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Affleck-Dine Baryogenesis

@ A complex scalar field with a flat direction typically acquires a large
VEV during inflation
(such potentials are typical in SUSY, including high scale SUSY)

@ The scalar field is a combination of squarks and/or sleptons, so its
VEV spontaneously breaks C and CP

o After inflation, VEV coherently evolves & condensate fragments,
producing a baryon and/or lepton asymmetry

@ Fragmentation can produce observable gravitational waves, which are
not the subject of this talk
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Affleck-Dine Baryogenesis— Q-balls

@ Scalar field carries conserved global charge

o If \/V(¢)/$? is minimized at nonzero VEV ¢ = v, then the lowest
energy state is a non-topological soliton (Q-ball)

@ (A scalar quanta has lower energy inside the Q-ball than its mass
energy outside the Q-ball.)

@ This happens fairly generically for both gravity-mediated and
gauge-mediated SUSY scenario

@ Fragmentation will lead to Q-balls (not individual squarks or sleptons)

@ Parameterize with:

w = /2V(v)/v?: Energy per unit charge

v: VEV inside the Q-ball
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What makes our gravitational signal?

What makes our gravitational signal?

@ These Q-balls generally lead to an early matter dominated epoch that
ends rapidly

@ An early matter dominated epoch that ends suddenly leads to a

resonance-leak peak in the gravitational wave spectrum (“poltergeist
mechanism”)

@ Prospects for detecting...
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Decaying Q-balls

To get the baryon/lepton asymmetry into Standard Model particles:
@ Long lived, but not absolutely stable, Q-balls
@ Energy per unit charge w less than a free sfermion, but not a free
fermion (plus neutralino/chargino)

@ SUSY Q-balls: sfermion — quark/lepton + neutralino/chargino
Parameterize with effective coupling yest
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Decaying Q-balls

Why long lived?
@ Y. may be small

@ Initial Q-balls are large!
Charge in Hubble volume at fragmentation goes into Ng ~ O(1)
Q-balls (gauge-mediated) or Ng ~ 1000 Q-balls (gravity-mediated)
@ Decay generally happens only on the surface:

Large VEV inside Q-ball induces large SM quark & lepton masses,
kinematically forbidding the decay

If decay isn't forbidden, decay products have to diffuse out
— Fermi sea fills up

Taif long
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Decaying Q-balls

Surface decay:
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Decaying Q-balls

Surface decay:
o Thin wall Q-balls: R ~ Q1/3
o Charge depletion rate: [q_pan ~ Q%3
o Q-ball decays when I'g_pan/Q > H

° MNg_bat/Q ~ Q~1/3 so effectively the decay speeds up as Q-ball
evaporates
— Decay is effectively instantaneous (like black holes)

&
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@ Initial energy density in Q-balls: pg = Qowng
(where ng = NgHj3 is initial number density)
@ Initial plasma energy density determined by reheat temperature Ty

@ Matter dominated epoch starts at:
4YBOW
3r
@ As long as Q-balls haven't decayed...decays when I'q_pan/Q > H

o Condition: rQ—baﬂ/QH‘T:TQq <1
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Early Matter Dominated Epoch

@ Q-balls are heavy and long-lived — early matter epoch

@ Initial energy density in Q-balls: pg = Qowng
(where ng = NgHj3 is initial number density)

@ Initial plasma energy density determined by reheat temperature Ty

@ Matter dominated epoch starts at:
4YBOW
3r
As long as Q-balls haven't decayed...decays when 'q_pa1/Q > H

Condition: Tq_pai/QH| T, <1
0.178yesTo [ r \'/3 /10003 -
w?/3(g,v)1/3 \ Ygo No

Importance of large symmetric component: r ~ Ypq

Teq ~
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End of Early Matter Domination

o Initial Q-ball mass spectrum sharply peaked:
Gauge-mediated: all charge in Hubble volume at fragmentation goes
into one Q-ball
Gravity-mediated: Less clear with highly elliptical orbits, but
simulations still seem to show a peak
o Early matter domination epoch ends rapidly when the Q-balls
instantaneously decay

@ Decay does slightly dilute the baryon asymmetry:

4y, —3/4
Ys = Ygo (1 + 750 decay>
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. . K. Inomata, et. al.,
Poltergeist Mechanism JCAP 10 (2019) 071

Primordial scalar fluctuations can source gravitational waves
Modes that enter horizon during matter domination grow...
Modes that enter earliest (at Tq) most enhanced...

But behavior at peak depends on end of matter domination:
Gradual end: Suppression
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. . K. Inomata, et. al.,
Poltergeist Mechanism Phys. Rev. D 100, 043532 (2019)

@ Primordial scalar fluctuations can source gravitational waves
@ Modes that enter horizon during matter domination grow...
@ Modes that enter earliest (at T.q) most enhanced...

@ But behavior at peak depends on end of matter domination:
Gradual end: Suppression
Fast end: Resonance-like enhancement

1000} = Qa/A® (previous works) J— Jo2} = numerical result A
QUi (1, k) /A2 /|
= Qv (e k)/A3
o = (O (1 k) + Ui (e, )42 £
£ 0.100 ] gl !
s 20 =
c
109
0.001 0.010 0.100 1 0.001 0.005 0.010 0.050 0.100 0500 1
K/ Kimae

k[ Fnax
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K. Inomata, et. al.,

Poltergeist Mechanism Phys. Rev. D 101, 123533 (2020)

Why?

@ Matter density perturbations grow during matter domination epoch

@ When the Q-balls decay, the over densities suddenly become
relativistically moving sound waves

@ The sound wave oscillate (with their enhanced amplitudes) during
radiation domination

@ Act as a source to resonantly enhance induced gravitational waves
comoving with the sound wave

Lauren Pearce (PSU-NK) 12/18
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Poltergeist Mechanism

What sort of scenarios have an early matter dominated epoch that
suddenly ends?

@ Need something that instantaneously decays:
Primordial black holes & Q-balls

@ Sharply peaked initial mass spectrum

@ Affleck-Dine baryogenesis is a well-motivated scenario that satisfies
both criteria!

Downside: Ability to distinguish between scenarios...

Lauren Pearce (PSU-NK)
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Parameters

Parameters:
@ Q-ball parameters w and v (check arise in specific potentials later)

e Baryon asymmetry Ypo and Q-ball asymmetry r (expect r ~ Ypgo and
want final baryon asymmetry ~ 10710)

@ Ng: Number of Q-balls per Hubble volume at fragmentation (1 for
gauge-mediated, 1000 for gravity-mediated)

@ Reheat temperature Tg: Determines initial radiation energy density
— Teq

o Effective Yukawa y.q: Determines decay temperature Tgecay
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Parameters

Calculated:
@ Teq and Tyecay
o Initial charge Qp:
3Y30M1§1

0 p—
800+/575/2g/*rT3
for Ng = 1000 (gravity-mediated)
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Signal depends on:
@ T, : Sets frequency range (not free parameter)

@ Length of early matter domination period: Sets amplitude
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Results: Benchmark Scenarios

109 SKA
T 10
=
S~
N
En 13 1
13 ] <1
c 10 H
1
[
1
10715, 1
1
L L ! 1 . L L
10-9 107 10-5 0.001 0.100 10
f (Hz)

Benchmarks: kmax = 470/%ena (Any longer and modes would become non-linear)
@ Connects Teq and Tgecay

@ Observable range: 20 GeV < Tgecay < 2 X 107 GeV

@ Lower temperatures preferred due to gravitino problem
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Results: Benchmark Scenarios
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Results: Benchmark Scenarios

0.100 10

f (Hz)

® Yot ~ SM yhottom (red, dotted), yup (olive, dot-dashed), and y. (black,
dashed)

@ Smaller couplings decay later — lower frequency peak
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Results: Benchmark Scenarios

DECIGO: 3 units, observation time of 1 year, LISA: observation time of 4 years,
THEIA: observation time of 20 years, Einstein Telescope: observation time of 1
year
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Results: Benchmark Scenarios

109 SKA
RESRTl
=
S~
N
&
< oot
10-15|
1079
w (GeV) v (GeV) YBo r To (GeV) No Yeff
6.66 x 10° | 3.80 x 1070 | 1.11 x 10~ ° | 1.56 x 10~ ° | 4.59 x 10° | 1000 0.024
8.45 x 10° | 1.92x10° | 1.36 x 1078 | 2.76 x 107 | 8.04 x 10° | 1000 | 1.4 x 10~%
9.95 x 10° | 7.21x10° | 2.10 x 107% | 1.38 x 107° | 3.56 x 10° | 1000 | 2.9 x 10~°
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Asymmetry parameter r ~ Ypq expected
Ngq from gravity-mediated SUSY-breaking simulations
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Results: Benchmark Scenarios

Lauren Pearce (PSU-NK)

f (Hz)

Calculated parameters:

Qo Teq (GeV) | Tdecay (GeV)
1.14 x 1051 | 6.34 x 10° 1368
1.47 x 10% 55520 138
5.18 x 10%° 20050 458

Qo in range suggested by simulations

Yg > 10710
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Gravity-Mediated

@ Sample potential (gravity-mediated):
TP |[? L o6
V(®) = m*|P| (1 + Klog <mz>> - ﬁ|¢‘
K =~ —0.01 from loops
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2142 |[? 1 &6
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K =~ —0.01 from loops
@ Sets of parameters that give v, w which match our benchmarks:
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Gravity-Mediated

@ Sample potential (gravity-mediated):

2142 |[? 1 &6
V(®)=m|®|“ 1+ Klog T +ﬁ|¢‘
K =~ —0.01 from loops
@ Sets of parameters that give v, w which match our benchmarks:

Gravity-Mediated
m (GeV) A (GeV)
2.16 x 10° | 4.23 x 10™°
1.13 x 10° | 2.07 x 1013
1.63 x 10° | 2.01 x 104

e Confirmed in thin wall regime (|®|° term relevant)

Lauren Pearce (PSU-NK) 16 /18



Gauge-Mediated

@ Gauge mediated scenarios do not produce thin wall Q-balls...
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Gauge-Mediated

Gauge mediated scenarios do not produce thin wall Q-balls...
Thick wall Q-balls have T'q_p./Q ~ @3/

So we expect instantaneous decay (& sharply peaked mass spectrum)

Expect to also have a gravitational wave signal from poltergeist
mechanism, but need further work to find frequency & magnitude

Lauren Pearce (PSU-NK) 17 /18



Conclusions & Future Work

o Affleck-Dine baryogenesis is a well-motivated scenario the produces an
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Conclusions & Future Work

o Affleck-Dine baryogenesis is a well-motivated scenario the produces an
observable gravitational wave signal via the poltergeist mechanism:

Produces a sharply-peaked spectrum of long-lived Q-balls which decay
instantaneously

Downside: inability to distinguish between other poltergeism
mechanism scenarios

@ Signal for benchmark points is observable

o Further work: exploring parameter space, non-linear regime... & thick
wall Q-balls

Thank you! Questions?

Lauren Pearce (PSU-NK) 18/18



Evaporation Rate

Charge depletion per unit time per unit area of a Q ball is:

dQ . ycffvw2
dtdA  64r

1/3
( 3Q )
4wy

FQ-ball _ Yervw?Q~1/3 3 \¥3
Q 16

In the thin wall limit:

which gives

4w

Lauren Pearce (PSU-NK)
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Gravitational Wave Signal: Assumptions

@ Sudden end to matter domination:
2
a(n) _ (%) H(n) = % (n < nr)
a(7r) 2L 1 ez (1> 17R)

(n is conformal time, ng is the end of matter domination)

@ Primordial scalar power spectrum:

k ns—l
Pe(k) = O(kint — k)As (k)
for some cutoff scale ke, As = 2.1 x 1079, ny = 0.97,
k, = 0.05 Mpc_1
@ Conformal Newtonian gauge

@ Assume Gaussian curvature perturbations

Lauren Pearce (PSU-NK)
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Gravitational Wave Signal

@ Scalar perturbations source gravitational waves:

1+v 42 _ (1 2 2\2\ 2
(1 k —4/ dv/ ( (14 v “))
dvu

X 2 (u v, k,n, NrP¢(uk)P¢(vk)

@ Overall power spectrum is given by:

2
Qaw(n, k) = % (a(n)kl-l(n)> Ph(n, k)

Lauren Pearce (PSU-NK)
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Gravitational Wave Signal

@ [ describes time evolution:
kn (i L
s vikong) = [ (i) 2 KGi . T)F (s v, i ki)
0

a(n)
@ Greens function satisfies:

82G(77777) 2 19a =) — =
N + (k - aang) G(n,77) = 0(n — 1)

@ Source:

f(u,v,kn, kng) = 25(13—i—w) (2(5 + 3w)®(ukn)P(vkn)

0 L o .  — 0 . —
AH7T— (d(ukn)d(vk 4H2 =& (ukn)—>d(vk
LA (@ukn)O(vR) + 42 o(uki) S o(vki) )
o ®: Gravitational potential

Analytic approximations: K. Inomata, et. al., Phys. Rev. D 100, 043532
(2019)

Lauren Pearce (PSU-NK)
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