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Conformal anomalies
(central charges) a & c.



Central charges of 4d CFT

 Conformal anomalies of a 4d CFT are parametrized by two parameters (central
charges) a & c:

C a
(T!) = W= — E
1672 1672
* |t is now well-established that a-function is a monotonically decreasing function
along the RG flow (a-theorem): [Komargodski, Schwimmer]
aig < dyy

* One can think of the a-function as a quantity that measures degrees of freedom.

* The c-function, on the other-hand, does not always decrease along the RG flow.



Hofman-Maldacena bound on central charges

» The ratio a/c of central charges is bounded by unitarity: [Hofman, Maldacena]

1 a 31
5 <—X< ﬁ (lower/upper bound saturated by free scalar/free vector)
C
* For superconformal theory:
I a 3 |
. N=1 SCFT: 5 < —X< 5 (lower/upper bound saturated by free chiral/free vector)
C
1 a 5
. N=2 SCFT: 5 < —X< Z (lower/upper bound saturated by free hyper/free vector)
C

e N=3 orN=4SCFT: a=rc [Aharony, Evtikhiev]



The role ofa & ¢

* Any holographic theories have a = c (for large N). [Henningson, Skenderis]

 When a # c, there is a correction to the celebrated entropy-viscosity ratio bound of
[Kovtun, Son, Starinet] 1O [Katz, Petrov][Buchel, Myers, Sinha]

n 1 ( c—a )
—>— 11— + ...
s 4r C

* Appears in the Cardy-like (high-temperature) limit of superconformal index:

[J. Kim, S. Kim, JS]
_p 3C — 261 [Cabo-Bizet, Cassani, Martelli, Murthy]
I(p = =c ) — CXP [Cassani, Komargodski]

’52
_ ] _ [Choi, Kim, Kim, Nahmgoong]
This formula accounts for the entropy of supersymmetric black holes in AdSs. [Benini, Milan]
[Cabo-Bizet, Cassani, Martelli, Murthy]

e ¢ — a appears in the universal part of entanglement entropy. [Perlmutter, Rangamani, Rota]
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* Typical 4d gauge theories (of rank N) have
a~c~ ON?, and ¢c—a~ ON)

so that a = c in the large N limit, but not for a finite N. (satisfying the necessary
condition for it to be holographic)
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Large N scaling behavior of a and ¢

* Typical 4d gauge theories (of rank N) have
a~c~ ON?, and ¢c—a~ ON)

so that a = c in the large N limit, but not for a finite N. (satisfying the necessary
condition for it to be holographic)

* |s this true in general?

* |s the above scaling behavior for a and c true in general?
* Any universality for the sign of ¢ — a?

e |s it possible to have a = c for finite N? (for N=0, 1, 2 SUSY)



Non-universal of scaling behavior of central
chargesa &cC

(From classification of Large N superconformal gauge theories)



Classifying SUSY large N theories

[Agarwal, Lee, JS]

* |et us classify all possible supersymmetric large N gauge theories in 4d with
the following conditions:

 The gauge group is simple: G=SU(N), SON), Sp(N)
* The flavor symmetry is fixed as we take large N limit.

e NO superpotential (except for the flipper of the decoupled operators).

* |n the context of AdS/CFT:
flavor symmetry of the boundary CFT =

See [Bhardwaj, Tachikawa] for the full classification of N=2 gauge theories.



Constraints on matter multiplets

* Gauge anomaly should be absent:
Y AR;) =0
 Asymptotic freedom (negative beta function)

by = (Shv - ZT(Ri)) > ()

 Above condition (and also large N) restrict the matter representations to
fundamental, adjoint, (trace-less) symmetric, anti-symmetric.

» | et us restrict ourselves to the gauge theories flow to superconformal theories.

- cf) Conformal gauge theories (b, = 0, finite N) classified by [Razamat, Sabag, Zafrir]



Superconformal fixed point

* Necessary condition: Non-anomalous U(1) R-symmetry
TrRT“T” = 0 < T(adj)+ Y, T(R)(r;— 1) =0

* Due to the superconformal symmetry, the conformal anomalies are fixed by the trace
anomalies of R-symmetry. [Anselmi, Freedman, Grisaru, Johansen]

a = ) (BTrR3 TrR) ., C =
32 32

 The R-symmetry is not always determined via anomaly constraint. There can be a family of
candidate R-symmetries.

(9TrR > — 5TrR )

* The superconformal R-symmetry is fixed by azmaxmlzatlon
aatlrlal — 0 0 Uirial
OR " OR?

<0 [Intriligator, Wecht]



Decoupling of operators along the RG flow

Important caveat in a-maximization: accidental symmetry

Some of the gauge invariant operators may seem to violate the unitarity

bound: A > 1.
Plausible scenario: such an operator gets and
becomes free with A@ = 1. [Kutasov, Parnavhey, Sahakyan]

One can remove the decoupled free field by introducing a ‘flip field’ X and a

supnernotential couplin W:X@ [Barnes, Intriligator, Wecht, Wright]
Perp PINY [Benvenuti, Giacomelli][Maruyoshi, Nardoni, |S]

Redo the a-maximization until no operator gets decoupled.



The full list of SU(N)
theories with large N limit.
(4+16 classes of theories)

Theory Bmatter chiral dense | conformal window
1 Adj + Ng (L1+11) ~ N N Y 1 < Ny <2N
LT+ 1000 + Np (14 10) ~ N N Y | 0<Nf<2N -2
1H+1H+Nf(m+i) ~ N N Y | 4<Ny<2N+2
1@+1H+85+Nf(m+i) ~ N Y Y | 0<Ny<2N —4*
2010 4+ 2011 + Ng ([I4+101) ~2N N N 0<Nf<N-4
1T+ 2001+ 1004800+ Ne (LI4+0)) | ~2N Y N 0<Nf<N-6
1Dj+1m_j+1*+1H+Nf(D+i) ~2N N N 0 < Ny < N*
1@+1H+25+8@+N]ﬂ(m+i) ~2N Y N 0<Nf<N-2
25]+2H+16@+Nf(m+i) ~2N Y N 0<N;<N-38
1 Adj + 10T+ 1000 4+ Ny (C14101) ~2N N N 0<Nf<N-2
25+25+Nf(m+i) ~2N N N 0<N;<N+14
1Adj+1Dj+1H+SE+Nf(D+i) ~2N Y N | 0<Ng<N-—4*
1Adj+1H+1H+Nf(D+i) ~2N N N 0<Nf<N+2
2 Adj + Ny ([L1+17) ~2N N N 0 < Ny < N*
1(+_)+2(H+H)+Nf(m+i) ~3N N N 0 < Nf<?2
3H+SH+Nf(D+i) ~3N N N 0<Nf<6
1Adj+2*+QH+Nf(D+i) ~3N N N 0 < Ny<4
1Adj+(_+H) + (LI + 1) ~ 3N N N %
2Adj+1*+1H+Nf(D+i) ~3N N N 0< Np<2*
3 Ad] ~3N N N .




Theory Bmatter dense spectrum | conformal window
+ Ny ~ N Y 0 < Np<2N 8"
+ Ny ~ N Y 1 < Ny <2N — 47
+ Ny ~ 2N N 0< N <N 10"

+ 10 +Ny ~ 2N N 0< N <N —-6"
+ Ny ~ 2N N 0< Ny <N -2
3 ~ 3N N *

Theory Bmatter dense spectrum | conformal window
+ 2Ny ~ N Y 1 < Ny <2N 427
+ 2Ny ~ N Y 4 < Ny <2N +4
+ 2Ny ~ 2N N 0< Nf<N+1

+ 101 4 2Ny ~ 2N N 0< Ny <N+3*
+ 2 Ny ~ 2N N 0< Ny <N 45"

+ 100 4+ 2Ny ~ 2N N 0 < Np<2

+ 201 4 2Ny ~ 2N N 0 < Ny <4~
+ 2Ny ~ 3N N 0 < Ny <6"

3 ~ 3N N *

SO(N) theories

Sp(N) theories



Example: ‘Simplest’ Large N SCFT

[Agarwal, |S 1912]

SUN)| UMW) |UM)A| R

Ol N 1 N |1— NRg

Matter contents: Q| N —1 N |1—NRg
b adj 0 —1 qu

Gauge invariant operators:

e Coulomb branch operators: &, 2 <n < N

e dressed mesons: QCD”@, 0<n<N-—-1

It looks like any other gauge theories e ‘baryon: Q(2Q)(22Q)...(2V~1Q)
with a sparse low-lying spectrum. [ .\ 00 5@0)@20). . (@10

This theory flows to a superconformal fixed point in the IR.



N 1 — NRg e dressed mesons: Q®"Q, 0 <n < N — 1

N —1
ad] 0

1 — NRg e ‘baryon’: Q(®Q)(®*Q)...(dV1Q)

SU N) U(:_)B U(l)A R e Coulomb branch operators: ®", 2 <n < N
“ N

N

1 | Rg

K 1D

e ‘anti-baryon’: @(@@)(@2@) . ((I)N_lé)

This simple theory flows to a superconformal fixed point with a number of
decoupled free fields.

Some of the Coulomb branch operators Trd' and the dressed mesons QCI)iQ
decouple along the RG flow.

None of the ‘baryons’ decouple. Ay ~ O(N)

The decoupled field can be removed by introducing flip field (X) and the
superpotential coupling W = X0. “0 < X”



Feature 1: The O(N) degrees of freedom

0.9945
0.9940
0.9935
0.9930

0.9925 -

a ~ 0.500819 N — 0.692539
c ~ 0.503462 N — 0.640935

a/c ~ 0.994757 — 0.111888 /N

\ \ \ \ \
100

\ \ \ \ \
200

\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
300 400 500 600

The degrees of freedom grows as O(N!) instead of
the natural matrix degrees of freedom O(N?)!

The ratio a/c asymptotes to a value close to 1, but not exactly.



Feature 2: Dense spectrum

30 o eeeeeteeiiniiiiiiiiiiiiiiiiiiiiiiiiiiiriirinbiiRRRERRRRERRRLILEIRILIITO i

L
apessssssstees AHHTHHIHIES BT _ _ . _
= — Flipfields for Tr®’ small
20l SRS bR
I |
RS 0L . ..
1.0 mnnmmmmiimmh}{

Re ~ 0.712086 /N
Ro ~ 0.284372 + 0.609971/N

05 ; \\\\\\\\\\\\\\\\\\\\

The spectrum of chiral operators form a dense band, instead of being sparse!
(analog of the Liouville theory? Decompactification?)

It does not seem to exhibit confinement/deconfinement transition.



Deformation of SU(N) + 1 adj + Ni=1 by flipping

SUN) UML) |U(1)4 R
O N 1 N |1—- NRg
Matter contents: Q| N —1 N |1—NRs
b a J 0 —1 ch
N—1 | o
Superpotential: W= (XTro™"! + M0 ~'Q)
=1
Chiral M, X; i=1,.,N-1) “Coulomb branch op”
iIral operators: ~ N
P X = QN@NWV=Di2 'y = ON@NV=D2 7 = 0pN-10  “Higgs branch op”
XY = zV My = C*Zy
This theory flows to the (A1, A2n-1) Argyres-Douglas [Maruyoshi, JS 1606]

theory, which is a ‘non-Lagrangian’ N=2 SCFT. [Maruyoshi, JS 1607]



- 12N? —5N -5 3N2 - N —1 Central charges grow linearly in N.

TN T) T TN+ 1) alc — 1
Ay, = QNN_ ’ IL 1, Ax, = SNN_ - Ir : The spectrum becomes dense at large N.
T T Fill the band between 1 and 3.

(M, X;) form an N=2 chiral multiplet (&).

Ax
B2

=1< Cp NV -oN-| The Weak Gravity Conjecture hold
= 0C,, Y (The Weak Gravity Conjecture holds.)

[Nakayama, Nomura]

Dense/O(N) theories behave similar to the Argyres-Douglas theories!
(“N=1 AD theories”)



70 -
60;
50 -
40 -
30?
20 -
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Feature 3: Multiple bands
eg) SU(N) + 1 adj + Ns=2

0.9365

0.9360

0.9355

0.9350

0.9345

0.9340

09335 [+

xxxxxxxxxxxxxxxxxxxxxxxxxxxx

Figure 6: Plot of a/c vs N for the SU(N) theory with 1 adjoint and Ny = 2. The orange
curve fits the plot with a/c ~ 0.936734 — 0.162684/N .

028V e%
0% 0% %

SR ARRRRNRERANRNRRRNR RN RRRR AR RRRNARNRRRARRARANE

Figure 8: Dimensions of single-trace gauge-invariant operators including baryons in SU (N )
+ 1 Adj + 2 (L0 + [J) theory. The baryons(red) form another band above the band of
Coulomb branch operators and mesons.

[Agarwal, Lee, JS]

The ratio of central charges
a/c does not go to 1 in large N.

We see the secondary
band of size O(N). They
are formed by ‘baryons’.

o ‘baryon’: Q(®Q)(P2Q)...(dN71Q)
e ‘anti-baryon’: @/(CI)QV)(CI)QQV) e ((I)N_lé)

Supersymmetric analog
of ‘band’ theory?



Sparse vs Dense spectrum

Out of 35 classes of all possible
large N gauge theories, 8 of
them have dense spectrum and
the rest have sparse spectrum.

Sparse: The gap is O(1). a = ¢ at large N.

a~ c = O(N?)
Dense: The gap is O(1/N). a # c at large N.
Sparse Dense a4~ C = O(Nl)
(We also checked that the AdS version of the Cc — a can have either sign.

Weak Gravity Conjecture holds for all* the cases)

i )
[Agarwal, Lee, JS][Cho, Choi, Lee, S in progress] No unlversallty.



Can we have 4d CFTs with a = ¢ even
at finite N? (with N=0, 1, 2 SUSY)

*N=3, 4 SCFTs must have a=c.



9, D |G theo ry [Ceco[t(t:i,elciz)oeﬁtiilc:))tetg,zéit:?c])meIIi]

[ Xie][Wang, Xie]

e Itis a4d N=2 SCFT (Argyres-Douglas type) with flavor symmetry G
(or larger). Irregular puncture (p)

e It can be realized as the 6d N=(2, 0) theory of type G compactified on
a sphere with one irregular puncture (p) and one full regular
puncture (flavor G).

y
*

* The flavor symmetry is exactly G for some choice of p, when the
irregular puncture does not possess extra flavor symmetry.

2(p — 1
_ (p )hg .
p K

Full regular puncture (G)

4

The flavor central charge for G: ke

G SU(N) SO(@2N)  FE, . Fx

No additional symmetry | (p, N) =1 p & 2Z~g p & 3Z~¢ p ¢ 2%~q p ¢ 30Z~g




[Cecotti, Del Zotto, Giacomelli]

[Closset, Giacomelli, Schafer-Nameki, Wang]
[Kang, Lawrie, JS]

Gauging 2 ,[G] theories

* |In order to gauge the flavor and obtain SCFT, the 1-loop beta
function for the gauge group should vanish:

Po=0 o ) k=4h)

l
flavor central charges k. : “matter” contribution to the beta
function.

« Consider gluing a number of & [G] theories to form N=2 SCFT:

Z% hg = 4hg Zi=”_2 T
=1 i

* Only 4 non-trivial solutions: (2, 2, 2, 2), (3, 3, 3), (2, 4, 4), (2, 3, 6)



1/—\W(G) theory With F — D49 E69 E79 E8 [Kang, Lawrie, |S]

(p1,p2,p3,p4) T(G) Quivers via gauging Dp(G)s  a=c .
- We get a = c is when the

D2(G) largest comark o of I satisfies
(2,2,2,2) D4(G)  Dy(G) Dy(G)  idim(G)
gcd(hf,aor) =1 — a=c
Dy (G)
Dg(G) dp, = 2, AEs, — 3, Ap-. — 4, Ap, — 0.
(1,3,3,3)  Es(G) 2dim(G)
D3(G) —@ D3(G) a = ¢ without any symmetry
A Dy(G) constraints! Genuinely N=2.
(1,2,4,4)  E7(G) 2dim(G)
Dal &) *é)ﬁ Dal&) In holography, it prevents R,
A D2(G) correction in the effective

(1,2,3,6) Eg(G) %dlm(G) . |
Ds(G) @ De(G) supergravity action.




Genuinely N=2 SCFTs with ¢ = ¢ in [(G)

e a = c without any symmetry constraints.

e Some of these theories have class-S

realization, but most of f(G) theories are
not found in class-S.

e The f(G) theory with a = ¢ has no flavor
symmetry.

 They all have 1 exactly marginal coupling.

» They all have center 1-form symmetry Z(G).

D, (SU(2¢ + 1)) 20(0 + 1)
Es(SU(3¢ + 1)) 20(30 + 2)
Es(SO(60)) 20(6¢ 4 1)
Es(SO(6¢ + 1)) 2(20 4 1)(3¢ + 2)
E-(SU40 £ 1)) 60(20 + 1)
Es(SU(6¢ £ 1)) 106(3¢ + 1)

The full list of ¢ = ¢ theories in [ '(G)



N=4 SYM and f(G) theory

e The Schur index of f(G) theory is identical to that of the N=4 SYM upon rescaling
If(G)(q) — Ig/=4(qar; qar/Z—l)

 For the 154(SU(2f + 1)) theory, we find the index can be written in terms of MacMahon’s
generalized ‘sum-of-divisor’ function which is quasi-modular:

—k(k+1 2
]f)4(SU(2k+1))(Q> = ¢ M )Ak((] ) g

Ar(q) = >

* There is an isomorphism between associated VOAs as a graded vector space.
[Buican, Nishinaka]

« More connections to N=4 SYM: 1 exactly marginal coupling, S-duality, 1-form center
symmetry Z(G).



N=1SCFTs witha = ¢

[Kang, Lawrie, Lee, JS]

* One can construct even larger set of a = ¢ theories Dy, (G)
with minimal supersymmetry.

- Consider a number of &[] theories gauged via /7N
N=1 vector multiplet. D

. o .y . . P1 P2 P3 P4 Ps5 P1 P2 DP3 P4 Ps P1r P2 P3 P4 Ps
e |t modifies the condition to be a CFT in the IR, since

i 11 1 ps 1 2 3 10 <14 1 3 3 3 op,
the theory now RG flows. From asymptotic L1 1 p pe 12 311 <13 13 3 4 <11
freedom bound: 1 1 ops o ps 1 2 4 4 p 1 3 3 5 <7
1 2 2 pi ps 1 2 4 5 <19 1 3 4 4 <5

al 2(pi_1)hv 6L al 1 1 2 3 <6 ps 1 2 4 6 <11 2 2 2 2 p,

Z s ¢ < g Z;>N_3 1 2 3 7 <4 1 2 4 7 <9 2 2 2 3
=1 i=1 *" 1 2 3 8 <23 1 2 5 5 <9 2 2 2 3 4
1 2 3 9 <17 1 2 5 6 <7 2 2 2 3 5

 The IR SCFT has a number of U(1) flavor symmetry

originates from broken R-symmetry of each block. Tuples of (p,)’s satistying the
asymptotic freedom bound.



Landscape of N=1 SCFTs with a = ¢

[Kang, Lawrie, Lee, JS, in progress]
 a = c theories with less SUSY not only exists, but rather common!

* One can add 1 or 2 adjoint chiral multiplets on top of the previous setup. -
1 adjoint: can attach up to 4 QP[G] theories. DP(G) —@ | /,'
Pi = (plpr), (2;2,]?3), (2737§ 6)7 (27474)7 (37373)7 (2727272) \/\/’,N\ :)

2 adjoints: One can even have zero S’ZP[G] theories!

 The simplest Lagrangian model with a = c: / \

N=1 gauge theory with 2 adjoints. /AW’“W/AWNYg AW’:XY AW~Y2+M\X2
? E D A
 Can attach up to 2 @p[G] 'S W
AW~ XFE—1 AW~pX AW~ XFEFL
* One can consider superpotential deformations of ADE type as in the case of adjoint + \
SQCD. [Intriligator, Wecht] Dy, (k = 3,4, 51) ’ Ap(2<k <

« How common are the a = c¢ theories in the landscape of 4d CFTs?

6)



Holographic dual of a=c
theories?



 What is the holographic dual of such a = ¢ theories? It should forbid particular type of
corrections in SUGRA action without any symmetry constraints. How??

Lagrangian f(G) theorywithl = D,, £, £, Eq

e When G = SU(a?), we recover Lagrangian affine quiver gauge theory obtained via £ D3-

branes probing ALE singularity C*/T".

D,(SU(pt)) = | SUt) —(SU((p — 1)) }— - —(SU(1))

* The holographic dual for f(G) theories have been known for ages: It is dual to the type |IB
theory on AdS< X S°/T" with # unit of 5-form flux through S°>/T".

; ¢
(O—20— 2
(0 (O—20—B0—20—C

D,(SUQ2¢)) E4(SU3?))

20
(O—20—B0—0—60—20—C

(30)
(O—O—BO—40—60—60—40—20

E(SU4¢))

Ey(SU62))
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* |s there a string-theoretic/holographic realization for such configuration?

* One particular example of holographic dual: A,y type Class-S with 4 twisted minimal
punctures realizes the D,(SU(2ZN + 1)) theory.

A svonsn - [Beem, Peelaers] |
D —— - R [Kang, Lawrie, Lee, Sacchi, |S]




Holographic dual of I'(G) theory?

* For general G, our theory naturally generalizes the affine quiver theory by
‘fractionalization’: N = ao-¢ + m , £ D3-branes with ‘extra charge’ m/oy-.

* |s there a string-theoretic/holographic realization for such configuration?

* One particular example of holographic dual: A,y type Class-S with 4 twisted minimal
punctures realizes the D,(SU(2ZN + 1)) theory.

A svonsn - 3 [Beem, Peelaers]
D —— - R [Kang, Lawrie, Lee, Sacchi, |S]

 Holographic dual for the (untwisted) class-S theories are known.

[Gaiotto, Maldacena][Nishinaka]



Holographic dual of I'(G) theory?

* For general G, our theory naturally generalizes the affine quiver theory by
‘fractionalization’: N = ao-¢ + m , £ D3-branes with ‘extra charge’ m/oy-.

* |s there a string-theoretic/holographic realization for such configuration?

* One particular example of holographic dual: A,y type Class-S with 4 twisted minimal
punctures realizes the D,(SU(2ZN + 1)) theory.

A svonsn - 3 [Beem, Peelaers]
D —— - R [Kang, Lawrie, Lee, Sacchi, |S]

 Holographic dual for the (untwisted) class-S theories are known.

| [Gaiotto, Maldacena][Nishinaka]
 Any good reason for a = ¢ from gravity perspective?
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Why?



Congratulations Hirosi!



