential through the daisy resummation [23]. This is because
a large thermal mass can make the vacuum contribution, �����2/2, which leads to the
symmetry non-restoration e↵ect, negligible in the e↵ective potential. (This is not captured
in the naive Eq. (5) which is simply based on a high-T expansion.) Assuming, as we do,
that �� > ��, the use of multiple generations means the thermal mass of the �i can be
reduced, assuming the inter-generational interactions are negligible. Thus allowing for the
symmetry non-restoration phase to proceed even once the daisy resummation is included.
Furthermore, the use of multiple generations allows us entertain the possibility that the �i

are singlet fields, i.e. N�i = 1, in our full model below, which leads to simpler low energy
phenomenology.

It is interesting that the stability constraint implies

����N�
���

24

���� <
N�i

p
NGen����

12
, (7)

which reveals that a negative thermal mass can be achieved for a su�ciently large NGen,
while keeping c�i small enough, and the potential stable.

In our example here, we do not have a first order phase transition required for EWBG.
Nevertheless, we shall see below that in our full model a strong enough phase transition can
be achieved. What is important here is that we can start in the symmetric phase at high tem-
perature and make a transition to a period in which � obtains a large temperature-dependent
VEV. We can then use the additional freedom gained, e.g. by introducing additional field
directions, to arrange for a strong first order electroweak phase transition at a high scale
followed by the use of the symmetry non-restoration e↵ect to avoid washout.

7

Figure 3: Left: The evolution of the e↵ective potential with the temperature in the toy model
showing a crossover at Tc ⇡ 8 TeV. Right: The e↵ective potential in the toy model at Tc ⇡ 8 TeV.
The positive thermal contributions from the daisy resummation and S, and the negative thermal
contribution from the �i are also shown.

Now consider a judicious choice of parameters so that: (i) �i and S always have positive
thermal masses, (ii) c� is positive at high temperature, (iii) c� becomes negative when the
contribution of S to its thermal mass becomes negligible, i.e. once T . µS. The e↵ective
potential in the � direction, when T � µ� can be approximated as c�T 2�2/2 + ���4/4.
Positive c� returns a minimum at � = 0, but for negative c� we will find a minimum at
� =

p
c�/��T . The latter solution is the usual symmetry non-restoration e↵ect [21–29, 32].

What is new here is the presence of the additional field S which can switch the sign of c�
when T reaches a mass threshold, leading to a phase transition or crossover. (Similarly, the
symmetry non-restoration e↵ect disappears if T falls su�ciently below µ�.) Eventually, for
T ⌧ |µ�|, the VEV is set by the usual zero-temperature minimization conditions.

We numerically evaluate the e↵ective potential including the tree-level terms, zero and
finite-temperature one-loop terms, and the daisy resummation.2 The latter is crucial and
weakens the phase transition. To give a concrete example, consider the choice of parameters3

N� = 1, NGen = 12, N�i = 4, NS = 12,

�� = 0.1, �� = 0.5, �S = 1, ��� = �0.1, ��S = 1, (6)

µ� = �0.1 TeV, µ� = 0.1 TeV, µS = 20 TeV.

In Fig. 3 we show the resulting cross over, together with the thermal contributions from the
S and �i scalars and the daisy resummation. In Fig. 4 we plot the evolution of the VEV

2We use the Arnold-Espinosa method of implementing the daisy resummation [43]. We cut o↵ the
contribution of S to the thermal masses with an exponential factor, e�mS/T , in order to avoid spurious
contributions to the daisy resummation. We checked that the thermal mass estimated using the high-
temperature expansion is consistent with the second derivative of the one loop thermal terms. In fact, the
phase transition is stronger when using the numerical value rather than the high-temperature expansion
value.

3Motivated by flavour bounds, we take a characteristic scale µS ⇠ O(10) TeV for illustration. The scale
of the transition, however, can be taken much larger. The main limit for baryogenesis is around T ⇠ 1012

GeV when the sphalerons become out-of-equilibrium in the symmetric phase.

6

2 Toy Example

High temperature symmetry non-restoration was studied some time ago [21–32], mainly in
the context of GUT theories or in the context of SUSY flat directions [34]. The phenomenon
has been confirmed by lattice simulations [35, 36] and non-perturbative methods [37]. For
the electroweak symmetry, it was considered only a few times. The possible existence of a
broken phase of electroweak symmetry at high temperature in Little Higgs extensions of the
Standard Model was investigated in [38, 39]. The theory, however, exhibits a restoration of
electroweak symmetry as long as temperatures are not pushed beyond the range of validity
of the EFT for a finite temperature calculation [40]. This conclusion is generalised to Twin
Higgs models in [41] and confirms earlier findings in [32]. The case of composite Higgs models
with partial fermion compositeness in which the Higgs is a PNGB has been studied recently
in and these models also lead to EW symmetry restoration [18, 19].

Here we will implement the ideas illustrated in Fig. 1, and show how a phase transition
or crossover can occur at a high scale, i.e. above the zero-temperature minimum of the
scalar potential, using an extension of the symmetry non-restoration e↵ect. Unlike in earlier
realisations of the symmetry non-restoration e↵ect, the symmetry is actually restored at a
su�ciently large temperature, i.e. above some mass threshold. Here, by symmetry non-
restoration, we mean that at temperatures below the phase transition one of the scalar fields
obtains a VEV proportional to the temperature.

The main idea is to induce a negative thermal mass for the Higgs through a negative cross-
quartic coupling between the Higgs and a large number of additional scalar fields. Consider
a toy model of scalar fields, �, S, and �i, where i = 1, ..., NGen is a generational index (the
reason for considering multiple generations will be made clear below). We denote the degrees
of freedom with N�, NS, and N�i (the � sector therefore has in total N� = NGenN�i degrees
of freedom). In this section � is acting as a placeholder for the EW Higgs, though we switch
o↵ the usual SM Yukawa and gauge interactions for the discussion in this section. For the
purposes of our example, the relevant terms in the tree level potential are given by

V (�,�) =
µ2
S

2
S2+

µ2
�

2

X

i

�2
i+

µ2
�

2
�2+

��

4
�4+
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4

X

i

�4
i+

�S

4
S4+

���

4
�2

X

i

�2
i+

��S

4
�2S2, (1)

where for simplicity we assume degenerate masses and couplings for the �i generations and
that the cross quartic ��S is negligible. As we shall be choosing ��� < 0, stability of the tree
level potential requires

��� > �2

r
����

NGen
. (2)

At high temperatures, T � µ�, µ�, the thermal masses of the fields are [42]
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Figure 1: Sketch of the e↵ect illustrated in the toy model. At high temperature the thermal
mass of �, c�T 2, is positive and the VEV is zero. The temperature drops below a mass threshold
of a field S, removing a positive contribution to the thermal mass of �. The thermal mass of �
is then negative due to the contributions from some additional scalars �i and the VEV becomes
proportional to the temperature. Finally, at su�ciently low temperatures, the VEV is set by the
usual minimization conditions of the zero temperature potential.

makes model building in this framework challenging. It would therefore be helpful to raise
the scale of EWBG, so we can in turn also raise the flavour scale and hence more easily
satisfy the flavour constraints.

More broadly, raising the scale of EW symmetry breaking is anyway an exciting theoret-
ical possibility, not limited to the context of the flavour model considered below. The aim
of this paper therefore is to study the possibility of high scale EWBG, in which the Higgs �
first obtains a large vacuum expectation value (VEV), which is later gradually decreased to
v� = 246 GeV while in the broken electroweak phase. The VEV can be gradually decreased
using a symmetry non-restoration e↵ect, in which the Higgs — through the coupling to
other scalar fields — gains a negative thermal mass squared and hence a VEV proportional
to the temperature [21–32].1 In the models of symmetry non-restoration considered so far,
the broken symmetry is not restored at any temperature. For electroweak baryogenesis,
however, we want the Higgs to start in the symmetric phase and undergo a phase transition
into the broken phase. Here, we will first show the two conditions can be realised together
generically, through a simple toy model example, sketched in Fig. 1.

Motivated by our findings, we then return to flavour considerations in a more complete
model, in which the Yukawa couplings are field-dependent and large at early times. The
flavor sector contains extra fermions whose mass is controlled by the VEV of a scalar field �
that sets the flavour scale, & O(10) TeV, today. The broken EW phase minimum develops at
large Higgs values once the temperature drops to the flavour scale. The Higgs then undergoes
a strong first order phase transition from a point in field space in which the Yukawa couplings

1For brevity, we omit “squared” when discussing the thermal masses of scalar fields from now on.
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2 Toy Example

High temperature symmetry non-restoration was studied some time ago [21–32], mainly in
the context of GUT theories or in the context of SUSY flat directions [34]. The phenomenon
has been confirmed by lattice simulations [35, 36] and non-perturbative methods [37]. For
the electroweak symmetry, it was considered only a few times. The possible existence of a
broken phase of electroweak symmetry at high temperature in Little Higgs extensions of the
Standard Model was investigated in [38, 39]. The theory, however, exhibits a restoration of
electroweak symmetry as long as temperatures are not pushed beyond the range of validity
of the EFT for a finite temperature calculation [40]. This conclusion is generalised to Twin
Higgs models in [41] and confirms earlier findings in [32]. The case of composite Higgs models
with partial fermion compositeness in which the Higgs is a PNGB has been studied recently
in and these models also lead to EW symmetry restoration [18, 19].

Here we will implement the ideas illustrated in Fig. 1, and show how a phase transition
or crossover can occur at a high scale, i.e. above the zero-temperature minimum of the
scalar potential, using an extension of the symmetry non-restoration e↵ect. Unlike in earlier
realisations of the symmetry non-restoration e↵ect, the symmetry is actually restored at a
su�ciently large temperature, i.e. above some mass threshold. Here, by symmetry non-
restoration, we mean that at temperatures below the phase transition one of the scalar fields
obtains a VEV proportional to the temperature.

The main idea is to induce a negative thermal mass for the Higgs through a negative cross-
quartic coupling between the Higgs and a large number of additional scalar fields. Consider
a toy model of scalar fields, �, S, and �i, where i = 1, ..., NGen is a generational index (the
reason for considering multiple generations will be made clear below). We denote the degrees
of freedom with N�, NS, and N�i (the � sector therefore has in total N� = NGenN�i degrees
of freedom). In this section � is acting as a placeholder for the EW Higgs, though we switch
o↵ the usual SM Yukawa and gauge interactions for the discussion in this section. For the
purposes of our example, the relevant terms in the tree level potential are given by
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where for simplicity we assume degenerate masses and couplings for the �i generations and
that the cross quartic ��S is negligible. As we shall be choosing ��� < 0, stability of the tree
level potential requires
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Figure 1: Sketch of the e↵ect illustrated in the toy model. At high temperature the thermal
mass of �, c�T 2, is positive and the VEV is zero. The temperature drops below a mass threshold
of a field S, removing a positive contribution to the thermal mass of �. The thermal mass of �
is then negative due to the contributions from some additional scalars �i and the VEV becomes
proportional to the temperature. Finally, at su�ciently low temperatures, the VEV is set by the
usual minimization conditions of the zero temperature potential.

makes model building in this framework challenging. It would therefore be helpful to raise
the scale of EWBG, so we can in turn also raise the flavour scale and hence more easily
satisfy the flavour constraints.

More broadly, raising the scale of EW symmetry breaking is anyway an exciting theoret-
ical possibility, not limited to the context of the flavour model considered below. The aim
of this paper therefore is to study the possibility of high scale EWBG, in which the Higgs �
first obtains a large vacuum expectation value (VEV), which is later gradually decreased to
v� = 246 GeV while in the broken electroweak phase. The VEV can be gradually decreased
using a symmetry non-restoration e↵ect, in which the Higgs — through the coupling to
other scalar fields — gains a negative thermal mass squared and hence a VEV proportional
to the temperature [21–32].1 In the models of symmetry non-restoration considered so far,
the broken symmetry is not restored at any temperature. For electroweak baryogenesis,
however, we want the Higgs to start in the symmetric phase and undergo a phase transition
into the broken phase. Here, we will first show the two conditions can be realised together
generically, through a simple toy model example, sketched in Fig. 1.

Motivated by our findings, we then return to flavour considerations in a more complete
model, in which the Yukawa couplings are field-dependent and large at early times. The
flavor sector contains extra fermions whose mass is controlled by the VEV of a scalar field �
that sets the flavour scale, & O(10) TeV, today. The broken EW phase minimum develops at
large Higgs values once the temperature drops to the flavour scale. The Higgs then undergoes
a strong first order phase transition from a point in field space in which the Yukawa couplings

1For brevity, we omit “squared” when discussing the thermal masses of scalar fields from now on.
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2 Toy Example

High temperature symmetry non-restoration was studied some time ago [21–32], mainly in
the context of GUT theories or in the context of SUSY flat directions [34]. The phenomenon
has been confirmed by lattice simulations [35, 36] and non-perturbative methods [37]. For
the electroweak symmetry, it was considered only a few times. The possible existence of a
broken phase of electroweak symmetry at high temperature in Little Higgs extensions of the
Standard Model was investigated in [38, 39]. The theory, however, exhibits a restoration of
electroweak symmetry as long as temperatures are not pushed beyond the range of validity
of the EFT for a finite temperature calculation [40]. This conclusion is generalised to Twin
Higgs models in [41] and confirms earlier findings in [32]. The case of composite Higgs models
with partial fermion compositeness in which the Higgs is a PNGB has been studied recently
in and these models also lead to EW symmetry restoration [18, 19].

Here we will implement the ideas illustrated in Fig. 1, and show how a phase transition
or crossover can occur at a high scale, i.e. above the zero-temperature minimum of the
scalar potential, using an extension of the symmetry non-restoration e↵ect. Unlike in earlier
realisations of the symmetry non-restoration e↵ect, the symmetry is actually restored at a
su�ciently large temperature, i.e. above some mass threshold. Here, by symmetry non-
restoration, we mean that at temperatures below the phase transition one of the scalar fields
obtains a VEV proportional to the temperature.

The main idea is to induce a negative thermal mass for the Higgs through a negative cross-
quartic coupling between the Higgs and a large number of additional scalar fields. Consider
a toy model of scalar fields, �, S, and �i, where i = 1, ..., NGen is a generational index (the
reason for considering multiple generations will be made clear below). We denote the degrees
of freedom with N�, NS, and N�i (the � sector therefore has in total N� = NGenN�i degrees
of freedom). In this section � is acting as a placeholder for the EW Higgs, though we switch
o↵ the usual SM Yukawa and gauge interactions for the discussion in this section. For the
purposes of our example, the relevant terms in the tree level potential are given by

V (�,�) =
µ2
S

2
S2+

µ2
�

2

X

i

�2
i+

µ2
�

2
�2+

��

4
�4+

��

4

X

i

�4
i+

�S

4
S4+

���

4
�2

X

i

�2
i+

��S

4
�2S2, (1)

where for simplicity we assume degenerate masses and couplings for the �i generations and
that the cross quartic ��S is negligible. As we shall be choosing ��� < 0, stability of the tree
level potential requires
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has been confirmed by lattice simulations [35, 36] and non-perturbative methods [37]. For
the electroweak symmetry, it was considered only a few times. The possible existence of a
broken phase of electroweak symmetry at high temperature in Little Higgs extensions of the
Standard Model was investigated in [38, 39]. The theory, however, exhibits a restoration of
electroweak symmetry as long as temperatures are not pushed beyond the range of validity
of the EFT for a finite temperature calculation [40]. This conclusion is generalised to Twin
Higgs models in [41] and confirms earlier findings in [32]. The case of composite Higgs models
with partial fermion compositeness in which the Higgs is a PNGB has been studied recently
in and these models also lead to EW symmetry restoration [18, 19].

Here we will implement the ideas illustrated in Fig. 1, and show how a phase transition
or crossover can occur at a high scale, i.e. above the zero-temperature minimum of the
scalar potential, using an extension of the symmetry non-restoration e↵ect. Unlike in earlier
realisations of the symmetry non-restoration e↵ect, the symmetry is actually restored at a
su�ciently large temperature, i.e. above some mass threshold. Here, by symmetry non-
restoration, we mean that at temperatures below the phase transition one of the scalar fields
obtains a VEV proportional to the temperature.

The main idea is to induce a negative thermal mass for the Higgs through a negative cross-
quartic coupling between the Higgs and a large number of additional scalar fields. Consider
a toy model of scalar fields, �, S, and �i, where i = 1, ..., NGen is a generational index (the
reason for considering multiple generations will be made clear below). We denote the degrees
of freedom with N�, NS, and N�i (the � sector therefore has in total N� = NGenN�i degrees
of freedom). In this section � is acting as a placeholder for the EW Higgs, though we switch
o↵ the usual SM Yukawa and gauge interactions for the discussion in this section. For the
purposes of our example, the relevant terms in the tree level potential are given by
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where for simplicity we assume degenerate masses and couplings for the �i generations and
that the cross quartic ��S is negligible. As we shall be choosing ��� < 0, stability of the tree
level potential requires

��� > �2

r
����

NGen
. (2)

At high temperatures, T � µ�, µ�, the thermal masses of the fields are [42]
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Figure 4: Left: The VEV of � as a function of T in the toy model. Right: The e↵ective mass
squared of the �, i.e. the second derivative of the potential, at the origin in field space.

and e↵ective mass of � as a function of T , showing the various stages discussed above. As
mentioned previously, the mass threshold is naively at T ⇠ µS, however, additional factors
which enter the full expressions lead to the non-zero VEV only developing at T ⇡ µS/2 in
our example. We have checked the �i VEVs remain zero throughout due to positive thermal
contributions in the �i field directions.

The reason for requiring multiple generations of �i is revealed by considering the thermal
mass of the �i, Eq. (3). A large thermal mass spoils the symmetry non-restoration e↵ect
once it enters the e↵ective potential through the daisy resummation [23]. This is because
a large thermal mass can make the vacuum contribution, �����2/2, which leads to the
symmetry non-restoration e↵ect, negligible in the e↵ective potential. (This is not captured
in the naive Eq. (5) which is simply based on a high-T expansion.) Assuming, as we do,
that �� > ��, the use of multiple generations means the thermal mass of the �i can be
reduced, assuming the inter-generational interactions are negligible. Thus allowing for the
symmetry non-restoration phase to proceed even once the daisy resummation is included.
Furthermore, the use of multiple generations allows us entertain the possibility that the �i

are singlet fields, i.e. N�i = 1, in our full model below, which leads to simpler low energy
phenomenology.

It is interesting that the stability constraint implies

����N�
���

24

���� <
N�i

p
NGen����

12
, (7)

which reveals that a negative thermal mass can be achieved for a su�ciently large NGen,
while keeping c�i small enough, and the potential stable.

In our example here, we do not have a first order phase transition required for EWBG.
Nevertheless, we shall see below that in our full model a strong enough phase transition can
be achieved. What is important here is that we can start in the symmetric phase at high tem-
perature and make a transition to a period in which � obtains a large temperature-dependent
VEV. We can then use the additional freedom gained, e.g. by introducing additional field
directions, to arrange for a strong first order electroweak phase transition at a high scale
followed by the use of the symmetry non-restoration e↵ect to avoid washout.
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Figure 1: Sketch of the e↵ect illustrated in the toy model. At high temperature the thermal
mass of �, c�T 2, is positive and the VEV is zero. The temperature drops below a mass threshold
of a field S, removing a positive contribution to the thermal mass of �. The thermal mass of �
is then negative due to the contributions from some additional scalars �i and the VEV becomes
proportional to the temperature. Finally, at su�ciently low temperatures, the VEV is set by the
usual minimization conditions of the zero temperature potential.

makes model building in this framework challenging. It would therefore be helpful to raise
the scale of EWBG, so we can in turn also raise the flavour scale and hence more easily
satisfy the flavour constraints.

More broadly, raising the scale of EW symmetry breaking is anyway an exciting theoret-
ical possibility, not limited to the context of the flavour model considered below. The aim
of this paper therefore is to study the possibility of high scale EWBG, in which the Higgs �
first obtains a large vacuum expectation value (VEV), which is later gradually decreased to
v� = 246 GeV while in the broken electroweak phase. The VEV can be gradually decreased
using a symmetry non-restoration e↵ect, in which the Higgs — through the coupling to
other scalar fields — gains a negative thermal mass squared and hence a VEV proportional
to the temperature [21–32].1 In the models of symmetry non-restoration considered so far,
the broken symmetry is not restored at any temperature. For electroweak baryogenesis,
however, we want the Higgs to start in the symmetric phase and undergo a phase transition
into the broken phase. Here, we will first show the two conditions can be realised together
generically, through a simple toy model example, sketched in Fig. 1.

Motivated by our findings, we then return to flavour considerations in a more complete
model, in which the Yukawa couplings are field-dependent and large at early times. The
flavor sector contains extra fermions whose mass is controlled by the VEV of a scalar field �
that sets the flavour scale, & O(10) TeV, today. The broken EW phase minimum develops at
large Higgs values once the temperature drops to the flavour scale. The Higgs then undergoes
a strong first order phase transition from a point in field space in which the Yukawa couplings

1For brevity, we omit “squared” when discussing the thermal masses of scalar fields from now on.

3

T

c� > 0

c� < 0

� = 0

� ⇡
vuuut
�c�T 2

��

T ⇡ µS

T ⇡ µ�

� ⇡
vuuut
�µ2�
��

Figure 1: Sketch of the e↵ect illustrated in the toy model. At high temperature the thermal
mass of �, c�T 2, is positive and the VEV is zero. The temperature drops below a mass threshold
of a field S, removing a positive contribution to the thermal mass of �. The thermal mass of �
is then negative due to the contributions from some additional scalars �i and the VEV becomes
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the scale of EWBG, so we can in turn also raise the flavour scale and hence more easily
satisfy the flavour constraints.

More broadly, raising the scale of EW symmetry breaking is anyway an exciting theoret-
ical possibility, not limited to the context of the flavour model considered below. The aim
of this paper therefore is to study the possibility of high scale EWBG, in which the Higgs �
first obtains a large vacuum expectation value (VEV), which is later gradually decreased to
v� = 246 GeV while in the broken electroweak phase. The VEV can be gradually decreased
using a symmetry non-restoration e↵ect, in which the Higgs — through the coupling to
other scalar fields — gains a negative thermal mass squared and hence a VEV proportional
to the temperature [21–32].1 In the models of symmetry non-restoration considered so far,
the broken symmetry is not restored at any temperature. For electroweak baryogenesis,
however, we want the Higgs to start in the symmetric phase and undergo a phase transition
into the broken phase. Here, we will first show the two conditions can be realised together
generically, through a simple toy model example, sketched in Fig. 1.

Motivated by our findings, we then return to flavour considerations in a more complete
model, in which the Yukawa couplings are field-dependent and large at early times. The
flavor sector contains extra fermions whose mass is controlled by the VEV of a scalar field �
that sets the flavour scale, & O(10) TeV, today. The broken EW phase minimum develops at
large Higgs values once the temperature drops to the flavour scale. The Higgs then undergoes
a strong first order phase transition from a point in field space in which the Yukawa couplings

1For brevity, we omit “squared” when discussing the thermal masses of scalar fields from now on.
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Figure 3: Left: The evolution of the e↵ective potential with the temperature in the toy model
showing a crossover at Tc ⇡ 8 TeV. Right: The e↵ective potential in the toy model at Tc ⇡ 8 TeV.
The positive thermal contributions from the daisy resummation and S, and the negative thermal
contribution from the �i are also shown.

Now consider a judicious choice of parameters so that: (i) �i and S always have positive
thermal masses, (ii) c� is positive at high temperature, (iii) c� becomes negative when the
contribution of S to its thermal mass becomes negligible, i.e. once T . µS. The e↵ective
potential in the � direction, when T � µ� can be approximated as c�T 2�2/2 + ���4/4.
Positive c� returns a minimum at � = 0, but for negative c� we will find a minimum at
� =

p
c�/��T . The latter solution is the usual symmetry non-restoration e↵ect [21–29, 32].

What is new here is the presence of the additional field S which can switch the sign of c�
when T reaches a mass threshold, leading to a phase transition or crossover. (Similarly, the
symmetry non-restoration e↵ect disappears if T falls su�ciently below µ�.) Eventually, for
T ⌧ |µ�|, the VEV is set by the usual zero-temperature minimization conditions.

We numerically evaluate the e↵ective potential including the tree-level terms, zero and
finite-temperature one-loop terms, and the daisy resummation.2 The latter is crucial and
weakens the phase transition. To give a concrete example, consider the choice of parameters3

N� = 1, NGen = 12, N�i = 4, NS = 12,

�� = 0.1, �� = 0.5, �S = 1, ��� = �0.1, ��S = 1, (6)

µ� = �0.1 TeV, µ� = 0.1 TeV, µS = 20 TeV.

In Fig. 3 we show the resulting cross over, together with the thermal contributions from the
S and �i scalars and the daisy resummation. In Fig. 4 we plot the evolution of the VEV

2We use the Arnold-Espinosa method of implementing the daisy resummation [43]. We cut o↵ the
contribution of S to the thermal masses with an exponential factor, e�mS/T , in order to avoid spurious
contributions to the daisy resummation. We checked that the thermal mass estimated using the high-
temperature expansion is consistent with the second derivative of the one loop thermal terms. In fact, the
phase transition is stronger when using the numerical value rather than the high-temperature expansion
value.

3Motivated by flavour bounds, we take a characteristic scale µS ⇠ O(10) TeV for illustration. The scale
of the transition, however, can be taken much larger. The main limit for baryogenesis is around T ⇠ 1012

GeV when the sphalerons become out-of-equilibrium in the symmetric phase.
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Figure 11: The evolution of �/T for di↵erent values of µ�. To retain �/T & 1 we require µ� . 300
GeV.

feature at a characteristic frequency in the spectrum of gravitational waves emitted in the
radiation dominated era [53]. A similar feature can be expected in suitable gravitational
wave backgrounds coming from inflation. We leave this study for future investigation.

6.2 Scalar sector in the IR

The scenario relies on the scalar degrees-of-freedom �i to guide the electroweak minimum
to its present value. Hence, it is necessary for the mass µ� to be at or below the EW
scale otherwise, once T . µ�, the symmetry non-restoration e↵ect disappears and �/T will
become small. This is shown in Fig. 11. The experimental constraint on such a scenario
comes from searches for these light scalars. Note while we have considered universal mass
and coupling terms for the �i, we can imagine that in a more realistic scenario the masses
are split in a spectrum of states with masses m2

�i
⇠ O(µ2

� + ���v2�/2). The partial width of
the SM Higgs to the �i is given by

X

i

�(� ! �i�i) =
X

i

�2
��v

2
�

32⇡m�
Re

"s

1� 4
m2

�i

m2
�

#
⇠ N 0

Gen

�2
��v

2
�

32⇡m�
, (25)

where N 0
Gen denotes the number of generations with mass below the threshold 2m�i < m�.

Demanding at most an O(0.1) modification to the SM Higgs signal strength requires N 0
Gen .

O(1) for ��� ⇠ 10�2. Hence the states must lie above this threshold. In summary, we obtain

63 GeV . m�i . 300 GeV, (26)

by combining the EW Higgs decay constraint with the washout avoidance condition shown
in Fig. 11.

The �i states will become thermally populated and should not over-produce DM. The
cross quartic is too small for annihilation solely through the Higgs portal and anyway, at
these masses, is ruled out by direct detection [54–58]. Hence we need to arrange for the �i

to decay.7 This can be achieved if the �i obtain VEVs and can mix with the Higgs. Here

7Alternatively, provided the additional interaction does not lead to a too large thermal mass, the �i could
annihilate into dark radiation [59], or a dark mediator which subsequently decays [60].
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𝛘’s should be lighter than 300 GeV to avoid 
sphaleron washout of baryon asymmetry!
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FIG. 4: Left: contours of maximal continuous SNR temperature (in color) for ⇤ = 1 TeV and n = 10, in terms of the
coupling �N and the N zero-temperature mass at h = 246 GeV. Grey dotted contours show the value of

↵ = n�Nm
(0)
N /⇤. Grey areas feature zero-temperature barriers. Center: temperature dependence of h/T in the

minimum of the Higgs potential, for three combinations of mN and �N (corresponding to the three colored points on
the left plot). The h/T lines are limited by the perturbativity from above. Right: for the mN = 0.4 TeV, �N = 0.6

point, Higgs potential at T = 0.1, 0.3, 0.5 TeV.

Eq. (II.12). However, after m
N

becomes too large, the corresponding thermal corrections become ine↵ective at
low h. While at high h, where the minimum of the thermal potential is located, it is not capable of competing
with the zero-temperature Higgs quartic when T ⇠ v

SM

. T
SNR

also initially grows with �
N

, however after a
certain point the perturbativity requirement (III.12) starts being a limiting factor and T

SNR

drops.
The typical example of the Higgs field evolution with temperature in this region is shown in blue in the

central panel of Fig. 4. We also demonstrate the corresponding evolution of the Higgs potential on the right
panel. In the left side of the T

SNR

plot the m
N

mass is too hight for N to be e↵ective at low temperatures,
so the EW symmetry is restored above ⇠ 100 GeV but gets broken at higher temperatures. Corresponding
Higgs field value evolution is shown in red in central panel of Fig. 4.

The gray area in the upper left and central part of the T
SNR

plot shows where the one-loop zero-temperature
Higgs potential features a barrier at v < h < min[h(m

N

= 0), ⇤]. This area only covers the regions of a not
very e�cient SNR. First of all, this means that the zero-T barrier does not a↵ect our SNR analysis. Secondly,
the new physics which may be needed to cure the Higgs instability after the barrier, is not expected to a↵ect
our results either. Finally, the gray regions in the upper right corner show where the zero-temperature Higgs
potential features a barrier at h < v

SM

and a new minimum at h = 0. As was previously discussed in [2], such
a barrier can lead to a peculiar pattern of EW phase transitions. This region also does not overlap with the
region of the most e�cient SNR.

In Fig. 5 we present the dependence of maximal T
SNR

of n and ⇤, marginalized over �
N

and m
N

. The
shape of the contours is mostly defined by two factors. First, our theory is not applicable at temperatures
above ⇤. This defines the horizontal contours in the lower right part of the plot. Second, the condition to
have a negative thermal mass around the origin (see Eq. (II.13)) together with having h & T in the minimum

of the thermal correction (defined by h2 ' m(0)

N

⇤/�
N

), gives

T
SNR

.
p

nm
N

. (III.22)

This condition defines the vertical contour lines on the plot. Importantly, the perturbativity bound (III.12)
together with the requirement to have a negative thermal mass gives the same expression for the maximal
allowed temperature, T . p

nm
N

. This means that the non-perturbativity is not a limiting factor for the
maximal SNR in our simple model. On the other hand, more involved constructions, such as the one presented
in Sec. V allowing for a higher h in the minimum, can not improve on maximal T

SNR

, as the perturbativity
bound remains the same. A small distortion of the vertical contours at low n and high ⇤ is a consequence
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FIG. 2: Example of the Higgs e↵ective potential at high temperature demonstrating SNR (left panel) and its
decomposition (right panel) into non-thermal part (blue), finite temperature correction from the SM interactions

(orange) and from the interactions with the N fermions (green).

where �
q

is the Yukawa coupling and f is some mass scale suppressing the dimension-six operator. In such
a case the contribution of the q quark to the Higgs thermal potential would have two minima: one at h = 0
and another at h = f , suggesting a possibility of symmetry non-restoration. The first subtlety here is that
for h ⇠ f the e↵ective field theory expansion in the powers of h/f breaks down. To make any predictions in
this regime one needs to invoke some type of UV completion for Eq. (II.7). One simple example would be the
models with a Higgs being a pseudo Nambu-Goldstone boson (PNGB), arising e.g. as a pion-like state of some
new strongly interacting sector. We discuss this option in detail in Sec. IV A. PNGBs can be conveniently
parametrized as phases of trigonometric functions and the term responsible for the top mass can for instance
take the form

m
q

⇠ �
q

f sin(h/f) cos(h/f). (II.8)

The absolute value of the mass (we are not interested in the phase of the fermionic mass terms, as it can be
rotated away) has two minima, at h = 0 and h = ⇡f/2. One should however keep in mind that both minima
are of the same depth

�V T

f

' �7⇡2T 4

180
, (II.9)

see Eq. (II.4). Other thermal corrections (e.g. from the SM gauge bosons) and the zero-temperature potential
typically make the h = 0 minimum deeper. We conclude that modified SM interactions can facilitate SNR,
by reducing the SM contribution (e.g. the large correction from the top quark) to the thermal potential
at large h. Such modifications however are not able to make this large-h minimum deeper than the EW
symmetry-preserving one.

C. Symmetry Non-Restoration with New Fermions

We have seen that the standard model fermions can not produce a global EW symmetry breaking minimum
even after we modified their interactions. Let us then add new fermions. The simplest case is a singlet Dirac
fermion N coming in n copies. The Lagrangian leading to SNR is

L
N

= �m(0)

N

N̄N + �
N

N̄Nh2/⇤ (II.10)

where ⇤ is the scale at which our EFT is completed by some heavier states, �
N

is a positive coupling and m
N

is a positive mass parameter. The dip in the thermal correction to the Higgs potential appears at the point
of vanishing N mass (see Fig. 2)

m
N

(h) = m(0)

N

� �
N

h2/⇤ = 0 �! h2 = m(0)

N

⇤/�
N

, (II.11)5

and the negative correction to the Higgs mass in m
N

⌧ T limit is approximately given by

�m2

h

[T ] ' n
T 2

12
(m2

N

(h))00 = �n�
N

m(0)

N

3⇤
T 2. (II.12)

Again, reliability of our predictions in the regime of large Higgs vev values h ⇠ ⇤ is not obvious if we do not
make any assumptions about the high-energy completion of our model. We will present two types of such
completions in Sec. IV.

The negative correction to the Higgs mass, if large enough, can cancel the SM thermal corrections and
eventually make the Higgs field origin unstable leading to SNR. Comparing Eqs.(II.6) and (II.12), we find the
necessary condition for this to happen

n�
N

& 5

✓
v
SM

m
N

◆ ✓
⇤

TeV

◆
. (II.13)

This condition is only valid when the new fermions contribute significantly to the plasma density, i.e. m
N

(h '
0) . T . Otherwise the N -correction is significantly suppressed. For this reason, having SNR not only at some
high temperature, but also around the EW scale, requires N to be relatively light.

III. ANALYSIS OF PARAMETER SPACE

Our analysis of the SNR so far was limited to the discussion of the leading, one loop, thermal corrections
to the Higgs mass. However the loop expansion in finite-temperature field theory is known for its poor
convergence in some cases. In this section we analyse higher loop correction and derive the conditions needed
to ensure reliability of the one-loop approximation. After deriving the limits of the EFT applicability we test
numerically the allowed parameter space.

A. Finite T Higher Order Corrections

First, we remind that the one-loop correction to the Higgs potential (diagram (1) in Fig. 3) is approximately
given by

�m(1-loop)2

h

T 2

⇠ n�
N

m
N

⇤
⌘ ↵. (III.1)

In order to have a strong SNR with h/T & 1 at the minimum, one then needs

↵ & 1. (III.2)

This means that for n � 1 the SNR condition (III.2) can be fulfilled even for small values of coupling
�

N

/ 1/n. It is exactly this fact that allows to suppress the higher-order loop corrections as we will discuss
in a moment. Before that, let us make a small technical remark on the numerical loop suppression factors
in finite-temperature field theory. Here and in the following we leave them implicit, but they should be
understood accompanying every power of �

N

. A naive estimate for the phase space suppression from the
three-dimensional loop integral is

Z
d⌦

(2⇡)3
=

1

2⇡2

(III.3)

which we additionally multiply by 4 for the loops of Dirac fermions N .
The two-loop corrections to the Higgs mass are given by the diagrams (2a) and (2b) in Fig. 3. Both can

be estimated as

�m(2-loop)2

h

T 2

⇠ n�2

N

T 2

⇤2

(III.4)

72

Add n new fermions N with Higgs-
dependent mass contribution. 

Mass vanishes at <h>≠0

Negative 
thermal mass

Enables to push Tc to ~ 500 GeV 
while keeping <h>/T>1 for T<Tc.

[2002.05174]



Why pushing up the temperature of the 
EW phase transition ?

73

6

h/T

T

m
N

� v m
N

⇠ v

n�
N

m
N

⇤
& 1

n�
N

m
N

⇤
< 1

SM

or

h/T

T

h/T

T
n�

N

m
N

⇤
& 1

v

1 1 1

v v

h/T

T

m
N

� v m
N

⇠ v

n�
N

m
N

⇤
& 1

n�
N

m
N

⇤
< 1

SM

or

h/T

T

h/T

T
n�

N

m
N

⇤
& 1

v

1 1 1

v v

h/T

T

m
N

� v m
N

⇠ v

n�
N

m
N

⇤
& 1

n�
N

m
N

⇤
< 1

SM

or

h/T

T

h/T

T
n�

N

m
N

⇤
& 1

v

1 1 1

v v

FIG. 3: Schematic plots of h/T dependence on the temperature. Left: Behaviour found in SM, or in a model with
new fermions with the SNR condition (II.13) not met. Center: Model with new fermions where the SNR condition

is satisfied, but the fermions are too heavy to a↵ect the Higgs potential at temperatures around the EW scale.
Right: Model with new fermions satisfying the SNR condition and light enough to contribute to the Higgs potential
at temperatures around the EW scale. For both center and right plots we have assumed that the minimum of the

thermal potential induced by the new fermions, h2 = m
(0)
N ⇤/�N , is always grater than T 2 within the plotted

temperature range. This explains why h/T exceeds 1 at high T .

of the Higgs vev, depending on whether the SNR condition (II.13) is met or not and whether the new fermions
are su�ciently light compared to the EW scale.

In Fig. 2 we show an example of the Higgs potential showing SNR behaviour at high T . The components
of the plotted potential

V
total

= V
T=0

+ �V T

SM

+ �V T

N

(II.15)

are discussed along the paper. The zero-temperature potential V
T=0

consists of the tree-level potential (II.1)
and one loop corrections induced by the SM states (III.8) and by the new fermions (III.10). The SM thermal
correction �V T

SM

is given in Eq. (A.1). The thermal correction from the N fermions �V T

N

is given in Eq. (II.2).

III. A MORE REFINED ANALYSIS

Our analysis of the SNR so far was limited to the discussion of the leading, one loop, thermal corrections
to the Higgs mass. However the loop expansion in finite-temperature field theory is known for its poor
convergence in some cases. In this section we analyse higher loop corrections and derive the conditions
needed to ensure reliability of the one-loop approximation. After deriving the limits of the EFT applicability
we test numerically the allowed parameter space.

A. Finite-T Higher Order Corrections

First, we remind that the one-loop correction to the Higgs potential (diagram (1) in Fig. 4) is approximately
given by

�m(1-loop)2

h

T 2

⇠ n�
N

m
N

⇤
⌘ ↵. (III.1)

and the SNR condition (II.13) then reads

↵ & 1. (III.2)

This means that for n � 1 the SNR condition (III.2) can be fulfilled even for small values of coupling
�

N

/ 1/n. It is exactly this fact that allows to suppress the higher-order loop corrections as we will discuss
in the follwing.

SM SM + new 
heavy fermions, 

m>>v

SM + new 
light fermions, 

m~v

> Baryon asymmetry produced during higher T 

phase transition is never washed out !
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FIG. 2: Left: Top quark mass (orange) and the N fermion mass, which is minimized at large Higgs vev (blue).
Right: Corresponding 1-loop Higgs thermal potential featuring SNR at T = 0.5 TeV (black solid) and its

decomposition into non-thermal part (orange solid), finite temperature corrections from the SM interactions (green
solid) and from the interactions with the N fermions (red dashed). The maximal negative correction from the N
fermions is at the point of vanishing N mass corresponding to large Higgs vev. For these plots we chose n = 10,

⇤ = 1 TeV, �N = 0.6, mN (vSM) = 0.4 TeV.

This negative correction to the Higgs mass, if large enough, can surpass the positive SM thermal corrections
and eventually make the Higgs field origin unstable, leading to high temperature SNR. Comparing Eq.s (II.6)
and (II.12), we find the necessary condition for this to happen
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⇤
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or, equivalently, n�

N

m(0)
N

⇤
& 1. (II.13)

This SNR condition is only valid when the new fermions contribute significantly to the plasma density, i.e.

m
N

(h ' 0) . T. (II.14)

Otherwise the N -induced correction is suppressed. For this reason, having SNR not only at some high
temperature, but also at the temperatures around the EW scale, requires N to be relatively light. On the
other hand, the fermion mass is also the parameter which enhances the negative Higgs mass correction (II.12),
and therefore it cannot be too small either. Fig. 2 shows, for some choice of parameters, how the addition
of weak-scale fermions induces EW SNR behaviour at high temperature. The components of the plotted
potential

V
total

= V
T=0 + �V T

SM + �V T

N

(II.15)

are discussed in the next section. The zero-temperature potential V
T=0 consists of the tree-level potential (II.1)

and one-loop corrections induced by the SM states (III.8) and by the new fermions (III.10). The SM thermal
correction �V T

SM is given in Eq. (A.1). Inclusion of the T = 0 loop correction (which decreases the Higgs
quartic) and the full thermal correction from the SM states (which tends to become flat at h � T , contrary to
the leading quadratic piece in Eq. (II.6)), both facilitate shifting the minimum closer to large h. The thermal
correction from the N fermions �V T

N

is given in Eq. (II.2) and is the dominant e↵ect.
In Fig. 3 we present a sketch of possible temperature evolutions of the Higgs vev, depending on whether

the SNR condition (II.13) is met or not and whether the new fermions are su�ciently light compared to
the EW scale. The important variable is in fact the ratio of the Higgs vev to the temperature, which is a
measure of the ‘strength’ of EW symmetry breaking. This turns out to be a key quantity when considering
baryogenesis, because the crucial criterium for freezing in the baryon asymmetry is h/T & 1. When this

Particle mass dependence on Higgs VEV

(SM top)
(typical Composite Higgs model behavior)

Responsible for a high-T minimum 
at large Higgs VEV!
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⇤ = 1 TeV, �N = 0.6, mN (vSM) = 0.4 TeV.
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Arises in Composite Higgs  



What next ?

 Revisit EWPT in Composite Higgs with extra singlet fermions

—> Open the heavy dilaton region! 
Bruggisser, VonHarling, Matsedonskyi, Servant, in prep. 

Another application: open the scope of cold-baryogenesis 
scenario



Summary .
High-T Higgs behaviour: controlled by Higgs couplings

 ▪︎ First-order EW phase transition: well alive and still likely

 ▪︎ EW baryogenesis: under threat by EDM bounds

Remaining 
options:

 Top transport remains open in composite Higgs.
 CP in hidden sector, e.g. new leptons
EW phase transition occurring at high temperatures >> 

100 GeV, via additional singlet scalars or singlet fermions.

 supercooled EW phase transition: generic in Composite Higgs, 
rich phenomenology and cosmology. 

Testable through dilaton signatures at LHC & GW signatures 
at LISA

76

EW phase transition: a probe of the global shape of the Higgs potential



Conclusion .

 It remains open how EW symmetry got broken in early universe

 Probing the EW phase transition will keep us busy 
through complementarity of studies in theory, lattice, 
experiments in Colliders, EDMs, gravitational waves, 

cosmology, axions.
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 Still many open exotic possibilities 
regarding what happened when the energy 

density of the universe was (EW scale)4.


