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In the gauge mediation mechanism, the effects of the hidden sector are characterized by a

set of correlation functions of the global symmetry current of the hidden sector. We present

methods to compute these correlators in cases with strongly coupled hidden sectors. Several

examples are presented to demonstrate the technique explicitly.
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Conformal anomalies  
(central charges) a & c. 



Central charges of 4d CFT

• Conformal anomalies of a 4d CFT are parametrized by two parameters (central 
charges) a & c: 
                                      


• It is now well-established that a-function is a monotonically decreasing function 
along the RG flow (a-theorem):                                           [Komargodski, Schwimmer] 
 
                                                   


• One can think of the a-function as a quantity that measures degrees of freedom. 


• The c-function, on the other-hand, does not always decrease along the RG flow. 

⟨Tμ
μ⟩ =

c
16π2

W2 −
a

16π2
E

aIR < aUV



Hofman-Maldacena bound on central charges

• The ratio  of central charges is bounded by unitarity: [Hofman, Maldacena] 
 

                       (lower/upper bound saturated by free scalar/free vector)


• For superconformal theory:


• N=1 SCFT:    (lower/upper bound saturated by free chiral/free vector)


• N=2 SCFT:     (lower/upper bound saturated by free hyper/free vector)


• N=3 or N=4 SCFT:     [Aharony, Evtikhiev]  

a/c
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The role of a & c
• Any holographic theories have  (for large N). [Henningson, Skenderis]


• When , there is a correction to the celebrated entropy-viscosity ratio bound of 
[Kovtun, Son, Starinet] to [Katz, Petrov][Buchel, Myers, Sinha] 
 

                                               


• Appears in the Cardy-like (high-temperature) limit of superconformal index: 
 

                                             

 
This formula accounts for the entropy of supersymmetric black holes in AdS5.


•  appears in the universal part of entanglement entropy. [Perlmutter, Rangamani, Rota]

a = c

a ≠ c

η
s

≥
1

4π (1 −
c − a

c
+ ⋯)

I(p = q = e−β) → exp (#
3c − 2a

β2 )
c − a

[J. Kim, S. Kim, JS] 
[Cabo-Bizet, Cassani, Martelli, Murthy] 

[Cassani, Komargodski]

[Choi, Kim, Kim, Nahmgoong] 
[Benini, Milan]  

[Cabo-Bizet, Cassani, Martelli, Murthy]



Large N scaling behavior of a and c 



Large N scaling behavior of a and c 
• Typical 4d gauge theories (of rank N) have 

 
                                 ,   and    
 
so that  in the large N limit, but not for a finite N. (satisfying the necessary 
condition for it to be holographic)

a ∼ c ∼ 𝒪(N2) c − a ∼ 𝒪(N)

a = c
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Large N scaling behavior of a and c 
• Typical 4d gauge theories (of rank N) have 

 
                                 ,   and    
 
so that  in the large N limit, but not for a finite N. (satisfying the necessary 
condition for it to be holographic)

a ∼ c ∼ 𝒪(N2) c − a ∼ 𝒪(N)

a = c

• Is this true in general?

• Is the above scaling behavior for a and c true in general?

• Any universality for the sign of ?c − a

• Is it possible to have  for finite N? (for N=0, 1, 2 SUSY)a = c



Non-universal of scaling behavior of central 
charges a & c 
 
(From classification of Large N superconformal gauge theories)



Classifying SUSY large N theories

• Let us classify all possible supersymmetric large N gauge theories in 4d with 
the following conditions:


• The gauge group is simple: G=SU(N), SO(N), Sp(N)


• The flavor symmetry is fixed as we take large N limit.


• No superpotential (except for the flipper of the decoupled operators).


• In the context of AdS/CFT:  
flavor symmetry of the boundary CFT = gauge symmetry in the bulk. 

[Agarwal, Lee, JS]

See [Bhardwaj, Tachikawa] for the full classification of N=2 gauge theories.



Constraints on matter multiplets

• Gauge anomaly should be absent: 
 

• Asymptotic freedom (negative beta function) 
 
                              


• Above condition (and also large N) restrict the matter representations to 
fundamental, adjoint, (trace-less) symmetric, anti-symmetric. 


• Let us restrict ourselves to the gauge theories flow to superconformal theories.


• cf) Conformal gauge theories ( , finite N) classified by [Razamat, Sabag, Zafrir] b0 = 0

2 Main idea and results

2.1 Classification of large N supersymmetric gauge theories

Let us discuss our scheme of classification. We will be considering four-dimensional N = 1

supersymmetric gauge theories that flow to interacting superconformal fixed points (without

a superpotential) in the infrared with the following assumptions:

The large N limit exists.

The gauge group is simple.

The flavor symmetry is fixed as we vary N .

The first two conditions restrict the gauge group to be classical SU(N), SO(N), Sp(N).

Imposing various consistency conditions on the gauge theory further constraints the rep-

resentations {Ri} of the chiral multiplets that can be incorporated into our theory. Firstly,

the theory must be free of any gauge anomalies. This implies
X

i

A(Ri) = 0 , (2.1)

where A(Ri) is the cubic Casimir of the massless fermions lying in representation Ri of th

gauge group. A(Ri) is non-zero only in the case of chiral representations of SU(N) gauge

theories. For the Sp(N) gauge theories, we have to ensure that the Witten anomaly [29]

vanishes. It implies that there has to be an even number of fundamental representations in

Sp(N) gauge theories. 2 Meanwhile, SO(N) gauge theories are anomaly-free and hence these

considerations do not restrict their matter content.

Secondly, asymptotic freedom requires that the �-function must be negative. This implies

b0 =

 
3h_ �

X

i

T (Ri)

!
� 0 , (2.2)

where the sum is over all charged matter multiplets and T (R) is the the Dynkin index where

our normalization is such that T (⇤) = 1
2 . Notice that the dual-Coxeter number h

_ of any

classical simple Lie group grows linearly in N .3 Thus the matter representations should have

a Dynkin index T (Ri)  O(N). Therefore, the allowed representations are given as follows:

fundamental and its complex conjugate: Qi, eQj

rank-2 antisymmetric and its complex conjugate: Ai, eAj

rank-2 symmetric traceless and its complex conjugate : Si, eSj

2More generally, if the Sp(N) generators are normalized such that TrT aT b = 1
2�

ab for the fundamental

representation, then the consistency requires that the matter content be such that T (R) : TrRT aT b = T (R)�ab

is an integer [29].
3h_

SU(N) = N,h_
SO(N) = N � 2, h_

Sp(N) = N + 2.
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Superconformal fixed point
• Necessary condition: Non-anomalous U(1) R-symmetry 
 
                                  


• Due to the superconformal symmetry, the conformal anomalies are fixed by the trace 
anomalies of R-symmetry.  
  

                           


• The R-symmetry is not always determined via anomaly constraint. There can be a family of 
candidate R-symmetries. 


• The superconformal R-symmetry is fixed by ‘a-maximization’:     

                                               

TrRTaTb = 0 ↔ T(adj)+ ∑i T(Ri)(ri − 1) = 0

a =
3

32 (3TrR3 − TrR) , c =
1
32 (9TrR3 − 5TrR)

∂atrial

∂R
= 0 ,

∂2atrial

∂R2
< 0 [Intriligator, Wecht]

[Anselmi, Freedman, Grisaru, Johansen]



Decoupling of operators along the RG flow

• Important caveat in a-maximization: accidental symmetry


• Some of the gauge invariant operators may seem to violate the unitarity 
bound: . 


• Plausible scenario: such an operator gets decoupled along the RG flow and 
becomes free with . 


• One can remove the decoupled free field by introducing a ‘flip field’ X and a 
superpotential coupling . 


• Redo the a-maximization until no operator gets decoupled. 

Δ ≥ 1

Δ𝒪 = 1

W = X𝒪

[Kutasov, Parnavhev, Sahakyan]

[Barnes, Intriligator, Wecht, Wright] 
[Benvenuti, Giacomelli][Maruyoshi, Nardoni, JS]



The full list of SU(N) 
theories with large N limit. 
(4+16 classes of theories)

Theory �matter chiral dense conformal window

1 Adj + Nf ( + ) ⇠ N N Y 1  Nf < 2N

1 + 1 + Nf ( + ) ⇠ N N Y 0  Nf < 2N � 2

1 + 1 + Nf ( + ) ⇠ N N Y 4  Nf < 2N + 2

1 + 1 + 8 + Nf ( + ) ⇠ N Y Y 0  Nf  2N � 4⇤

2 + 2 + Nf ( + ) ⇠ 2N N N 0  Nf < N � 4

1 + 2 + 1 + 8 + Nf ( + ) ⇠ 2N Y N 0  Nf < N � 6

1 + 1 + 1 + 1 + Nf ( + ) ⇠ 2N N N 0  Nf  N
⇤

1 + 1 + 2 + 8 + Nf ( + ) ⇠ 2N Y N 0  Nf < N � 2

2 + 2 + 16 + Nf ( + ) ⇠ 2N Y N 0  Nf < N � 8

1 Adj + 1 + 1 + Nf ( + ) ⇠ 2N N N 0  Nf < N � 2

2 + 2 + Nf ( + ) ⇠ 2N N N 0  Nf < N + 4

1 Adj + 1 + 1 + 8 + Nf ( + ) ⇠ 2N Y N 0  Nf  N � 4⇤

1 Adj + 1 + 1 + Nf ( + ) ⇠ 2N N N 0 < Nf < N + 2

2 Adj + Nf ( + ) ⇠ 2N N N 0  Nf  N
⇤

1 ( + ) + 2 ( + ) + Nf ( + ) ⇠ 3N N N 0  Nf < 2

3 + 3 + Nf ( + ) ⇠ 3N N N 0  Nf < 6

1 Adj + 2 + 2 + Nf ( + ) ⇠ 3N N N 0  Nf < 4

1 Adj + ( + ) + ( + ) ⇠ 3N N N ⇤

2 Adj + 1 + 1 + Nf ( + ) ⇠ 3N N N 0  Nf  2⇤

3 Adj ⇠ 3N N N ⇤

Table 2: List of all possible superconformal SU(N) theories with large N limit and fixed

global symmetry. �matter denotes the contribution to the 1-loop beta function from the matter

multiplets and the fourth column denotes whether the theory possess a dense spectrum or

not when Nf ⌧ N . The last column denotes the condition for the theory to flow to a

superconformal fixed point. The entries with ⇤ (if Nf saturates the upper bound) do not

flow, but have non-trivial conformal manifolds [14, 17]. We omit the theories that can be

obtained via complex conjugation of the matter representations listed here.

– 14 –



SO(N) theories

Sp(N) theories

Theory �matter dense spectrum conformal window

1 + Nf ⇠ N Y 0  Nf  2N � 8⇤

1 + Nf ⇠ N Y 1  Nf  2N � 4⇤

2 + Nf ⇠ 2N N 0  Nf  N � 10⇤

1 + 1 +Nf ⇠ 2N N 0  Nf  N � 6⇤

2 + Nf ⇠ 2N N 0  Nf < N � 2

3 ⇠ 3N N ⇤

Table 3: List of all possible SO(N) theories with large N limit with a fixed flavor symmetry.

�matter denotes the contribution to the 1-loop beta function from the matter multiplets for

Nf ⌧ N . The last column denotes the condition for the theory to flow to a superconformal

fixed point. For the cases with *, the theory does not flow when Nf saturates the upper

bound, but possess non-trivial conformal manifold. The first two classes of theories exhibit

dense spectrum for Nf ⌧ N .

4.1 1 symmetric and Nf fundamentals

1 + Nf : This theory has 1 anomaly-free global symmetry that we call U(1)B under

which the symmetric field S and fundamental Q have charges given by 1 and �(N + 2)/Nf .

The schematic form of the gauge-invariant operators are

• TrSn, n = 1, . . . , N

• QIS
n
QJ , n = 0, . . . , N � 1

Here the indices I, J runs from 1 to Nf . For this model, we obtain a non-trivial fixed point

for Nf � 0.

Nf = 0 case Let us start with the simplest case. There is no fundamental chiral multiplet

and the R-charge is already determined by anomaly-free condition to be RS = 4
N+2 . There is

no anomaly-free (continuous) flavor symmetry. The classical U(1) flavor symmetry acting on

S is anomalous and therefore breaks down to Z2N+4 . The only gauge-invariant (single-trace)

operator is of the form TrSn with n = 1, 2, . . . , N , with it’s dimension being

�Sn =
3

2
nRS =

6n

N + 2
. (4.2)

Some of these operators can decouple along the RG flow since they violate the unitarity bound

when

n <

�
N + 2

6

⌫
. (4.3)

– 38 –

Theory �matter dense spectrum conformal window

1 + 2Nf ⇠ N Y 1  Nf  2N + 2⇤

1 + 2Nf ⇠ N Y 4  Nf < 2N + 4

2 + 2Nf ⇠ 2N N 0  Nf < N + 1

1 + 1 + 2Nf ⇠ 2N N 0  Nf  N + 3⇤

2 + 2Nf ⇠ 2N N 0  Nf  N + 5⇤

2 + 1 + 2Nf ⇠ 2N N 0  Nf < 2

1 + 2 + 2Nf ⇠ 2N N 0  Nf  4⇤

3 + 2Nf ⇠ 3N N 0  Nf  6⇤

3 ⇠ 3N N *

Table 4: List of all possible Sp(N) theories with large N limit and fixed global symmetry.

�matter denotes the contribution to the 1-loop beta function from the chiral multiplets when

Nf ⌧ N . It has to be less than 3N + 3 to be asymptotically free. The last column denotes

the condition for the theory to have a superconformal fixed point. The cases with * do not

flow but have non-trivial conformal manifolds (when Nf saturates the upper bound). The

first two theories have dense spectrum for Nf ⌧ N .

5.1 1 symmetric and 2Nf fundamentals

1 + 2Nf : This is the Sp(N) adjoint SQCD. There is an anomaly-free global U(1)B
under which the symmetric field S and fundamental Q carry charges 1 and �(N + 1)/Nf

respectively. The (single-trace) gauge-invariant operators are given as follows:

• Coulomb branch operators: Tr (⌦S)2n, n = 1, . . . , N

• Symmetric mesons: QI (⌦S)
2n+1⌦QJ , n = 0, . . . , N � 1

• Anti-symmetric mesons: QI (⌦S)
2n⌦QJ , n = 0, . . . , N � 1

Here we omitted the gauge indices as before and I, J denote the flavor indices 1, . . . , 2Nf .

Note that gauge indices are contracted via the Sp(N) invariant skew-symmetric matrix

⌦ =

 
0 �IN

IN 0

!
. (5.2)

– 45 –



Example: ‘Simplest’ Large N SCFT

Large N Gauge Theories with Dense Spectrum and the Weak Gravity Conjecture

Prarit Agarwal1 and Jaewon Song2, 3

1
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2
School of Physics, Korea Institute for Advanced Study,

85 Hoegiro, Dongdaemun-gu, Seoul 02455, Korea
3
Asia Pacific Center for Theoretical Physics, Pohang, Gyeongbuk 37673, Korea

†

We find large N gauge theories containing a large number of operators within a band of low
conformal dimensions. One of such examples is the four-dimensional N = 1 supersymmetric SU(N)
gauge theory with one adjoint and a pair of fundamental/anti-fundamental chiral multiplets. This
theory flows to a superconformal theory in the infrared upon a superpotential coupling with gauge
singlets. The gap in the low-lying spectrum scales as 1/N and the central charges scale as O(N1)
contrary to the usual O(N2) scaling of ordinary gauge theory coming from the matrix degree of
freedom. We find the AdS version of the Weak Gravity Conjecture (WGC) holds for this theory,
although it cannot be holographically dual to supergravity. This supports the validity of WGC in
a more general theory of quantum gravity.

INTRODUCTION

The AdS/CFT correspondence provides a definition of
quantum gravity in (d + 1)-dimensional anti-de Sitter
space via conformal field theory in d-dimensions [1–3].
The most well-studied examples of AdS/CFT typically
involve supersymmetric gauge theories realized on the
stack of N branes in string/M-theory. The dual gravity
description in bulk becomes semi-classical supergravity
in the limit where string coupling goes to zero and the
AdS radius becomes large. This is tantamount to taking
large N and large ’t Hooft coupling limit in the boundary
field theory side.

However, the strong version of AdS/CFT asserts the
correspondence between AdS gravity and boundary CFT
holds beyond the semi-classical/particle limit. It means
that any conformal field theory in d-dimensions is equiv-
alent to a quantum gravity in d + 1-dimensional AdS.
For a finite N theory (the parameter N can be replaced
by central charges in general even-dimensional CFTs) at
generic coupling, the bulk description can be exotic (such
as light string states, non-local interactions) and very dif-
ferent from Einstein gravity.

One necessary condition for a large N CFT to have a
weakly-coupled Einstein-like holographic description in
AdS is the sparseness of the low-lying spectrum [4, 5]. It
means that as we take the large N limit, the gap between
the low-lying operators scales as O(1). This condition is
also necessary for the confinement/deconfinement transi-
tion to occur, which is dual to the Hawking-Page phase
transition [6, 7]. The number of heavy (� � O(N2))
states grows exponentially, which is accounted by the
black hole microstates.

Typically, any large N gauge theory in the ’t Hooft
limit satisfies this condition. This is because low-lying
gauge-invariant operators are formed out of O(N) ele-
mentary fields, such as Tr�i with 2  i  N in the case
of N = 4 super Yang-Mills theory. The ’t Hooft limit
ensures that the possible anomalous dimensions for the

elementary fields are under control. Therefore one nat-
ural question to ask is whether it is possible to have a
large N gauge theory that does not satisfy the sparse-
ness condition, which is necessary (and maybe su�cient)
to have a holographic description.
In this paper, we show that there indeed exists large N

gauge theories with dense spectrum at low-energy. More
precisely, the gap in the scaling dimensions for the low-
lying operators scales as 1/N , and the dimensions � of
the ‘single-trace operators’ lie within a band of� 2 (1, 3].
The central charges a and c of these theories grows lin-
early in the rank of gauge group N , contrary to the in-
tuitive growth of matrix degrees of freedom N2.
The gauge theories we study turns out to be rather

simple, but strongly-coupled and do not have any weak-
coupling limit. Our theories contain U(1) flavor symme-
try, and we test the AdS version of the Weak Gravity
Conjecture (WGC) [8, 9] for the charged states. We find
the WGC holds for these theories even though they are
not dual to semi-classical Einstein-like gravity.

THE MODEL: SU(N) SYM THEORY WITH 1
ADJOINT AND FUNDAMENTAL

Let us consider the N = 1 supersymmetric SU(N)
gauge theory with 1 adjoint chiral multiplet � and a
pair of fundamental/anti-fundamental chiral multiplets
(Q, eQ). Let us turn o↵ any superpotential term. There
are two flavor U(1) symmetries that we call U(1)B and
U(1)A. The charge assignments for the various symme-
tries can be summarized in a table as follows:

SU(N) U(1)B U(1)A R
Q N 1 N 1�NR�

Q̃ N̄ �1 N 1�NR�

� adj 0 �1 R�

(1)

The R-symmetry and U(1)A symmetry are subject to
the anomaly constraint. To find the superconformal R-

ar
X

iv
:1

91
2.

12
88

1v
1 

 [h
ep

-th
]  

30
 D

ec
 2

01
9

2

charge in the IR we have to invoke ‘a-maximization’ [10],
which states that the correct IR R-charge maximizes the
a-function. The central charges for 4d SCFT can be writ-
ten in terms of trace anomalies [11]:

a =
3

32

�
3TrR3

� TrR
�
, c =

1

32

�
9TrR3

� 5TrR
�

(2)

Now the R-charge is fixed by evaluating @a
@R = 0, @2a

@R2 < 0.
An additional caveat arises from the fact that all the

operators must satisfy the unitarity constraint: Any
gauge-invariant chiral operators should have a scaling
dimension � greater than 1. During the course of a-
maximization, it often happens that the resulting value
of R-charges causes certain chiral operator dimensions to
drop to 1 or lower. This indicates that the corresponding
operator gets decoupled along the renormalization group
flow. Its contribution to the a-function must then be re-
moved, following which a-maximization has to be redone
[12]. This cycle needs to be iterated over until no more
operators decouple. One way to deal with the decoupled
operator is to introduce a ‘flip field’ XO for each would-
be decoupled operator O and add a superpotential term
W = XOO. The F-term for XO removes the free O from
the chiral ring [12–14].

A BAND OF DENSE SPECTRUM

Now, let us study the spectrum of this theory. The
(single-trace) gauge-invariant operators of this theory are
given as follows:

• Coulomb branch operators: �n, 2  n  N

• dressed mesons: Q�n eQ, 0  n  N � 1

• ‘baryon’: Q(�Q)(�2Q) . . . (�N�1Q)

• ‘anti-baryon’: eQ(� eQ)(�2 eQ) . . . (�N�1 eQ)

We suppressed the gauge indices in the above expression.
Let us remark that the chiral operators charged under
U(1)B (that we call baryon) have a very large engineer-
ing dimension. We now have to repeatedly a-maximize
and remove gauge-invariant operators whose scaling di-
mensions fall below the unitarity bound � > 1.
We find that some of the Coulomb branch operators

�n with n = 2, 3, . . . N get decoupled and are replaced
by corresponding flip fields, but not all of them are de-
coupled for N > 12. Most of the dressed mesons remain
coupled, but some of the low-lying ones hit the unitarity
bound and get decoupled. We find none of the ‘baryons’
decouple along the renormalization group flow.
Due to the peculiarities arising from the pattern of de-

coupling of operators, it is somewhat technical to estab-
lish an analytical handle on the large-N behavior of our
theory. For now, we su�ce ourselves with a numerical

FIG. 1. Plot of a/c vs N . The orange line fits the plot with
a/c ' �0.152/N + 0.998.

analysis of all gauge theories with 2  N  300. Upon
doing so, we obtain the IR central charges a, c behaves
approximately as

a ' 0.4992N � 0.1915 , (3)

c ' 0.5003N � 0.1460 . (4)

We see that the central charges grow linearly in the rank
of gauge group N , which is in stark contrast to the
UV central charges given as O(N2). This is due to the
very large quantum renormalization e↵ect caused by the
strong-coupling dynamics. We plot the ratio of central
charges a/c as a function of N in figure 1. It is clear that
the a/c approaches 1 in the large N limit, which is one
of the necessary conditions for a ‘holographic’ theory.

FIG. 2. Plot of scaling dimension of the lightest operator �1

vs N

The scaling dimension of the ‘lightest’ operator �1 in
the spectrum (the operator with the lowest scaling di-
mension) as a function of N is depicted in figure 2. The
lightest operator turns out to be given by the operator
Tr�n for some n when N > 12.

Matter contents:

Gauge invariant operators: 

It looks like any other gauge theories 
with a sparse low-lying spectrum.

This theory flows to a superconformal fixed point in the IR.

[Agarwal, JS 1912]



• This simple theory flows to a superconformal fixed point with a number of 
decoupled free fields. 


• Some of the Coulomb branch operators  and the dressed mesons  
decouple along the RG flow. 


• None of the ‘baryons’ decouple. 


• The decoupled field can be removed by introducing flip field (X) and the 
superpotential coupling . “ ”
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Large N Gauge Theories with Dense Spectrum and the Weak Gravity Conjecture

Prarit Agarwal1 and Jaewon Song2, 3

1
CRST and School of Physics and Astronomy, Queen Mary University of London, London E1 4NS, United Kingdom

⇤

2
School of Physics, Korea Institute for Advanced Study,

85 Hoegiro, Dongdaemun-gu, Seoul 02455, Korea
3
Asia Pacific Center for Theoretical Physics, Pohang, Gyeongbuk 37673, Korea

†

We find large N gauge theories containing a large number of operators within a band of low
conformal dimensions. One of such examples is the four-dimensional N = 1 supersymmetric SU(N)
gauge theory with one adjoint and a pair of fundamental/anti-fundamental chiral multiplets. This
theory flows to a superconformal theory in the infrared upon a superpotential coupling with gauge
singlets. The gap in the low-lying spectrum scales as 1/N and the central charges scale as O(N1)
contrary to the usual O(N2) scaling of ordinary gauge theory coming from the matrix degree of
freedom. We find the AdS version of the Weak Gravity Conjecture (WGC) holds for this theory,
although it cannot be holographically dual to supergravity. This supports the validity of WGC in
a more general theory of quantum gravity.

INTRODUCTION

The AdS/CFT correspondence provides a definition of
quantum gravity in (d + 1)-dimensional anti-de Sitter
space via conformal field theory in d-dimensions [1–3].
The most well-studied examples of AdS/CFT typically
involve supersymmetric gauge theories realized on the
stack of N branes in string/M-theory. The dual gravity
description in bulk becomes semi-classical supergravity
in the limit where string coupling goes to zero and the
AdS radius becomes large. This is tantamount to taking
large N and large ’t Hooft coupling limit in the boundary
field theory side.

However, the strong version of AdS/CFT asserts the
correspondence between AdS gravity and boundary CFT
holds beyond the semi-classical/particle limit. It means
that any conformal field theory in d-dimensions is equiv-
alent to a quantum gravity in d + 1-dimensional AdS.
For a finite N theory (the parameter N can be replaced
by central charges in general even-dimensional CFTs) at
generic coupling, the bulk description can be exotic (such
as light string states, non-local interactions) and very dif-
ferent from Einstein gravity.

One necessary condition for a large N CFT to have a
weakly-coupled Einstein-like holographic description in
AdS is the sparseness of the low-lying spectrum [4, 5]. It
means that as we take the large N limit, the gap between
the low-lying operators scales as O(1). This condition is
also necessary for the confinement/deconfinement transi-
tion to occur, which is dual to the Hawking-Page phase
transition [6, 7]. The number of heavy (� � O(N2))
states grows exponentially, which is accounted by the
black hole microstates.

Typically, any large N gauge theory in the ’t Hooft
limit satisfies this condition. This is because low-lying
gauge-invariant operators are formed out of O(N) ele-
mentary fields, such as Tr�i with 2  i  N in the case
of N = 4 super Yang-Mills theory. The ’t Hooft limit
ensures that the possible anomalous dimensions for the

elementary fields are under control. Therefore one nat-
ural question to ask is whether it is possible to have a
large N gauge theory that does not satisfy the sparse-
ness condition, which is necessary (and maybe su�cient)
to have a holographic description.
In this paper, we show that there indeed exists large N

gauge theories with dense spectrum at low-energy. More
precisely, the gap in the scaling dimensions for the low-
lying operators scales as 1/N , and the dimensions � of
the ‘single-trace operators’ lie within a band of� 2 (1, 3].
The central charges a and c of these theories grows lin-
early in the rank of gauge group N , contrary to the in-
tuitive growth of matrix degrees of freedom N2.
The gauge theories we study turns out to be rather

simple, but strongly-coupled and do not have any weak-
coupling limit. Our theories contain U(1) flavor symme-
try, and we test the AdS version of the Weak Gravity
Conjecture (WGC) [8, 9] for the charged states. We find
the WGC holds for these theories even though they are
not dual to semi-classical Einstein-like gravity.

THE MODEL: SU(N) SYM THEORY WITH 1
ADJOINT AND FUNDAMENTAL

Let us consider the N = 1 supersymmetric SU(N)
gauge theory with 1 adjoint chiral multiplet � and a
pair of fundamental/anti-fundamental chiral multiplets
(Q, eQ). Let us turn o↵ any superpotential term. There
are two flavor U(1) symmetries that we call U(1)B and
U(1)A. The charge assignments for the various symme-
tries can be summarized in a table as follows:

SU(N) U(1)B U(1)A R
Q N 1 N 1�NR�

Q̃ N̄ �1 N 1�NR�

� adj 0 �1 R�

(1)

The R-symmetry and U(1)A symmetry are subject to
the anomaly constraint. To find the superconformal R-

ar
X

iv
:1

91
2.

12
88

1v
1 

 [h
ep

-th
]  

30
 D

ec
 2

01
9
2

charge in the IR we have to invoke ‘a-maximization’ [10],
which states that the correct IR R-charge maximizes the
a-function. The central charges for 4d SCFT can be writ-
ten in terms of trace anomalies [11]:

a =
3

32

�
3TrR3

� TrR
�
, c =

1

32

�
9TrR3

� 5TrR
�

(2)

Now the R-charge is fixed by evaluating @a
@R = 0, @2a

@R2 < 0.
An additional caveat arises from the fact that all the

operators must satisfy the unitarity constraint: Any
gauge-invariant chiral operators should have a scaling
dimension � greater than 1. During the course of a-
maximization, it often happens that the resulting value
of R-charges causes certain chiral operator dimensions to
drop to 1 or lower. This indicates that the corresponding
operator gets decoupled along the renormalization group
flow. Its contribution to the a-function must then be re-
moved, following which a-maximization has to be redone
[12]. This cycle needs to be iterated over until no more
operators decouple. One way to deal with the decoupled
operator is to introduce a ‘flip field’ XO for each would-
be decoupled operator O and add a superpotential term
W = XOO. The F-term for XO removes the free O from
the chiral ring [12–14].

A BAND OF DENSE SPECTRUM

Now, let us study the spectrum of this theory. The
(single-trace) gauge-invariant operators of this theory are
given as follows:

• Coulomb branch operators: �n, 2  n  N

• dressed mesons: Q�n eQ, 0  n  N � 1

• ‘baryon’: Q(�Q)(�2Q) . . . (�N�1Q)

• ‘anti-baryon’: eQ(� eQ)(�2 eQ) . . . (�N�1 eQ)

We suppressed the gauge indices in the above expression.
Let us remark that the chiral operators charged under
U(1)B (that we call baryon) have a very large engineer-
ing dimension. We now have to repeatedly a-maximize
and remove gauge-invariant operators whose scaling di-
mensions fall below the unitarity bound � > 1.
We find that some of the Coulomb branch operators

�n with n = 2, 3, . . . N get decoupled and are replaced
by corresponding flip fields, but not all of them are de-
coupled for N > 12. Most of the dressed mesons remain
coupled, but some of the low-lying ones hit the unitarity
bound and get decoupled. We find none of the ‘baryons’
decouple along the renormalization group flow.
Due to the peculiarities arising from the pattern of de-

coupling of operators, it is somewhat technical to estab-
lish an analytical handle on the large-N behavior of our
theory. For now, we su�ce ourselves with a numerical

FIG. 1. Plot of a/c vs N . The orange line fits the plot with
a/c ' �0.152/N + 0.998.

analysis of all gauge theories with 2  N  300. Upon
doing so, we obtain the IR central charges a, c behaves
approximately as

a ' 0.4992N � 0.1915 , (3)

c ' 0.5003N � 0.1460 . (4)

We see that the central charges grow linearly in the rank
of gauge group N , which is in stark contrast to the
UV central charges given as O(N2). This is due to the
very large quantum renormalization e↵ect caused by the
strong-coupling dynamics. We plot the ratio of central
charges a/c as a function of N in figure 1. It is clear that
the a/c approaches 1 in the large N limit, which is one
of the necessary conditions for a ‘holographic’ theory.

FIG. 2. Plot of scaling dimension of the lightest operator �1

vs N

The scaling dimension of the ‘lightest’ operator �1 in
the spectrum (the operator with the lowest scaling di-
mension) as a function of N is depicted in figure 2. The
lightest operator turns out to be given by the operator
Tr�n for some n when N > 12.



Feature 1: The O(N) degrees of freedom

The degrees of freedom grows as  instead of  
the natural matrix degrees of freedom !

O(N1)
O(N2)

The ratio a/c asymptotes to a value close to 1, but not exactly.

charges and R-charges to be

a ' 0.500819N � 0.692539

c ' 0.503462N � 0.640935

4⇡4
CA ' 9.90492N3 + 9.99795N2

� 180.279N + 7523.16

4⇡4
CB ' 12.8808N � 10.7703

R� ' 0.712086/N

RQ ' 0.284372 + 0.609971/N ,

(3.4)

where we fit the result for N from 100 to 600. We see that the central charges grow linearly

in N . We plot the ratio a/c vs N in Figure 2. Note also that ratio a/c of the central charges

of the IR SCFT in the large N limit goes close to 1 but not exactly. We find this value to be

strictly smaller than 1. (We have checked this numerically up to N = 2000.) This is another

indication that this theory is not quite holographically dual to Einstein-like supergravity in

AdS.
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Figure 2: Plot of a/c vs N for the SU(N) theory with 1 adjoint and Nf = 1. The orange

curve fits the plot with a/c ⇠ 0.919548 � 0.322605/N .

Notice that the R-charge of the adjoint � scales as 1/N at large N , which is the main

reason why we see the dense spectrum. This makes the scaling dimensions of the adjoint

mesons Q�i eQ to have a spacing of 1/N . We plot the dimensions of the low-lying operators

in Figure 3.

One may notice a narrow gap (1.92 . � . 2) in the spectrum depicted in Figure 3. The

lower band consists of the Coulomb branch operators �i and the adjoint mesons Q�i eQ that

are not decoupled (meaning higher powers in �), while the upper band consist of the operators

corresponding to the respective flipped fields for each of the decoupled operators. Within the

band, the spectrum becomes dense at large N . The gap appears because the light operators,

given by Tr�i, Q�i eQ with i ⇠ N , do not fill the band up to � = 2. Instead, for this model,

the heaviest adjoint meson operator Q�N�1 eQ has dimension � ' 1.92. The upper part of

the band consists of flip fields. The dimension of the flipped fields is given by �flip = 3��O,
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Feature 2: Dense spectrum

The spectrum of chiral operators form a dense band, instead of being sparse!  
(analog of the Liouville theory? Decompactification?)

It does not seem to exhibit confinement/deconfinement transition. 
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Figure 3: Dimensions of single-trace gauge-invariant operators in SU(N) + 1 Adj + 1 (

+ ) theory. They form a band between 1 < � < 3. The baryon operator is rather heavy to

be seen in this plot.

O being the operator that decouples with its naive dimension being 0 < �O  1. Thus the

dimension of the flipped fields is bounded from below by 2. This explains the gap between

the dimensions of the adjoint mesons and the flipped fields.

The ‘baryonic’ operators remain heavy so that they neither decouple nor form a band.

There is a single baryonic (and anti-baryonic) operator for the Nf = 1 adjoint SQCD given as

Q(�Q)(�2
Q) · · · (�N�1

Q), which lies above the ‘continuum band’ in large N . They remain

heavy at large N with � ⇠ O(N).

Let us check the AdS version of the Weak Gravity Conjecture for this model. Consider

the decay of black hole carrying an arbitrary charge with respect to U(1)A and U(1)B. Let

us consider the decay of black holes into three species of light states given by the lightest

meson Q�n eQ (for some n which depends on N), baryon Q(�Q)(�2
Q) · · · (�N�1

Q) and the

anti-baryon eQ(� eQ)(�2 eQ) · · · (�N�1 eQ). Any linear combination of these three states and their

conjugate states with opposite charges form a hexagon in the 2d plane of U(1)A,B charge-

to-dimension ratio space depicted in Figure 4. One can easily check that U(1)A and U(1)B
are mutually orthogonal. Then checking convex-hull condition reduces to checking whether

distances from origin to the two edges connecting 1) the lightest meson to the baryon, and 2)

the baryon to the conjugate of anti-baryon are both larger than 1. Because of the symmetries

of hexagon, distances from origin to the other lines are same to these two distances. We

checked that this model satisfies the convex hull condition as is depicted in Figure 5.

Nf = 2 theory Let us now consider the Nf = 2 theory. This case retain many of the same

qualitative features as its Nf = 1 cousin i.e. it has a dense spectrum of light operators and

displays a linear growth of central charges. In large-N the central charges and the R-charges
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We find large N gauge theories containing a large number of operators within a band of low
conformal dimensions. One of such examples is the four-dimensional N = 1 supersymmetric SU(N)
gauge theory with one adjoint and a pair of fundamental/anti-fundamental chiral multiplets. This
theory flows to a superconformal theory in the infrared upon a superpotential coupling with gauge
singlets. The gap in the low-lying spectrum scales as 1/N and the central charges scale as O(N1)
contrary to the usual O(N2) scaling of ordinary gauge theory coming from the matrix degree of
freedom. We find the AdS version of the Weak Gravity Conjecture (WGC) holds for this theory,
although it cannot be holographically dual to supergravity. This supports the validity of WGC in
a more general theory of quantum gravity.

INTRODUCTION

The AdS/CFT correspondence provides a definition of
quantum gravity in (d + 1)-dimensional anti-de Sitter
space via conformal field theory in d-dimensions [1–3].
The most well-studied examples of AdS/CFT typically
involve supersymmetric gauge theories realized on the
stack of N branes in string/M-theory. The dual gravity
description in bulk becomes semi-classical supergravity
in the limit where string coupling goes to zero and the
AdS radius becomes large. This is tantamount to taking
large N and large ’t Hooft coupling limit in the boundary
field theory side.

However, the strong version of AdS/CFT asserts the
correspondence between AdS gravity and boundary CFT
holds beyond the semi-classical/particle limit. It means
that any conformal field theory in d-dimensions is equiv-
alent to a quantum gravity in d + 1-dimensional AdS.
For a finite N theory (the parameter N can be replaced
by central charges in general even-dimensional CFTs) at
generic coupling, the bulk description can be exotic (such
as light string states, non-local interactions) and very dif-
ferent from Einstein gravity.

One necessary condition for a large N CFT to have a
weakly-coupled Einstein-like holographic description in
AdS is the sparseness of the low-lying spectrum [4, 5]. It
means that as we take the large N limit, the gap between
the low-lying operators scales as O(1). This condition is
also necessary for the confinement/deconfinement transi-
tion to occur, which is dual to the Hawking-Page phase
transition [6, 7]. The number of heavy (� � O(N2))
states grows exponentially, which is accounted by the
black hole microstates.

Typically, any large N gauge theory in the ’t Hooft
limit satisfies this condition. This is because low-lying
gauge-invariant operators are formed out of O(N) ele-
mentary fields, such as Tr�i with 2  i  N in the case
of N = 4 super Yang-Mills theory. The ’t Hooft limit
ensures that the possible anomalous dimensions for the

elementary fields are under control. Therefore one nat-
ural question to ask is whether it is possible to have a
large N gauge theory that does not satisfy the sparse-
ness condition, which is necessary (and maybe su�cient)
to have a holographic description.
In this paper, we show that there indeed exists large N

gauge theories with dense spectrum at low-energy. More
precisely, the gap in the scaling dimensions for the low-
lying operators scales as 1/N , and the dimensions � of
the ‘single-trace operators’ lie within a band of� 2 (1, 3].
The central charges a and c of these theories grows lin-
early in the rank of gauge group N , contrary to the in-
tuitive growth of matrix degrees of freedom N2.
The gauge theories we study turns out to be rather

simple, but strongly-coupled and do not have any weak-
coupling limit. Our theories contain U(1) flavor symme-
try, and we test the AdS version of the Weak Gravity
Conjecture (WGC) [8, 9] for the charged states. We find
the WGC holds for these theories even though they are
not dual to semi-classical Einstein-like gravity.

THE MODEL: SU(N) SYM THEORY WITH 1
ADJOINT AND FUNDAMENTAL

Let us consider the N = 1 supersymmetric SU(N)
gauge theory with 1 adjoint chiral multiplet � and a
pair of fundamental/anti-fundamental chiral multiplets
(Q, eQ). Let us turn o↵ any superpotential term. There
are two flavor U(1) symmetries that we call U(1)B and
U(1)A. The charge assignments for the various symme-
tries can be summarized in a table as follows:

SU(N) U(1)B U(1)A R
Q N 1 N 1�NR�

Q̃ N̄ �1 N 1�NR�

� adj 0 �1 R�

(1)

The R-symmetry and U(1)A symmetry are subject to
the anomaly constraint. To find the superconformal R-
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Matter contents:

Superpotential: W =
N−1

∑
i=1

(XiTrΦi+1 + MiQ̃Φi−1Q)

This theory flows to the (A1, A2n-1) Argyres-Douglas 
theory, which is a ‘non-Lagrangian’ N=2 SCFT.

[Maruyoshi, JS 1606] 
[Maruyoshi, JS 1607]

Chiral operators: 
Mi, Xi (i = 1,…, N − 1)

X ≡ QNΦN(N−1)/2, Y ≡ Q̃NΦN(N−1)/2, Z ≡ Q̃ΦN−1Q

XY = ZN

“Coulomb branch op”

“Higgs branch op”
ℳH = ℂ2/ℤN



4

FIG. 5. Test of the Weak Gravity Conjecture for U(1)B . Red:
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2 for the baryon operators charged

under U(1)B .

We checked that these conditions are also satisfied by
the lightest chiral operator in our theory for the case of
U(1)A and by the baryon operator in the case of U(1)B .
Therefore, it follows that our theory is indeed concordant
with the Weak Gravity Conjecture despite it having a
dense spectrum of light states.

ANOTHER MODEL: SU(N) THEORY FLOWING
TO THE ARGYRES-DOUGLAS THEORY

Let us consider SU(N) super Yang-Mills with a pair of
fundamental/anti-fundamental chiral multiplets (Q, eQ),
a single adjoint chiral multiplet � and two set of (N � 1)
gauge singlets Xi,Mi coupled via superpotential cou-
plings that flip all the Coulomb branch operators Tr�n+1,
as well as the dressed mesons TrQ�n�1 eQ for all 1  n 

N � 1. The superpotential is given by

W =
N�1X

i=1

XiTr�
i+1 +MiTrQ�i�1 eQ. (12)

The spectrum of chiral operators (both in the UV and
IR) in this case is simply given by Xi,Mi 81  i  N �1
in addition to the operator Q�N�1 eQ which becomes the
‘moment-map’ operator in the IR.

It is known that this theory flows to the (A1, A2N�1)
Argyres-Douglas (AD) theories [15, 16] at its IR fixed
point [17, 18]. We can therefore simply borrow the known
results for AD theories to understand the growth of the
central charges and operator scaling dimensions as a func-
tion of N . Thus the IR central charges are given by:

a =
12N2

� 5N � 5

24(N + 1)
, c =

3N2
�N � 1

6(N + 1)
. (13)

As is the case of the previous example without flipping all
the Coulomb branch operators and the dressed mesons,

we see that the IR central charges grow linearly with N
such that a, c ⇠ 0.5N and a/c ⇠ 1 at large-N . The
scaling dimensions of Mi and Xi are given by [19]

�Mi =
2N � i+ 1

N + 1
, �Xi =

3N � i+ 2

N + 1
, (14)

with i = 1, . . . , N � 1. A pair of N = 1 chiral multiplets
(Mi, Xi) form anN = 2 chiral multiplet, with the bottom
component given by the scalar component of Mi.
We see that the lightest chiral ring operator is given

by MN�1 while the heaviest chiral ring operator is given
by X1. As before, the scaling dimension of the lightest
operator is only infinitesimally greater than 1 at large-N .
Meanwhile, the gap in the scaling dimensions of the light-
est and the second lightest operator decays as O(1/N),
indicating the formation of a continuous band of opera-
tors with low conformal dimensions. We can also see this
from the fact that the gap between the dimensions of the
heaviest and lightest operator asymptotes to 2 while the
number of chiral operators in the interacting sector grows
linearly at large-N .
The IR fixed point of this theory has enhanced N = 2

supersymmetry and U(1)A ⇥ U(1)R symmetry gets en-
hanced to SU(2)R ⇥ U(1)r. The U(1)B remains as the
flavor symmetry of the theory with the moment-map
operator given as Z ⌘ Q�N�1 eQ. If we denote the
(anti)-baryon operator as X ⌘ QN�N(N�1)/2 and Y ⌘

eQN�N(N�1)/2, there is a relation given by XY = ZN .
They parametrize the Higgs branch of the theory, which
is given by C2/ZN .
The operator X,Y has scaling dimension N (which is

consistent with the fact that �Z = 2) and U(1)B charge

±N . We find that the 9CT
40CV,B

= 3N2
�N�1
2N2 > 1 in the

large-N limit, whereas �2/B2 = 1 for all N . Therefore
the WGC is satisfied for the U(1)B .

DISCUSSION

In this paper, we showed that there exist large N gauge
theories with the dense low-lying spectrum, and the de-
grees of freedom measured by the central charges grow
linearly in N . We focused on a set of theories given
by 4d N = 1 supersymmetric SU(N) gauge theories.
They provide interesting counter-examples of the com-
monly expected behavior of any large N gauge theories,
namely O(N2) degrees of freedom and sparse spectrum
given by the gauge-invariant operators. Let us make a
few comments regarding this model.
As our models do not have a sparse low-lying spectrum,

it is impossible to have a weakly-coupled Einstein dual in
AdS5. Nevertheless, our models satisfy the AdS version
of the Weak Gravity Conjecture. This can be thought of
as a piece of evidence that the WGC holds for more gen-
eral quantum gravity, instead of being a special property
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DISCUSSION

In this paper, we showed that there exist large N gauge
theories with the dense low-lying spectrum, and the de-
grees of freedom measured by the central charges grow
linearly in N . We focused on a set of theories given
by 4d N = 1 supersymmetric SU(N) gauge theories.
They provide interesting counter-examples of the com-
monly expected behavior of any large N gauge theories,
namely O(N2) degrees of freedom and sparse spectrum
given by the gauge-invariant operators. Let us make a
few comments regarding this model.
As our models do not have a sparse low-lying spectrum,

it is impossible to have a weakly-coupled Einstein dual in
AdS5. Nevertheless, our models satisfy the AdS version
of the Weak Gravity Conjecture. This can be thought of
as a piece of evidence that the WGC holds for more gen-
eral quantum gravity, instead of being a special property

The spectrum becomes dense at large N. 
Fill the band between 1 and 3.

(The Weak Gravity Conjecture holds.)

Central charges grow linearly in N. 
a/c → 1

ΔX = ΔY = N , ΔZ = 2

 form an N=2 chiral multiplet ( ).(Mi, Xi) ℰ

Δ2
X

B2
= 1 <

9CT

40CV,B
=

3N2 − N − 1
2N2

Dense/O(N) theories behave similar to the Argyres-Douglas theories!  
(“N=1 AD theories”)

[Nakayama, Nomura]



Feature 3: Multiple bands
eg) SU(N) + 1 adj + Nf=2

adjoints up to N(N � 1)/2 which gives a width of the baryonic band to be of O(N). These

additional baryons form the second band above the band formed by the Coulomb branch

operators, the mesonic operators and the flipped fields. We show the band formed by the

baryonic operators explicitly in Figure 8.

10 20 30 40 50

10

20

30

40

50

60

70

Figure 8: Dimensions of single-trace gauge-invariant operators including baryons in SU(N)

+ 1 Adj + 2 ( + ) theory. The baryons(red) form another band above the band of

Coulomb branch operators and mesons.

Let us now check the AdS version of the Weak Gravity Conjecture for this case. As

before, we would like to consider the decay of an arbitrarily charged black hole into three

species of light particles corresponding to the CFT operators given by the lightest meson

(QI�n eQJ) for some n, the lightest baryon (of the form Q
N�N(N/2�1) for N even), and the

lightest anti-baryon (of the form eQN�N(N/2�1) for N even). They form a hexagon on the

plane of QA,B/� similar to the one appeared in Nf = 1 theory. We checked that the Nf = 2

model also satisfies the convex hull condition as is depicted in Figure 9.

3.2 One symmetric and Nf fundamentals

1 ( + ) + Nf ( + ): There are 3 anomaly free global U(1)’s in addition to the

U(1)R symmetry. The respective charges for the various chiral superfields are given as follows:

SU(N) U(1)S U(1)B U(1)A R

Q 0 1 �
(N+2)
Nf

1� (N+2)RS�2
Nf

eQ 0 �1 �
(N+2)
Nf

1� (N+2)RS�2
Nf

S 1 0 1 RS

eS �1 0 1 RS

(3.6)

The gauge-invariant (single-trace) operators of this theory are given by:
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The ratio of central charges  
a/c does not go to 1 in large N.

We see the secondary 
band of size O(N). They 
are formed by ‘baryons’.

Supersymmetric analog  
of ‘band’ theory?

2

charge in the IR we have to invoke ‘a-maximization’ [10],
which states that the correct IR R-charge maximizes the
a-function. The central charges for 4d SCFT can be writ-
ten in terms of trace anomalies [11]:

a =
3

32

�
3TrR3

� TrR
�
, c =

1

32

�
9TrR3

� 5TrR
�

(2)

Now the R-charge is fixed by evaluating @a
@R = 0, @2a

@R2 < 0.
An additional caveat arises from the fact that all the

operators must satisfy the unitarity constraint: Any
gauge-invariant chiral operators should have a scaling
dimension � greater than 1. During the course of a-
maximization, it often happens that the resulting value
of R-charges causes certain chiral operator dimensions to
drop to 1 or lower. This indicates that the corresponding
operator gets decoupled along the renormalization group
flow. Its contribution to the a-function must then be re-
moved, following which a-maximization has to be redone
[12]. This cycle needs to be iterated over until no more
operators decouple. One way to deal with the decoupled
operator is to introduce a ‘flip field’ XO for each would-
be decoupled operator O and add a superpotential term
W = XOO. The F-term for XO removes the free O from
the chiral ring [12–14].

A BAND OF DENSE SPECTRUM

Now, let us study the spectrum of this theory. The
(single-trace) gauge-invariant operators of this theory are
given as follows:

• Coulomb branch operators: �n, 2  n  N

• dressed mesons: Q�n eQ, 0  n  N � 1

• ‘baryon’: Q(�Q)(�2Q) . . . (�N�1Q)

• ‘anti-baryon’: eQ(� eQ)(�2 eQ) . . . (�N�1 eQ)

We suppressed the gauge indices in the above expression.
Let us remark that the chiral operators charged under
U(1)B (that we call baryon) have a very large engineer-
ing dimension. We now have to repeatedly a-maximize
and remove gauge-invariant operators whose scaling di-
mensions fall below the unitarity bound � > 1.
We find that some of the Coulomb branch operators

�n with n = 2, 3, . . . N get decoupled and are replaced
by corresponding flip fields, but not all of them are de-
coupled for N > 12. Most of the dressed mesons remain
coupled, but some of the low-lying ones hit the unitarity
bound and get decoupled. We find none of the ‘baryons’
decouple along the renormalization group flow.
Due to the peculiarities arising from the pattern of de-

coupling of operators, it is somewhat technical to estab-
lish an analytical handle on the large-N behavior of our
theory. For now, we su�ce ourselves with a numerical

FIG. 1. Plot of a/c vs N . The orange line fits the plot with
a/c ' �0.152/N + 0.998.

analysis of all gauge theories with 2  N  300. Upon
doing so, we obtain the IR central charges a, c behaves
approximately as

a ' 0.4992N � 0.1915 , (3)

c ' 0.5003N � 0.1460 . (4)

We see that the central charges grow linearly in the rank
of gauge group N , which is in stark contrast to the
UV central charges given as O(N2). This is due to the
very large quantum renormalization e↵ect caused by the
strong-coupling dynamics. We plot the ratio of central
charges a/c as a function of N in figure 1. It is clear that
the a/c approaches 1 in the large N limit, which is one
of the necessary conditions for a ‘holographic’ theory.

FIG. 2. Plot of scaling dimension of the lightest operator �1

vs N

The scaling dimension of the ‘lightest’ operator �1 in
the spectrum (the operator with the lowest scaling di-
mension) as a function of N is depicted in figure 2. The
lightest operator turns out to be given by the operator
Tr�n for some n when N > 12.

We plot the ratio a/c in Figure 6. As was the case for the Nf = 1 theory, we find that this

time too, a/c approaches a value close to 1 but stays strictly smaller than 1. Similarly, the

band formed by the Coulomb branch operators, the dressed mesons and the flipped fields is

shown in Figure 7.

0 100 200 300 400 500 600

0.9335

0.9340

0.9345

0.9350

0.9355

0.9360

0.9365

Figure 6: Plot of a/c vs N for the SU(N) theory with 1 adjoint and Nf = 2. The orange

curve fits the plot with a/c ⇠ 0.936734 � 0.162684/N .

Figure 7: Dimensions of single-trace gauge-invariant operators in SU(N) + 1 Adj + 2 (

+ ) theory. They form a band between 1 < � < 3.

However, the spectrum of the Nf = 2 theory also shows an interesting feature that was

not present in the Nf = 1 theory. Note that unlike the Nf = 1 theory where there was just

one baryon and and one anti-baryon, in the Nf = 2 case, we have many di↵erent baryons

in addition to QI(�QI)(�2
QI) · · · (�N�1

QI) with I = 1, 2. One can form a gauge-invariant

operators formed out of N quarks by combining Q1 and Q2 to reduce the number of adjoints.

For example, we have Q1Q2(�Q1)(�Q2) · · · (�N/2
Q1)(�N/2

Q2) for even N , which is the one

with the smallest number of adjoint N/2(N/2� 1). Other baryonic operators can have more

– 18 –

[Agarwal, Lee, JS]



Sparse vs Dense spectrum

Figure 1: Illustration of the sparse and dense spectrum of large N theories. Here we show

3 possible scenarios. The left one depicts the scaling dimension of the single trace gauge-

invariant operators for the sparse case. The spacing between the operator dimensions scales

asO(1) at largeN . We find two distinct cases for the dense theory. One can have a dense band

of low-lying operators and discrete spectrum of heavy operators. The other case comes with

multiple bands with an O(N) gap between the bands For the theories with dense spectrum,

the spacing between the operator dimensions in a band scales as O(1/N).

scales as 1/N so that the spectrum becomes e↵ectively continuous at large N . See figure 1

for illustration. As is shown in the figure, it is possible to have one band of low-lying single-

trace operators or more than one bands. Within a band, the gap in the scaling dimensions

of the operators goes like 1/N . This is due to very large quantum corrections to the scaling

dimension of the matter fields (adjoint or rank-2 tensors), which makes it nearly zero in large

N . For example, in the adjoint SQCD, the gauge-invariant operators of the form Q�j
Q̃ or

�j with adjoint � gives a dense spectrum since the dimension of � is of O(1/N).

It is possible to understand the appearance of the dense spectrum by looking at the

anomaly constraint. The anomaly-free condition for the U(1)R symmetry requires

T (adj) +
X

i

T (Ri)(ri � 1) = 0 , (2.3)

where i runs over all chiral multiplets with representationRi and the superconformal R-charge

is given by ri. In order to cancel the anomaly caused by the gaugino (T (adj) = O(N)), we

need to have the second term of order O(N). Under our assumption that the number of

fundamentals are of O(1), the dominant contribution for the second term should therefore

come from the rank 2 tensors which has T (R) = O(N).4 Requiring the R-charge to be

4It may happen that the R-charge of the fundamentals is O(N), hence making it possible for the funda-

– 6 –

Out of 35 classes of all possible 
large N gauge theories, 8 of 

them have dense spectrum and 
the rest have sparse spectrum. 

Sparse: The gap is O(1).  at large N. a = c
a ∼ c = O(N2)

Dense: The gap is O(1/N).  at large N. a ≠ c
a ∼ c = O(N1)

  can have either sign. 
      No universality! 
c − a(We also checked that the AdS version of the 

Weak Gravity Conjecture holds for all* the cases) 

[Agarwal, Lee, JS][Cho, Choi, Lee, JS in progress]



Can we have 4d CFTs with  even 
at finite N? (with N=0, 1, 2 SUSY) 

a = c

*N=3, 4 SCFTs must have a=c.



 theory𝒟p[G]

• It is a 4d N=2 SCFT (Argyres-Douglas type) with flavor symmetry 
(or larger).


• It can be realized as the 6d N=(2, 0) theory of type  compactified on 
a sphere with one irregular puncture (p) and one full regular 
puncture (flavor ). 


• The flavor symmetry is exactly  for some choice of p, when the 
irregular puncture does not possess extra flavor symmetry. 


• The flavor central charge for :          

G

G

G

G

G kG =
2(p − 1)

p
h∨

G

[Cecotti, Del Zotto] 
[Cecotti, Del Zotto, Giacomelli] 

[Xie][Wang, Xie]

Irregular puncture (p)

Full regular puncture ( )G

2 Constructing b�(G) SCFTs

We construct the superconformal theories b�(G) by gluing (multiple) copies of the Dp(G)

theories, which we introduce and explain in Section 2.1 and further explore its properties

and physical significance in Section 2.2.

2.1 Gauging Dp(G)s

In this section, we perform the construction of the superconformal theories that we call
b�(G). The b�(G) theory is built out of gluing copies of the Dp(G) SCFTs; these theories were

introduced in [40] and explored further in [41].7 The Dp(G) theory is labeled by a simply-

laced Lie group G 2 ADE and a positive integer p. This theory has a flavor symmetry

that is at least G. In the class S framework, the theory Dp(G) can also be constructed as a

compactification of a 6d (2, 0) SCFT on a sphere with one regular and one irregular puncture.

In that construction, they are written as (Gb[p� h_
G
], F ) [113], where b = h_

G
and F denotes

a full puncture. From this perspective, the flavor symmetry G arises from the full puncture

and any extra or enhanced symmetry is due to the irregular puncture that is labeled by p.

See Table 2 for the condition for Dp(G) not to have any enhanced symmetry besides G.

G SU(N) SO(2N) E6 E7 E8

No additional symmetry (p,N) = 1 p /2 2Z>0 p /2 3Z>0 p /2 2Z>0 p /2 30Z>0

Table 2: The condition for Dp(G) to have no extra symmetry besides G. Equivalently, the

condition for the irregular puncture not to carry any flavor symmetry.

Let us explore the ways in which a collection of theories Dpi(G) can be gauged together

by their common flavor symmetry G. In order to obtain N = 2 superconformal theory upon

gauging, we require the beta function for the gauge coupling to vanish, which turns out to

be highly constraining.

To show that the conformal gauging of the common G flavor symmetry is restrictive, we

begin by gauging together the G of Dpi(G) for i = 1, · · · , n. The conformal gauging condition

is given by
nX

i=1

ki = 4h_
G
. (2.1)

7
We denote this theory using the calligraphic D instead of D to avoid any possible confusion with the Lie

group of D-type.

6



Gauging  theories𝒟p[G]

• In order to gauge the flavor and obtain SCFT, the 1-loop beta 
function for the gauge group should vanish: 
 
                            

flavor central charges  : “matter” contribution to the beta 
function. 


• Consider gluing a number of  theories to form N=2 SCFT: 

               →   


• Only 4 non-trivial solutions: (2, 2, 2, 2), (3, 3, 3), (2, 4, 4), (2, 3, 6) 

βG = 0 ↔ ∑
i

ki = 4h∨
G

ki

𝒟p[G]
n

∑
i=1

2(pi − 1)
pi

h∨
G = 4h∨

G

n

∑
i=1

1
pi

= n − 2

G

𝒟p2
[G]

𝒟p1
[G]

𝒟pn
[G]

[Cecotti, Del Zotto, Giacomelli] 
[Closset, Giacomelli, Schafer-Nameki, Wang] 

[Kang, Lawrie, JS]



 theory with  Γ̂(G) Γ = D4, E6, E7, E8

(p1, p2, p3, p4)
b�(G) Quivers via gauging Dp(G)s a = c

(2, 2, 2, 2) bD4(G)

D2(G)

D2(G)

D2(G) G D2(G)
1

2
dim(G)

(1, 3, 3, 3) bE6(G)

D3(G)

D3(G) G D3(G)
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3
dim(G)
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D2(G)

D4(G) G D4(G)
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4
dim(G)
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5

6
dim(G)

Table 4: All the solutions with finite pi and the corresponding b�(G) theories when a = c.

The theories have a = c when gcd(↵�, h_
g
) = 1, which restricts the G to be those in Table 6.

There are also solutions where some of the pi are infinite:
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however, it is presently unclear what the theories D1(G) are in the sense of superconformal

field theories. These would be putative theories with a dense Coulomb branch spectrum and

a flavor symmetry G with level 2h_
G
. It would be intriguing to explore the potential existence

of such theories, which we leave for future work.

The diagonal gauging of the common flavor symmetry G leads to a quiver-like structure

Dp1(G)

Dp4(G)

Dp2(G) G Dp3(G) (2.6)

and for the three cases with pi = 1, the corresponding node is omitted as D1(G) is trivial.

For each case in equation (2.4), the gauging is depicted in Table 4. There are special cases
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largest comark ↵� associated to the a�ne Dynkin diagram b� are co-prime, we find that the

two central charges a and c for the b�(G) are equal:

gcd(h_
G
,↵�) = 1 =) a = c. (1.2)

The largest comarks for the � in equation (1.1) are given by

↵D4 = 2, ↵E6 = 3, ↵E7 = 4, ↵E8 = 6. (1.3)

For example, for the choices of G = SU(N), we find that bD4(SU(N)) with N odd or
bE6(SU(N)) with N = 2, 4, 5, 7, . . . have equal central charges, a = c.

As far as we know, there has been almost no known genuine N = 2 superconformal field

theories with a = c. With a larger supersymmetry such as N = 3 or N = 4, superconformal

symmetry implies a = c [7], but there is no such restriction for N = 2 theories. Besides

our b�(G) theories, we are only aware of the (A2m, D2m+2) = D2m+2

2m+2
[m+ 1] Argyres–Douglas

theory (in the notation of [42, 113]) that has the same a and c central charges.3 It is well-

known that a holographic theory which has a weakly coupled gravity dual in AdS should

have a = c in the large N limit. But it is rather scarce to find four-dimensional conformal

field theories with a = c even at finite N . Most known holographic theories, including the

familiar N = 2 SCFTs obtained from N D3-branes probing ALE singularities [59, 90], have

their central charges satisfying

a ⇠ c ⇠ O(N2) and a� c ⇠ O(N). (1.4)

Therefore a = c in the large N limit, but the value a�c is of order N and does not vanish for

finite N .4 This particular combination of central charges, (a � c), a↵ects higher-derivative

corrections in the supergravity action and contributes to the correction of the famous entropy

density-viscosity ratio bound [28, 94].5 In fact, we find that the b�(G) theories, when they

are not having a = c, can have either signs of (a� c), depending on the choice of � and G.

Another interesting aspect of these theories with a = c is that their Schur indices [75, 76]

can be written in terms of the Schur index of N = 4 super Yang–Mills theory. In fact, this

relationship holds beyond a = c whenever the b�(G) theories have no flavor symmetry. More

precisely, we find

Ib�(G)
(q) = IN=4

G
(q↵� , q↵�/2�1) , (1.5)

3
This was noticed in [5], for example. We note that the (A2m, D2m+2) and the b�(G) do not overlap,

except for (A2, D4) =
bE6(SU(2)).

4
There exists N = 1 theories where the central charges scale linearly in N : a ⇠ c ⇠ O(N), so that a 6= c

even for large N [2, 6].

5
This combination of central charges appear in other contexts as well [55, 104].
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We get  is when the  
largest comark  of  satisfies

a = c
αΓ Γ

In holography, it prevents  
correction in the effective 
supergravity action.  

R2
μνρσ

[Kang, Lawrie, JS]

 without any symmetry  
constraints! Genuinely N=2.
a = c



Genuinely N=2 SCFTs with  in a = c Γ̂(G)
•  without any symmetry constraints.


• Some of these theories have class-S 
realization, but most of  theories are 
not found in class-S.


• The  theory with  has no flavor 
symmetry. 


• They all have 1 exactly marginal coupling.  


• They all have center 1-form symmetry . 

a = c

Γ̂(G)

Γ̂(G) a = c

Z(G)

b�(G) a = c

bD4(SU(2`+ 1)) 2`(`+ 1)

bE6(SU(3`± 1)) 2`(3`± 2)

bE6(SO(6`)) 2`(6`+ 1)

bE6(SO(6`+ 4)) 2(2`+ 1)(3`+ 2)

bE7(SU(4`± 1)) 6`(2`± 1)

bE8(SU(6`± 1)) 10`(3`± 1)

Table 6: All b�(G) theories satisfying a = c with the values of their central charges, where `

is an arbitrary positive integer.

b�(G) a = c Coulomb branch operator dimensions Alternative name

bE6(SU(2)) 2
�

4

3

 �3 � {2} D6

4
[3] = D4

4
[2] = (A2, D4)

bE7(SU(3)) 6
�

5

4
, 9
4

 �2 �
�

3

2

 �3 � {2, 3} E12

6
[4]

bE8(SU(5)) 20
�

3

2
, 5
2
, 4
3
, 7
3
, 10

3
, 5
3

 �2 �
�

7

6
, 13

6
, 19

6
, 25

6
, 2, 3, 4, 5

 
E30

8
[6]

Table 7: Physical properties and alternative constructions for some of the SCFTs b�(G) with

a = c. These three theories are the only known theories which have an overlap with the J b[k]

theories of [118].

The theory with the lowest central charges in Table 6 is bE6(SU(2)), which has a = c = 2.

This theory has a rank four Coulomb branch generated by operators of conformal dimensions
⇢
4

3
,
4

3
,
4

3
, 2

�
. (3.3)

In fact, this particular theory is rather well-known. It is composed via gauging together the

diagonal subgroup of three copies of

D3(SU(2)) = H1 , (3.4)

where on the right hand side we have the rank one Argyres–Douglas theory with SU(2) flavor

symmetry H1. The bE6(SU(2)) theory is identical (or dual) to D6

4
[3] = D4

4
[2] and (A2, D4) in

the notation of [113] and [42] respectively.
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N=4 SYM and  theoryΓ̂(G)

• The Schur index of  theory is identical to that of the N=4 SYM upon rescaling! 
                                                     


• For the  theory, we find the index can be written in terms of MacMahon’s 
generalized ‘sum-of-divisor’ function which is quasi-modular:  
 
 

• There is an isomorphism between associated VOAs as a graded vector space.  
[Buican, Nishinaka]


• More connections to N=4 SYM: 1 exactly marginal coupling, S-duality, 1-form center 
symmetry Z(G). 

Γ̂(G)
IΓ̂(G)(q) = I𝒩=4

G (qαΓ; qαΓ/2−1)

D̂4(SU(2ℓ + 1))

identical to that of the N = 4 super Yang–Mills theory with the gauge group G (with flavor

fugacity turned o↵) upon rescaling q ! q2:

IN=4

G
(q) =

Z
[d~z] PE


2q1/2 � 2q

1� q
�G

adj
(~z)

�
. (3.11)

This phenomenon is similar to the relation between the Schur index of D2(G) theory versus

that of a free hypermultiplet, where the former is given by the latter with q ! q2 rescaling.

Let us list a few cases upon evaluating the integral explicitly:

I bD4(SU(3))
= 1 + 3q2 + 4q4 + 7q6 + 6q8 + 12q10 + 8q12 + 15q14 + 13q16 +O(q22) , (3.12a)

I bD4(SU(5))
= 1 + 3q2 + 9q4 + 15q6 + 30q8 + 45q10 + 67q12 + 99q14 +O

�
q16

�
, (3.12b)

I bD4(SU(7))
= 1 + 3q2 + 9q4 + 22q6 + 42q8 + 81q10 + 140q12 + 231q14 +O(q16) . (3.12c)

Remarkably, we find that the leading terms of the Schur indices are given by the generating

function of MacMahon’s generalized ‘sum-of-divisor’ function [95], which is defined as

Ak(q) =
X

0<m1<m2···<mk

qm1+···mk

(1� qm1)2 · · · (1� qmk)2
. (3.13)

For k = 1, this becomes the generating function of the sum-of-divisor function

A1(q) =
1X

n=1

�1(n)q
n =

X

m=1

qm

(1� qm)2
, (3.14)

where � is responsible for the name ‘sum-of-divisor’:

�k(n) =
X

d|n

dk . (3.15)

In terms of Ak(q), which was shown to be quasi-modular in [10], we find that the Schur index

for the bD4(SU(2k + 1)) theory is given as

I bD4(SU(2k+1))
(q) = q�k(k+1)Ak(q

2) . (3.16)

Notice that a = c = 2k(k+ 1) so that the prefactor is qc2d/24 where c2d = �12c is the central

charge for the associated chiral algebra or VOA. Also notice that the Schur index for N = 4

SYM theory with gauge group SU(2k + 1) is simply written in terms of Ak(q), without

rescaling:

IN=4

SU(2k+1)
(q) = q�

k(k+1)
2 Ak(q) . (3.17)
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N=1 SCFTs with a = c
• One can construct even larger set of  theories 

with minimal supersymmetry. 


• Consider a number of  theories gauged via 
N=1 vector multiplet. 


• It modifies the condition to be a CFT in the IR, since 
the theory now RG flows. From asymptotic 
freedom bound: 
 
 

• The IR SCFT has a number of U(1) flavor symmetry 
originates from broken R-symmetry of each block. 

a = c

𝒟p[G]

[Kang, Lawrie, Lee, JS]

It is straightforward to see that there are only four solutions to the Diophantine equation

(2.8)

(p1, p2, p3, p4) = (2, 2, 2, 2), (1, 3, 3, 3), (1, 2, 4, 4), (1, 2, 3, 6) , (2.10)

where we recall that D1(G) is the trivial theory. These four solutions are associated to the

a�ne ADE Dynkin diagrams bD4, bE6, bE7, and bE8, respectively.

A similar analysis can be performed to determine which N = 1 gaugings of Dpi(G)s are

asymptotically-free, and thus have a chance to flow to an interacting SCFT in the infrared.

In this case, the asymptotic freedom condition is

NX

i=1

2(pi � 1)

pi
h
_
G < 6h_

G , (2.11)

where, again, we have used the expressions for the flavor central charges in equation (2.9).

This equation (2.11) can be rewritten in the following Diophantine-like form

NX

i=1

1

pi
> N � 3 . (2.12)

In order to find all solutions, we need to analyze all possible values of pi satisfying equation

(2.12). Given that D1(G) is the trivial theory, we are interested in solutions where all pi � 2.

It is clear that the maximium value of N for which there exists such solutions is N = 5, and

thus we can consider each solution of equation (2.12) as an unordered five-tuple

(p1, p2, p3, p4, p5) , (2.13)

where some of the pi may be one. All tuples of pi which satisfy the asymptotic freedom

condition in equation (2.12) are listed in Table 1. We can write these N = 1 gaugings via

the quivers

GDp3(G) Dp5(G)

Dp4(G)

Dp2(G) Dp1(G)
.

(2.14)

Here we have used the notation that a dashed-border node represents an N = 1 vector

multiplet and a solid line between a Dp(G) theory and an N = 1 vector node corresponds to

the inclusion of a superpotential term

W ⇠ J
a
V

a + · · · , (2.15)

7
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the quivers

GDp3(G) Dp5(G)

Dp4(G)

Dp2(G) Dp1(G)
.

(2.14)

Here we have used the notation that a dashed-border node represents an N = 1 vector

multiplet and a solid line between a Dp(G) theory and an N = 1 vector node corresponds to

the inclusion of a superpotential term

W ⇠ J
a
V

a + · · · , (2.15)
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where J
a is the flavor supercurrent from the Dp(G) SCFT and V

a is the vector superfield.

We may be further interested in determining the possible tuples of pi such that the

inequality in equation (2.12) is saturated. When this occurs the one-loop �-function of the

gauge coupling for G vanishes directly. This does not generally lead to a conformal field

theory in the infrared due to the non-existence of an exactly marginal operator. When we

consider saturating the inequality there is one solution where one has six pi � 2, and all

other solutions have either four or five pi � 2. All solutions are listed in Table 2.

p1 p2 p3 p4 p5

1 1 1 1 p5

1 1 1 p4 p5

1 1 p3 p4 p5

1 2 2 p4 p5

1 2 3  6 p5

1 2 3 7  41

1 2 3 8  23

1 2 3 9  17

p1 p2 p3 p4 p5

1 2 3 10  14

1 2 3 11  13

1 2 4 4 p5

1 2 4 5  19

1 2 4 6  11

1 2 4 7  9

1 2 5 5  9

1 2 5 6  7

p1 p2 p3 p4 p5

1 3 3 3 p4

1 3 3 4  11

1 3 3 5  7

1 3 4 4  5

2 2 2 2 p5

2 2 2 3 3

2 2 2 3 4

2 2 2 3 5

Table 1: All possible tuples of pi such that N = 1 gauging of the common flavor symmetry

of the associated Dpi(G) leads to an asymptotically free theory. An entry that is left as pi

indicates that the theory will be asymptotically free for any positive integer pi. We write

each tuple in ascending order.

p1 p2 p3 p4 p5 p6

1 1 2 2 7 42

1 1 2 3 8 24

1 1 2 3 9 18

1 1 2 3 10 15

1 1 2 3 12 12

1 1 2 4 5 20

p1 p2 p3 p4 p5 p6

1 1 2 4 6 12

1 1 2 4 8 8

1 1 2 5 5 10

1 1 2 6 6 6

1 1 3 3 4 12

1 1 3 3 6 6

p1 p2 p3 p4 p5 p6

1 1 3 4 4 6

1 1 4 4 4 4

1 2 2 3 3 3

1 2 2 2 4 4

1 2 2 2 3 6

2 2 2 2 2 2

Table 2: We can consider the collections of pi that saturate the inequality written in equation

(2.12). When the theories Dpi(G), with the pi as specified here, are gauged together one

obtains a theory where the one-loop �-function of the gauge coupling vanishes.
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Tuples of ( )’s satisfying the  
asymptotic freedom bound.

pi



Landscape of N=1 SCFTs with a = c
•  theories with less SUSY not only exists, but rather common!


• One can add 1 or 2 adjoint chiral multiplets on top of the previous setup.


• 1 adjoint: can attach up to 4  theories.  

• 2 adjoints: One can even have zero  theories!


• The simplest Lagrangian model with :  
 N=1 gauge theory with 2 adjoints.


• Can attach up to 2 ’s 


• One can consider superpotential deformations of ADE type as in the case of adjoint 
SQCD. [Intriligator, Wecht] 


• How common are the  theories in the landscape of 4d CFTs?

a = c

𝒟p[G]

𝒟p[G]

a = c

𝒟p[G]

a = c

3.1 N = 1 gluing with one adjoint chiral

In this subsection, we consider several Dp(G) theories glued together by N = 1 gauging,

together with one chiral multiplet, �, in the adjoint representation of G. The matter content

is the same as with the theories formed via N = 2 gauging, and the supersymmetry enhances

to N = 2 if a superpotential term

W =
X

i

µi� , (3.6)

is turned on. The explicit sets of pis that satisfy the condition (3.5) to be asymptotically free

(or have vanishing one-loop �-function) are given by

pi = (p1, p2), (2, 2, p3), (2, 3, 6), (2, 4, 4), (3, 3, 3), (2, 2, 2, 2) , (3.7)

where the pis are given in ascending order as before, and when we write a pi in the tuple

then any positive integer satisfies equation (3.5).

In Figure 3.1, we numerically study the values of ✏1, ✏2, and R�, for the gauging (p1, p2),

and we see that for all values of p1 and p2 the unitarity conditions on the operators are

satisfied and the theory thus flows to an interacting SCFT in the infrared. Similarly, Figure

3.2, show the numerical plots for ✏1 (which is the same as for ✏2), ✏3, and R� for the gauging

(2, 2, p3), and the asymptotic behavior in the large p3 limit demonstrates that the unitarity

bounds will be satisfied for all values of p3. Finally, in Table 3, we write the ✏i and R� for the

gaugings in equation (3.7) that do not have a free parameter. From this numerical analysis

we can observe that all N = 1 gaugings with one additional adjoint-valued chiral multiplet

flow to superconformal field theories with a = c in the infrared.

(a) Contour plot of �✏1 on (p1, p2) plane. (b) Contour plot of R� on (p1, p2) plane.

Figure 3.1: Contour plots of �✏1 and R� of Dp1(G) and Dp2(G) theories glued by N = 1

gauging with one adjoint chiral multiplet. ✏1 lies on the range of
�
�

1
3 , 0

�
, as does ✏2, and R�

is always larger than 1/3; thus any such gauging satisfies the unitarity bound.
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where we omitted the coupling constant. The mother N = 2 SCFT has a marginal gauge

coupling, and upon the mass deformed N = 1 theory also has an exactly marginal coupling

given by this term [5, 9]. This terms is a direct analog of quartic coupling of SU(N) SQCD

with 2N flavors that appears in many contexts.

We also obtain an N = 1 theory with a = c by simply replacing the N = 2 gauge

multiplet in the b�(G) by the N = 1 gauge multiplet. We may expect that this theory is

identical to the mass-deformed theory of the mother N = 2 theory with the famous 27/32

ratio of central charges up on marginal deformation. This is actually incorrect in general!

What we find in general is that there exist W = 0 fixed point (without any superpotential)

where the operator µ2
i is relevant. Upon deforming by this relevant operator, the theory flows

to the mass-deformed theory with the central charge ratio given by 27/32.2

Besides these theories obtained via simple (universal) relevant deformation of b�(G) theo-

ries, we find there exist a wider class of theories with a = c that has no direct N = 2 origin.

These theories can be constructed by gauging several Dpi(G) theories with N = 1 vector

multiplet and possibly with additional matter chiral multiplets in the adjoint representation

of G. For some special choice, we can indeed reproduce the mass deformed b�(G) theory. It

is possible to further deform the theory with the superpotential, some of which still preserve

the feature of identical central charges a = c at the IR fixed point up on RG flow.

Figure of flows.

bO

? bE bD bA

Dk (k = 3, 4, 5) ? Ak (2  k  6)

�W⇠µY �W⇠Y 3 �W⇠XY 2
�W⇠Y 2+MX2

�W⇠Xk�1 �W⇠µX �W⇠Xk+1

Figure 1.1: Deforming the theories with two adjoint chiral multiplets (X, Y ) via ADE type

superpotential. When the bO is deformed by Y
2, the TrX2 become free during the RG-flow

and flipped by the flip-operator M .

2
This is reminiscent to the phenomenon that appears in N = 1 class-S theory [1, 2], where the mass

deformed theory corresponds to the case of equal degrees of normal bundles (p = q) of more general com-

pactification.

3

where we use the symmetry to write R�1 = R�2 = R�. The anomaly cancellation enforces

that the R-charges for the two adjoint chiral multiplets are

R�1 = R�2 =
1

2
. (3.37)

Therefore, we find

16(a� c) = TrR =

✓
1 + 2

✓
1

2
� 1

◆◆
dim(G) = 0 , (3.38)

and thus the theory realizes a = c. The theory has an SU(2) flavor symmetry rotating the

two adjoint chiral multiplets, and the central charges are given by

a = c =
9

32

 
13 + 2

✓
1

2
� 1

◆3
!
dim(G) =

27

128
dim(G) . (3.39)

This theory also belongs to the conformal manifold of the theory obtained starting from

N = 4 super-Yang–Mills with gauge group G and triggering an RG-flow by adding a mass

term for one of the three adjoint chiral multiplets inside the N = 4 vector multiplet. As

expected from equation (1.12), the central charges of the infrared N = 1 theory are 27/32

times the central charges of the N = 4 theory [93].

3.4 N = 1 gluing with two adjoint chirals

The sets of Dp(G) theories that can be gauged together when we include two adjoint chiral

multiplets on the gauge node are highly restricted, as we can see from equation (3.5). In the

simplest case, we consider a single Dp(G) theory for any choice of p. Then we obtain the

asymptotically-free theory given by

GDp(G) . (3.40)

A single Dp(G) theory gauged with two adjoint chiral multiplets attached has its infrared

R-charge given by

R = R0 + ✏F , (3.41)

where ✏ and the R-charge of adjoint chiral multiplets �1 and �2 are

✏ =
�8p3 � 2p2 + p+ 1 + 2p

p
16p4 + 8p3 � 11p2 + 3

3(8p3 � 7p2 � 2p+ 1)
,

R�1 = R�2 =
20p2 � p� 3�

p
16p4 + 8p3 � 11p2 + 3

3(8p2 + p� 1)
.

(3.42)
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It is straightforward to check that the operators satisfy the unitarity conditions for any value

of p, and thus each theory flows in the infrared to an interacting SCFT with a = c, if

gcd(p, h_
G) = 1. The resulting SCFTs have a host of relevant operators

Tr�2
1 , Tr�1�2 , Tr�2

2 , Tr�3
1 , Tr�2

1�2 , Tr�1�
2
2 , Tr�3

2 , Trµ�1 , Trµ�2 . (3.43)

Each of these operators provides a superpotential deformation that triggers a renormalization

group flow to a new infrared SCFT. Let us note that when G = SU(2), the cubic operators in

equation (3.43) are absent. The landscape charted by superpotential deformations involving

these relevant operators is one of the subjects of study in [70].

The only other possibility for gauging together Dp(G) with two adjoint chiral multiplets is

a theory with vanishing one-loop �-function that is obtained by gauging two D2(G) theories.

The resulting theory is of the form

GD2(G) D2(G)
.

(3.44)

As it is discussed in Section 2, the gaugings that saturate the inequality in equation (2.13)

do not necessarily lead to a superconformal field theory in the infrared, as they may not have

any exactly marginal operators.12 However, when two D2(G) theories are glued together

with two adjoint chiral multiplets, we expect a non-trivial SCFT in the infrared as there are

now marginal operators built out of the adjoint chiral multiplets. There are eight marginal

operators

Trµi�1 , Trµi�2 , Tr�3
1 , Tr�2

1�2 , Tr�1�
2
2 , Tr�3

2 . (3.45)

For group-theoretic reasons, a number of these operators may not exist, for example, for

G = SU(2), the four operators that are cubic in �i are not present due to the absence

of a cubic Casimir. Since gcd(2, h_
G) = 1 is required to obtain a theory with identical

central charges a = c, it is necessary to have G = SU(2n + 1) to ensure a = c. Thus,

the cubic marginal operators are present in the theories with a = c. Among the eight

marginal operators, at most five of them may become marginally irrelevant as they combine

with the generators of the SU(2) ⇥ U(1)2 flavor symmetry. The remaining operators are

exactly marginal and contribute to the conformal manifold with dimension at least three.13

12While such conformal gaugings may not necessarily admit any exactly marginal operators, we see in [71]
that each gauging appearing in Table 2 does.

13The marginal operators belong to the Dp(G) theory before gauging will also contribute to the conformal
manifold.
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[Kang, Lawrie, Lee, JS, in progress]



Holographic dual of a=c 
theories?



Lagrangian  theory with Γ̂(G) Γ = D4, E6, E7, E8
• What is the holographic dual of such  theories? It should forbid particular type of 

corrections in SUGRA action without any symmetry constraints. How?


• When , we recover Lagrangian affine quiver gauge theory obtained via  D3-
branes probing ALE singularity .  
 

• The holographic dual for  theories have been known for ages: It is dual to the type IIB 
theory on  with  unit of 5-form flux through .

a = c

G = SU(αΓℓ) ℓ
ℂ2/Γ

Γ̂(G)
AdS5 × S5/Γ ℓ S5/Γ

where Dp(G) is given by a Lagrangian quiver. For instance, by taking G to be

G = SU(N) for N = p`, (2.7)

we can utilize the relation

Dp(SU(p`)) = SU(p`) SU((p� 1)`) · · · SU(`) (2.8)

which is a Lagrangian theory. Then we are left to find which choices of pi and G can make

the quiver in equation (2.6) to be a Lagrangian quiver.

`

`

` 2` `

(a) The bD4 Lagrangian quiver when

(p1, p2, p3, p4) = (2, 2, 2, 2) and G = SU(2`).

`

2`

` 2` 3` 2` `

(b) The bE6 Lagrangian quiver when

(p1, p2, p3, p4) = (1, 3, 3, 3) and G = SU(3`).

2`

` 2` 3` 4` 3` 2` `

(c) The bE7 Lagrangian quiver when (p1, p2, p3, p4) = (1, 2, 4, 4) and G = SU(4`).

3`

` 2` 3` 4` 5` 6` 4` 2`

(d) The bE8 Lagrangian quiver when (p1, p2, p3, p4) = (1, 2, 3, 6) and G = SU(6`).

Figure 2.1: When the gauge group G appearing in the quiver in equation (2.6) is an SU(N)

group such that each pi divides N , then one can use the description in equation (2.8) to

rewrite (2.6) as a Lagrangian quiver. We depict such Lagrangian quivers and observe that

these are the standard a�ne quiver gauge theories that arise on the worldvolume of D3-branes

probing C2/� orbifolds [59]. Here, we introduce the shorthand notation of writing N inside

of a gauge node to represent an SU(N) gauge group.

In fact, we find that for the four solutions in equation (2.4), with a particular choice of

G to yield a Lagrangian theory, give rise to the known a�ne D4, E6, E7, and E8 quivers,

respectively. When (p1, p2, p3, p4) = (2, 2, 2, 2) and G = SU(2`), we get the Lagrangian

quiver corresponding to bD4 as depicted in Figure 2.1a. When (p1, p2, p3, p4) = (1, 3, 3, 3) and
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• For general G, our theory naturally generalizes the affine quiver theory by 
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Holographic dual of  theory?Γ̂(G)
• For general G, our theory naturally generalizes the affine quiver theory by 

‘fractionalization’:  ,  D3-branes with ‘extra charge’ . N = αΓℓ + m ℓ m/αΓ

• Is there a string-theoretic/holographic realization for such configuration? 

• One particular example of holographic dual:  type Class-S with 4 twisted minimal 
punctures realizes the  theory.  
 
 
 

A2N
D̂4(SU(2N + 1))

[Beem, Peelaers] 
[Kang, Lawrie, Lee, Sacchi, JS]

feature of having the Hall–Littlewood index di↵erent from the Higgs branch Hilbert series

holds for any sphere with multiple twist lines, independently from the rank. The second

motivation is to provide evidence for Conjecture 1.2, which gives the prescription for the 3d

mirror, in the higher rank case.

The first family of theories that we consider involves class S of type A2n on a sphere with

four twisted null punctures, 4⇥ [2n]t, which we depict in Figure 2.8a. The three-punctured

sphere with punctures [12n+1] + 2 ⇥ [2n]t is a product SCFT, given by two copies of the

D2(SU(2n + 1)) theory [19, 26]. Thus, the theory with four twisted null punctures can be

described as the diagonal SU(2n + 1) gauging of four copies of the D2(SU(2n + 1)) theory;

the resulting theory is nothing other than the bD4(SU(2n+ 1)) studied in [119]. This theory

is interesting for a variety of reasons. First, as pointed out in [119], it has identical central

charges, a point which we discuss further in Section 4. Moreover, such SCFTs seem to be
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Figure 2.8: In (a), we show the A2n class S theory with four twisted null punctures, the

four gray-filled stars denote the twisted null punctures, while the uncolored circles denote

the untwisted maximal punctures that are glued together. In (b), we depict the Lagrangian

quiver describing the 3d reduction. In (c), we portray the magnetic quiver which, together

with a free hypermultiplet corresponding to the singlet part of the antisymmetric, is a mirror

for the theory in (b) around the most singular point on its Coulomb branch. In (c), the blue
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For a circular quiver with N gauge nodes and G = SO(2K), as depicted in Figure 5.1c,

connected by this kind of orthosymplectic matter, we find that the central charges are
8
>>><

>>>:

a =

✓
K(K � 1) +

5

24

◆
N,

c =

✓
K(K � 1) +

1

6

◆
N.

(5.11)

The di↵erence between these central charges is

c� a = �N

24
, (5.12)

which is strictly negative and its absolute value can be arbitrarily large by increasing the

number of SO(2K) gauge nodes in the circular quiver. We note that these theories have

a > c, which implies existence of fermionic generators in the associated VOA [32]. A similar

determination of the central charges can be made for the bD-type quivers, shown in Figure

5.1d, where the links are taken to be the orthosymplectic matter instead of the conformal

matter.

6 Discussion

We have constructed a set of four-dimensional N = 2 superconformal theories b�(G), labeled

by a pair of ADE groups � and G. For a generic choice of � and G, these theories involve

Argyres–Douglas and conformal matter theories, and thereby do not admit weakly-coupled

Lagrangian descriptions.

Among them, theories with � = D4, E6, E7, E8 exhibit particularly interesting aspect.

One of the fascinating features of these (strictly N = 2) SCFTs is their similarity to N = 4

super Yang–Mills. When gcd(↵�, h_
G
) = 1 with ↵� being the largest comark of the a�ne Lie

group �, then this similarity is manifest in the central charges a and c:

a(b�(G)) = c(b�(G)) ⇠ dG . (6.1)

We emphasize that there has been almost no known examples of genuinely N = 2 SCFTs

with equal central charges a = c. For a holographic theory, the di↵erence between two

central charges (a � c) tends to be subleading in the 1/N expansion, but it does give a

non-trivial correction to the bulk action. For instance, this can lead to the violation of the

celebrated entropy-viscosity ratio bound [28, 94]. Moreover, for the theories b�(G) with no

flavor symmetry, the Schur index of such a b�(G) is identical to that of the N = 4 SYM

theory upon rescaling of parameters! More precisely, we find that

Ib�(G)
(q) = IN=4

G
(q↵� , q↵�/2�1) . (6.2)
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