a vs c in the landscape of 4d SCFTs

Based on:

Work with Prarit Agarwal, Monica Kang, Craig Lawrie, Ki-Hong Lee, Matteo Sacchi [1912.12881][2007.16165][2106.12579] [2111.12092][2207.05764][2210.06497] + in progress

Korea Advanced Institute of Science and Technology

HirosiFest @Kavli IPMU

Jaewon Song Oct. 20th, 2022

About 15 years ago...

(From Hirosi's webpage)

IPMU in 2008:

(From the blog "CONFESSIONS OF A CLASSLESS AMERICAN GOON")

There was a regular tea time with delicious cookies.

It had awesome, high-tech electronic whiteboards!

Current Correlators for General Gauge Mediation

Hirosi Ooguri,^{*,†} Yutaka Ookouchi,^{*} Chang-Soon Park,^{*} and Jaewon Song^{*}

* California Institute of Technology 452-48, Pasadena, CA 91125, USA

[†] Institute for the Physics and Mathematics of the Universe, University of Tokyo, Kashiwa, Chiba 277-8582, Japan

written at the IPMU container box. (With the help of e-whiteboard!)

Just like many other graduate students, the first paper had a deep impact on my research direction in physics. But his influence on me goes far beyond this single paper.

arXiv:0806.4733 CALT-68-2692 IPMU-08-0038

My very first research paper (and the only paper co-authored with Hirosi so far) was

About 10 years ago...

(From Hirosi's and Caltech Theory group's webpage)

a vs c in the landscape of 4d SCFTs

Based on:

Work with Prarit Agarwal, Monica Kang, Craig Lawrie, Ki-Hong Lee, Matteo Sacchi [1912.12881][2007.16165][2106.12579] [2111.12092][2207.05764][2210.06497] + in progress

Korea Advanced Institute of Science and Technology

HirosiFest @Kavli IPMU

Jaewon Song Oct. 20th, 2022

Conformal anomalies (central charges) a & c.

Central charges of 4d CFT

- Conformal anomalies of a 4d CFT are parametrized by two parameters (central charges) a & c: $\langle T^{\mu}_{\mu} \rangle = \frac{c}{16\pi^2}$
- It is now well-established that a-function is a monotonically decreasing function along the RG flow (a-theorem): [Komargodski, Schwimmer]

 $a_{IR} <$

- One can think of the a-function as a quantity that measures degrees of freedom.
- The c-function, on the other-hand, does *not* always decrease along the RG flow.

$$\frac{-W^2 - \frac{a}{16\pi^2}E}{16\pi^2}$$

$$< a_{UV}$$

Hofman-Maldacena bound on central charges

• The ratio *a/c* of central charges is bounded by **unitarity**: [Hofman, Maldacena]

$$\frac{1}{2} \le \frac{a}{c} \le \frac{31}{18}$$
 (lower/up)

- For superconformal theory:
 - $\mathcal{N}=1$ SCFT: $\frac{1}{2} \le \frac{a}{2} \le \frac{3}{2}$ (lower/upper bound saturated by free chiral/free vector)
 - $\mathcal{N}=2$ SCFT: $\frac{1}{2} \le \frac{a}{c} \le \frac{5}{4}$ (lower/upper bound saturated by free hyper/free vector)
 - $\mathcal{N}=3$ or $\mathcal{N}=4$ SCFT: a = c [Aharony, Evtikhiev]

per bound saturated by free scalar/free vector)

The role of a & c

- Any holographic theories have a = c (for large N). [Henningson, Skenderis]
- When $a \neq c$, there is a correction to the celebrated entropy-viscosity ratio bound of [Kovtun, Son, Starinet] to [Katz, Petrov][Buchel, Myers, Sinha]

$$\frac{\eta}{s} \ge \frac{1}{4\pi} \left(1 \right)$$

Appears in the Cardy-like (high-temperature) limit of superconformal index:

$$I(p = q = e^{-\beta}) \to \exp\left(\#\frac{3c - 2a}{\beta^2}\right)$$
 [Cabo

[Choi, Kim, Kim, Nahmgoong] This formula accounts for the entropy of supersymmetric black holes in AdS_5^{L} . [Benini, Milan] [Cabo-Bizet, Cassani, Martelli, Murthy]

• c - a appears in the universal part of entanglement entropy. [Perlmutter, Rangamani, Rota]

$$-\frac{c-a}{c}+\cdots$$

[]. Kim, S. Kim, JS] o-Bizet, Cassani, Martelli, Murthy] [Cassani, Komargodski]

• Typical 4d gauge theories (of rank N) have

$$a \sim c \sim \mathcal{O}(N^2),$$

so that a = c in the large N limit, but not for a finite N. (satisfying the necessary) condition for it to be holographic)

and $c - a \sim \mathcal{O}(N)$

• Typical 4d gauge theories (of rank N) have

$$a \sim c \sim \mathcal{O}(N^2),$$

- condition for it to be holographic)
- Is this true in general? •

and $c - a \sim \mathcal{O}(N)$

so that a = c in the large N limit, but not for a finite N. (satisfying the necessary)

• Typical 4d gauge theories (of rank N) have

$$a \sim c \sim \mathcal{O}(N^2),$$

- condition for it to be holographic)
- Is this true in general? lacksquare
 - Is the above scaling behavior for a and c true in general?

and $c - a \sim \mathcal{O}(N)$

so that a = c in the large N limit, but not for a finite N. (satisfying the necessary)

• Typical 4d gauge theories (of rank N) have

$$a \sim c \sim \mathcal{O}(N^2),$$

- condition for it to be holographic)
- Is this true in general?
 - Is the above scaling behavior for a and c true in general?
 - Any **universality** for the sign of c a?

and $c - a \sim \mathcal{O}(N)$

so that a = c in the large N limit, but not for a finite N. (satisfying the necessary

• Typical 4d gauge theories (of rank N) have

$$a \sim c \sim \mathcal{O}(N^2),$$

condition for it to be holographic)

- Is this true in general?
 - Is the above scaling behavior for a and c true in general?
 - Any **universality** for the sign of c a?
 - Is it possible to have a = c for finite N? (for $\mathcal{N}=0, 1, 2$ SUSY)

and $c - a \sim \mathcal{O}(N)$

so that a = c in the large N limit, but not for a finite N. (satisfying the necessary

Non-universal of scaling behavior of central charges a & c

(From classification of Large N superconformal gauge theories)

Classifying SUSY large N theories

- the following conditions:
 - The gauge group is simple: G=SU(N), SO(N), Sp(N)
 - The flavor symmetry is fixed as we take large N limit.
 - No superpotential (except for the flipper of the decoupled operators).
- In the context of AdS/CFT: flavor symmetry of the boundary CFT = gauge symmetry in the bulk.

See [Bhardwaj, Tachikawa] for the full classification of $\mathcal{N}=2$ gauge theories.

[Agarwal, Lee, S]

Let us classify all possible supersymmetric large N gauge theories in 4d with

Constraints on matter multiplets

Gauge anomaly should be absent:

Asymptotic freedom (negative beta function)

$$_{0} = \left(3h^{\vee} - \sum_{i} T(\mathbf{R}_{i})\right) \ge 0$$

- Above condition (and also large N) restrict the matter representations to fundamental, adjoint, (trace-less) symmetric, anti-symmetric.
- Let us restrict ourselves to the gauge theories flow to superconformal theories.
- cf) Conformal gauge theories ($b_0 = 0$, finite N) classified by [Razamat, Sabag, Zafrir]

$$\mathcal{A}(\mathbf{R}_i) = 0$$

Superconformal fixed point

- Necessary condition: Non-anomalous U(1) R-symmetry $\operatorname{Tr} RT^{a}T^{b} = 0 \leftrightarrow T(\operatorname{adj}) + \sum_{i} T(R_{i})(r_{i} - 1) = 0$
- Due to the superconformal symmetry, the conformal anomalies are fixed by the trace anomalies of R-symmetry. [Anselmi, Freedman, Grisaru, Johansen]

$$a = \frac{3}{32} \left(3 \operatorname{Tr} R^3 - \operatorname{Tr} R \right) , \quad c = \frac{1}{32} \left(9 \operatorname{Tr} R^3 - 5 \operatorname{Tr} R \right)$$

- candidate R-symmetries.
- The superconformal R-symmetry is fixed $\frac{\partial a_{\text{trial}}}{\partial a_{\text{trial}}} = 0$ ∂R

• The R-symmetry is not always determined via anomaly constraint. There can be a family of

by 'a-maximization':

$$\frac{\partial^2 a_{\text{trial}}}{\partial R^2} < 0$$

[Intriligator, Wecht]

Decoupling of operators along the RG flow

- Important caveat in a-maximization: accidental symmetry
- Some of the gauge invariant operators may seem to violate the unitarity bound: $\Delta \geq 1$.
- Plausible scenario: such an operator gets decoupled along the RG flow and becomes free with $\Delta_{0} = 1$. [Kutasov, Parnavhev, Sahakyan]
- One can remove the decoupled free field by introducing a 'flip field' X and a [Barnes, Intriligator, Wecht, Wright] superpotential coupling W = XO. [Benvenuti, Giacomelli][Maruyoshi, Nardoni, JS]
- Redo the a-maximization until no operator gets decoupled.

1 12 $1 \square +$ 1 💷 + $1 \square +$ 21 **Adj** $1 \operatorname{Adj} +$ 1 **Ad** 1 (____+ $1 \, \mathrm{Ad}$ $1 \, \mathrm{Ad}$ $2 \operatorname{Ad}$

The full list of SU(*N*) theories with large *N* limit. (4+16 classes of theories)

Theory	$\beta_{\rm matter}$	chiral	dense	conformal window
$1 \operatorname{\mathbf{Adj}} + N_f (\Box + \overline{\Box})$	$\sim N$	Ν	Y	$1 \le N_f < 2N$
$\Box + 1 \overline{\Box} + N_f (\Box + \overline{\Box})$	$\sim N$	Ν	Y	$0 \le N_f < 2N - 2$
$1 \square + 1 \square + N_f (\square + \square)$	$\sim N$	Ν	Y	$4 \le N_f < 2N + 2$
$\Box + 1 \Box + 8 \Box + N_f (\Box + \Box)$	$\sim N$	Y	Y	$0 \le N_f \le 2N - 4^*$
$\square + 2 \boxed{\square} + N_f (\square + \boxed{\square})$	$\sim 2 N$	Ν	Ν	$0 \le N_f < N - 4$
$2 \overline{\Box} + 1 \overline{\Box} + 8 \underline{\Box} + N_f (\Box + \overline{\Box})$	$\sim 2 N$	Y	Ν	$0 \le N_f < N - 6$
$1 \overline{\Box} + 1 \overline{\Box} + 1 \overline{\Box} + N_f (\Box + \overline{\Box})$	$\sim 2 N$	Ν	Ν	$0 \le N_f \le N^*$
$1 \square + 2 \square + 8 \square + N_f (\square + \square)$	$\sim 2 N$	Y	Ν	$0 \le N_f < N - 2$
$1 + 2 \square + 16 \square + N_f (\square + \square)$	$\sim 2 N$	Y	Ν	$0 \le N_f < N - 8$
$+1 \Box + 1 \Box + N_f (\Box + \Box)$	$\sim 2 N$	Ν	Ν	$0 \le N_f < N - 2$
$2\square + 2\square + N_f (\square + \square)$	$\sim 2 N$	Ν	Ν	$0 \le N_f < N + 4$
$1 \Box + 1 \Box + 8 \Box + N_f (\Box + \Box)$	$\sim 2 N$	Y	Ν	$0 \le N_f \le N - 4^*$
$\mathbf{lj} + 1 \square + 1 \square + N_f (\square + \square)$	$\sim 2 N$	Ν	Ν	$0 < N_f < N+2$
2 $\operatorname{Adj} + N_f (\Box + \overline{\Box})$	$\sim 2 N$	Ν	Ν	$0 \le N_f \le N^*$
$\overline{\Box}) + 2 (\Box + \Box) + N_f (\Box + \overline{\Box})$	$\sim 3 N$	Ν	Ν	$0 \le N_f < 2$
$3\square + 3\square + N_f (\square + \square)$	$\sim 3 N$	Ν	Ν	$0 \le N_f < 6$
$\mathbf{lj} + 2 \square + 2 \square + N_f (\square + \square)$	$\sim 3 N$	Ν	Ν	$0 \le N_f < 4$
$\mathbf{dj} + (\Box + \Box) + (\Box + \Box)$	$\sim 3 N$	Ν	Ν	*
$\mathbf{lj} + 1 \square + 1 \square + N_f (\square + \square)$	$\sim 3 N$	Ν	Ν	$0 \le N_f \le 2^*$
3 Adj	$\sim 3 N$	Ν	Ν	*

Theory	$\beta_{\rm matter}$	dense spectrum	C
$1 \Box + N_f \Box$	$\sim N$	Y	0
$1 \square + N_f \square$	$\sim N$	Υ	1
$2 \Box + N_f \Box$	$\sim 2 N$	Ν	0
$1 \Box + 1 \Box + N_f \Box$	$\sim 2 N$	Ν	
$2 \Box + N_f \Box$	$\sim 2 N$	Ν	
	$\sim 3 N$	Ν	

Theory	β_{matter}	dense spectrum	conformal window
$1 \Box + N_f \Box$	$\sim N$	Y	$0 \le N_f \le 2N - 8^*$
$1\square + N_f \square$	$\sim N$	Y	$1 \le N_f \le 2N - 4^*$
$2 \Box + N_f \Box$	$\sim 2 N$	Ν	$0 \le N_f \le N - 10^*$
$\left 1 \Box + 1 \Box + N_f \Box \right $	$\sim 2 N$	Ν	$0 \le N_f \le N - 6^*$
$2\square + N_f \square$	$\sim 2 N$	Ν	$0 \le N_f < N - 2$
3	$\sim 3 N$	Ν	*
Theory	$\beta_{\rm matter}$	dense spectrum	conformal window
$1 \square + 2N_f \square$	$\sim N$	Y	$1 \le N_f \le 2N + 2^*$
$1\square + 2N_f\square$	$\sim N$	Y	$4 \le N_f < 2N + 4$
$2 \Box + 2N_f \Box$	$\sim 2N$	Ν	$0 \le N_f < N+1$
$1 \Box + 1 \Box + 2N_f \Box$	$\sim 2N$	Ν	$0 \le N_f \le N + 3^*$
$2\square + 2N_f\square$	$\sim 2N$	Ν	$0 \le N_f \le N + 5^*$
$2 \Box + 1 \Box + 2N_f \Box$	$\sim 2N$	Ν	$0 \le N_f < 2$
$1 \Box + 2 \Box + 2N_f \Box$	$\sim 2N$	Ν	$0 \le N_f \le 4^*$
$3\square + 2N_f \square$	$\sim 3N$	Ν	$0 \le N_f \le 6^*$
3	$\sim 3N$	Ν	*

SO(N) theories

Sp(*N*) theories

Example: 'Simplest' Large N SCFT [Agarwal, |S |9|2]

Matter contents:

Gauge invariant operators:

It looks like any other gauge theories with a sparse low-lying spectrum.

- Coulomb branch operators: Φ^n , $2 \le n \le N$
- dressed mesons: $Q\Phi^n \widetilde{Q}, \ 0 \le n \le N-1$

• 'baryon':
$$Q(\Phi Q)(\Phi^2 Q) \dots (\Phi^{N-1}Q)$$

• 'anti-baryon': $\widetilde{Q}(\Phi \widetilde{Q})(\Phi^2 \widetilde{Q}) \dots (\Phi^{N-1} \widetilde{Q})$

This theory flows to a superconformal fixed point in the IR.

- decoupled free fields.
- decouple along the RG flow.
- None of the 'baryons' decouple. $\Delta_R \sim O(N)$
- The decoupled field can be removed by introducing flip field (X) and the superpotential coupling $W = X\mathcal{O}$. " $\mathcal{O} \leftrightarrow X$ "

- Coulomb branch operators: Φ^n , $2 \le n \le N$
- dressed mesons: $Q\Phi^n \widetilde{Q}, \ 0 \le n \le N-1$
- 'baryon': $Q(\Phi Q)(\Phi^2 Q)\dots(\Phi^{N-1}Q)$
- 'anti-baryon': $\widetilde{Q}(\Phi \widetilde{Q})(\Phi^2 \widetilde{Q}) \dots (\Phi^{N-1} \widetilde{Q})$

This simple theory flows to a superconformal fixed point with a number of

• Some of the Coulomb branch operators ${
m Tr}\Phi^i$ and the dressed mesons $Q\Phi^iQ$

 Φ Φ

Feature 1: The O(N) degrees of freedom

 $a \simeq 0.500819 N - 0.692539$ $c \simeq 0.503462 N - 0.640935$

 $a/c \sim 0.994757 - 0.111888/N$

The degrees of freedom grows as $O(N^1)$ instead of the natural matrix degrees of freedom $O(N^2)!$ The ratio *a*/*c* asymptotes to a value close to 1, but *not exactly*.

Feature 2: Dense spectrum

It does not seem to exhibit confinement/deconfinement transition.

The spectrum of chiral operators form a dense band, instead of being sparse! (analog of the Liouville theory? Decompactification?)

Deformation of SU(N) + 1 adj + $N_f=1$ by flipping

Matter contents:

Superpotential:

Chiral operators:

 $M_i, X_i \ (i = 1, ..., N - 1)$ "Coulomb branch op" $X \equiv Q^N \Phi^{N(N-1)/2}, Y \equiv \tilde{Q}^N \Phi^{N(N-1)/2}, Z \equiv \tilde{Q} \Phi^{N-1} Q$ "Higgs branch op" $\mathcal{M}_H = \mathbb{C}^2 / \mathbb{Z}_N$ $XY = Z^N$

This theory flows to the (A₁, A_{2n-1}) Argyres-Douglas theory, which is a 'non-Lagrangian' $\mathcal{N}=2$ SCFT.

 $\overline{Q} \ ilde{Q} \ ilde{Q} \ \Phi$

[Maruyoshi, JS 1606] [Maruyoshi, JS 1607]

$$a = \frac{12N^2 - 5N - 5}{24(N+1)} , \ c = \frac{3N^2 - N - 5}{6(N+1)}$$

$$\Delta_{M_i} = \frac{2N - i + 1}{N + 1}, \quad \Delta_{X_i} = \frac{3N - N}{N - N}$$

 (M_i, X_i) form an $\mathcal{N}=2$ chiral multiplet (\mathscr{E}).

$$\Delta_X = \Delta_Y = N , \ \Delta_Z = 2$$

$$\frac{\Delta_X^2}{B^2} = 1 < \frac{9C_T}{40C_{V,B}} = \frac{3N^2 - N}{2N^2}$$

—] (The Weak Gravity Conjecture holds.) [Nakayama, Nomura]

Dense/O(N) theories behave similar to the Argyres-Douglas theories! ("N=1 AD theories")

Feature 3: Multiple bands eg) SU(N) + 1 adj + $N_f=2$

Figure 6: Plot of a/c vs N for the SU(N) theory with 1 adjoint and $N_f = 2$. The orange curve fits the plot with $a/c \sim 0.936734 - 0.162684/N$.

Figure 8: Dimensions of single-trace gauge-invariant operators including baryons in SU(N)+1 Adj +2 (\Box + $\overline{\Box}$) theory. The baryons(red) form another band above the band of Coulomb branch operators and mesons.

[Agarwal, Lee, JS]

The ratio of central charges a/c does not go to 1 in large N.

We see the **secondary band** of size O(N). They are formed by 'baryons'.

- 'baryon': $Q(\Phi Q)(\Phi^2 Q) \dots (\Phi^{N-1}Q)$
- 'anti-baryon': $\widetilde{Q}(\Phi \widetilde{Q})(\Phi^2 \widetilde{Q}) \dots (\Phi^{N-1} \widetilde{Q})$

Supersymmetric analog of 'band' theory?

Sparse vs Dense spectrum

(We also checked that the AdS version of the Weak Gravity Conjecture holds for all* the cases)

[Agarwal, Lee, JS][Cho, Choi, Lee, JS in progress]

Out of 35 classes of all possible large *N* gauge theories, 8 of them have **dense spectrum** and the rest have sparse spectrum.

Sparse: The gap is O(1). a = c at large N. $a \sim c = O(N^2)$

Dense: The gap is O(1/N). $a \neq c$ at large N. $a \sim c = O(N^1)$

c – *a* can have either sign.No universality!

Can we have 4d CFTs with a = c even at finite N? (with $\mathcal{N}=0, 1, 2$ SUSY)

* $\mathcal{N}=3$, 4 SCFTs *must* have a=c.

$\mathcal{D}_{p}[G]$ theory

- It is a 4d $\mathcal{N}=2$ SCFT (Argyres-Douglas type) with flavor symmetry G (or larger).
- It can be realized as the 6d $\mathcal{N}=(2, 0)$ theory of type G compactified on a sphere with one irregular puncture (p) and one full regular puncture (flavor G).
- The flavor symmetry is **exactly** G for some choice of p, when the irregular puncture does not possess extra flavor symmetry.
- k The flavor central charge for G:

<i>G</i>	SU(N)	SO(2N)
No additional symmetry	$\Big (p, N) = 1$	$p \notin 2\mathbb{Z}_{>0}$

[Cecotti, Del Zotto] [Cecotti, Del Zotto, Giacomelli] [Xie][Wang, Xie]

Irregular puncture (p)

$$_{G} = \frac{2(p-1)}{p} h_{G}^{\vee}$$

 E_6 E_8 E_7 $p \notin 3\mathbb{Z}_{>0}$ $p \notin 2\mathbb{Z}_{>0}$ $p \notin 30\mathbb{Z}_{>0}$

Gauging $\mathcal{D}_p[G]$ theories

 In order to gauge the flavor and obtain SCFT, the 1-loop beta function for the gauge group should vanish:

 $\beta_G = 0 \quad \leftrightarrow \quad \sum k_i = 4h_G^{\vee}$ flavor central charges k_i : "matter" contribution to the beta function.

- Consider gluing a number of $\mathscr{D}_p[G]$ theories to form $\mathcal{N}=2$ SCFT: $\sum_{i=1}^n \frac{2(p_i-1)}{p_i} h_G^{\vee} = 4h_G^{\vee} \rightarrow \sum_{i=1}^n \frac{1}{p_i} = n-2$
- Only 4 non-trivial solutions: (2, 2, 2, 2), (3, 3, 3), (2, 4, 4), (2, 3, 6)

[Cecotti, Del Zotto, Giacomelli] [Closset, Giacomelli, Schafer-Nameki, Wang] [Kang, Lawrie, JS]

$\hat{\Gamma}(G)$ theory with $\Gamma = D_4$

 $\widehat{\Gamma}(G)$ (p_1, p_2, p_3, p_4) Quivers via gauging \mathcal{D}_{r} $\mathcal{D}_2(G)$ $\widehat{D}_4(G)$ $\mathcal{D}_2(G)$ — (2, 2, 2, 2)- $\mathcal{D}_2(G)$ -(G) $\mathcal{D}_2(G)$ $\mathcal{D}_3(G)$ $\widehat{E}_6(G)$ (1, 3, 3, 3) $\mathcal{D}_3(G)$ – $-\mathcal{D}_3(G)$ (G) $\mathcal{D}_2(G)$ $\widehat{E}_7(G)$ (1, 2, 4, 4) $\mathcal{D}_4(G)$ $\mathcal{D}_4(G)$ $\mathcal{D}_2(G)$ $\widehat{E}_8(G)$ (1, 2, 3, 6) $\mathcal{D}_3(G)$ $\mathcal{D}_6(G)$

$$E_{6}, E_{7}, E_{8}$$

largest comark α_{Γ} of Γ satisfies $\frac{1}{2}\dim(G)$

$$gcd(h_G^{\vee}, \alpha_{\Gamma}) = 1 \implies a =$$

We get a = c is when the

[Kang, Lawrie, JS]

 $\alpha_{D_4} = 2, \ \alpha_{E_6} = 3, \ \alpha_{E_7} = 4, \ \alpha_{E_8} = 6.$

a = c without any symmetry constraints! Genuinely $\mathcal{N}=2$.

In holography, it prevents $R_{\mu\nu\rho\sigma}^2$ correction in the effective supergravity action.

 $(G) \qquad \frac{2}{3}\dim(G)$ $(G) \qquad \frac{3}{4}\dim(G)$ $(G) \qquad \frac{5}{6}\dim(G)$

Genuinely $\mathcal{N}=2$ SCFTs with a = c in $\widehat{\Gamma}(G)$

- a = c without any symmetry constr
- Some of these theories have classrealization, but most of $\widehat{\Gamma}(G)$ theories not found in class-S.
- The $\widehat{\Gamma}(G)$ theory with a = c has no symmetry.
- They all have 1 exactly marginal co
- They all have center 1-form symmetry Z(G).

cainte _		
	$\widehat{\Gamma}(G)$	a = c
S –	$\widehat{D}_4(SU(2\ell+1))$	$2\ell(\ell+1)$
es are	$\widehat{E}_6(SU(3\ell \pm 1))$	$2\ell(3\ell\pm2)$
	$\widehat{E}_6(SO(6\ell))$	$2\ell(6\ell+1)$
flavor	$\widehat{E}_6(SO(6\ell+4))$	$2(2\ell+1)(3\ell+2)$
	$\widehat{E}_7(SU(4\ell \pm 1))$	$6\ell(2\ell\pm1)$
	$\widehat{E}_8(SU(6\ell \pm 1))$	$10\ell(3\ell\pm1)$
upiing. –		
try 7(G)	The full list of $a =$	<i>c</i> theories in $\hat{\Gamma}(G)$

\mathcal{N} =4 SYM and $\hat{\Gamma}(G)$ theory

- The Schur index of $\hat{\Gamma}(G)$ theory is identical to that of the $\mathcal{N}=4$ SYM upon rescaling! $I_{\hat{\Gamma}(G)}(q) = I_G^{\mathcal{N}=4}(q^{\alpha_{\Gamma}}; q^{\alpha_{\Gamma}/2-1})$
- For the $\hat{D}_4(SU(2\ell + 1))$ theory, we find the index can be written in terms of MacMahon's generalized 'sum-of-divisor' function which is **quasi-modular**:

$$I_{\widehat{D}_4(SU(2k+1))}(q) = q^{-k(k+1)}A_k(q^2)$$
$$I_{SU(2k+1)}^{\mathcal{N}=4}(q) = q^{-\frac{k(k+1)}{2}}A_k(q)$$

- There is an isomorphism between associated VOAs as a graded vector space.
 [Buican, Nishinaka]
- More connections to N=4 SYM: 1 exactly marginal coupling, S-duality, 1-form center symmetry Z(G).

$$A_k(q) = \sum_{0 < m_1 < m_2 \cdots < m_k} \frac{q^{m_1 + \cdots + m_k}}{(1 - q^{m_1})^2 \cdots (1 - q^{m_k})^2}$$

$\mathcal{N}=1$ SCFTs with a = c

- One can construct even larger set of a = c theories with minimal supersymmetry.
- Consider a number of $\mathscr{D}_p[G]$ theories gauged via $\mathcal{N}=1$ vector multiplet.
- It modifies the condition to be a CFT in t the theory now **RG flows**. From **asympt** freedom bound:

$$\sum_{i=1}^{N} \frac{2(p_i - 1)}{p_i} h_G^{\vee} < 6h_G^{\vee} \qquad \sum_{i=1}^{N} \frac{1}{p_i}$$

• The IR SCFT has a number of U(1) flavor symmetry originates from broken R-symmetry of each block.

[Kang, Lawrie, Lee, JS]

 $\mathcal{D}_{p_4}(G)$ $\mathcal{D}_{p_3}(G) \longrightarrow \overset{\perp}{G} \longrightarrow \mathcal{D}_{p_5}(G)$ $\mathcal{D}_{p_2}(G) \quad \mathcal{D}_{p_1}(G)$

ha ID since	p_1	p_2	p_3	p_4	p_5	p_1	p_2	p_3	p_4	p_5	_	p_1	p_2	p_3
	1	1	1	1	p_5	1	2	3	10	≤ 14		1	3	3
	1	1	1	p_4	p_5	1	2	3	11	≤ 13		1	3	3
	1	1	p_3	p_4	p_5	1	2	4	4	p_5		1	3	3
	1	2	2	p_4	p_5	1	2	4	5	≤ 19		1	3	4
$\sim M$ 2	1	2	3	≤ 6	p_5	1	2	4	6	≤ 11		2	2	2
$> 1 \sqrt{-3}$	1	2	3	7	≤ 41	1	2	4	7	≤ 9		2	2	2
	1	2	3	8	≤ 23	1	2	5	5	≤ 9		2	2	2
	1	2	3	9	≤ 17	1	2	5	6	≤ 7		2	2	2

Tuples of (p_i) 's satisfying the asymptotic freedom bound.

Landscape of $\mathcal{N}=1$ SCFTs with a = c

- a = c theories with less SUSY not only exists, but rather common!
- One can add 1 or 2 adjoint chiral multiplets on top of the previous setup.
- 1 adjoint: can attach up to 4 $\mathcal{D}_p[G]$ theories.

 $p_i = (p_1, p_2), (2, 2, p_3), (2, 3, \le 6), (2, 4, 4), (3, 3, 3), (2, 2, 2, 2)$

- 2 adjoints: One can even have zero $\mathscr{D}_p[G]$ theories!
 - The simplest Lagrangian model with a = c: $\mathcal{N}=1$ gauge theory with 2 adjoints.
 - Can attach up to 2 $\mathcal{D}_p[G]$'s
- One can consider superpotential deformations of ADE type as in the case of adjoint SQCD. [Intriligator, Wecht]
- How common are the a = c theories in the landscape of 4d CFTs?

Holographic dual of a=c theories?

Lagrangian $\widehat{\Gamma}(G)$ theory with $\Gamma = D_4, E_6, E_7, E_8$

- What is the **holographic dual** of such a = c theories? It should forbid particular type of corrections in SUGRA action without any symmetry constraints. How?
- branes probing ALE singularity \mathbb{C}^2/Γ .

• The holographic dual for $\hat{\Gamma}(G)$ theories have been known for ages: It is dual to the type IIB theory on $AdS_5 \times S^5/\Gamma$ with ℓ unit of 5-form flux through S^5/Γ .

• When $G = SU(\alpha_{\Gamma} \ell)$, we recover Lagrangian affine quiver gauge theory obtained via ℓ D3-

Holographic dual of $\hat{\Gamma}(G)$ **theory?**

Holographic dual of $\hat{\Gamma}(G)$ **theory?**

• For general G, our theory naturally generalizes the affine quiver theory by 'fractionalization': $N = \alpha_{\Gamma} \ell + m$, ℓ D3-branes with 'extra charge' m/α_{Γ} .

Holographic dual of $\hat{\Gamma}(G)$ **theory?**

- For general G, our theory naturally generalizes the affine quiver theory by 'fractionalization': $N = \alpha_{\Gamma} \ell + m$, ℓ D3-branes with 'extra charge' m/α_{Γ} .
 - Is there a string-theoretic/holographic realization for such configuration?

Holographic dual of $\widehat{\Gamma}(G)$ **theory?**

- For general G, our theory naturally generalizes the affine quiver theory by 'fractionalization': $N = \alpha_{\Gamma} \ell + m$, ℓ D3-branes with 'extra charge' m/α_{Γ} .
 - Is there a string-theoretic/holographic realization for such configuration?
- One particular example of holographic dual: A_{2N} type Class-S with 4 twisted minimal punctures realizes the $\hat{D}_4(SU(2N+1))$ theory.

[Beem, Peelaers] [Kang, Lawrie, Lee, Sacchi, JS]

Holographic dual of $\widehat{\Gamma}(G)$ **theory?**

- For general G, our theory naturally generalizes the affine quiver theory by 'fractionalization': $N = \alpha_{\Gamma} \ell + m$, ℓ D3-branes with 'extra charge' m/α_{Γ} .
 - Is there a string-theoretic/holographic realization for such configuration?
- One particular example of holographic dual: A_{2N} type Class-S with 4 twisted minimal punctures realizes the $\hat{D}_4(SU(2N+1))$ theory.

Holographic dual for the (untwisted) class-S theories are known.

[Beem, Peelaers] [Kang, Lawrie, Lee, Sacchi, JS]

[Gaiotto, Maldacena][Nishinaka]

Holographic dual of $\widehat{\Gamma}(G)$ **theory?**

- For general G, our theory naturally generalizes the affine quiver theory by 'fractionalization': $N = \alpha_{\Gamma} \ell + m$, ℓ D3-branes with 'extra charge' m/α_{Γ} .
 - Is there a string-theoretic/holographic realization for such configuration?
- One particular example of holographic dual: A_{2N} type Class-S with 4 twisted minimal punctures realizes the $\hat{D}_4(SU(2N+1))$ theory.

- Holographic dual for the (untwisted) class-S theories are known.
- Any good reason for a = c from gravity perspective?

[Beem, Peelaers] [Kang, Lawrie, Lee, Sacchi, JS]

[Gaiotto, Maldacena][Nishinaka]

Conclusion

• **Conformal anomalies** of 4d CFT capture several interesting aspects of the theory.

- Conformal anomalies of 4d CFT capture several interesting aspects of the theory.
- The scaling behavior of *a* & *c* in the large *N* gauge theory is not universal: *c*-*a* can have either signs, $a \sim c \sim O(N^2)$ or $O(N^1)$

- Conformal anomalies of 4d CFT capture several interesting aspects of the theory.
- The scaling behavior of *a* & *c* in the large *N* gauge theory is not universal: *c*-*a* can have either signs, $a \sim c \sim O(N^2)$ or $O(N^1)$
 - 'exotic' large N theory: $O(N^1)$ degrees of freedom, dense low-lying spectrum.

- Conformal anomalies of 4d CFT capture several interesting aspects of the theory.
- The scaling behavior of *a* & *c* in the large *N* gauge theory is not universal: *c*-*a* can have either signs, $a \sim c \sim O(N^2)$ or $O(N^1)$
 - 'exotic' large N theory: $O(N^1)$ degrees of freedom, dense low-lying spectrum.
- Large N superconformal simple gauge theories can be classified. AdS version of the Weak Gravity Conjecture works even for 'non-holographic' SCFTs.

- Conformal anomalies of 4d CFT capture several interesting aspects of the theory.
- The scaling behavior of *a* & *c* in the large *N* gauge theory is not universal: *c*-*a* can have either signs, $a \sim c \sim O(N^2)$ or $O(N^1)$
 - 'exotic' large N theory: $O(N^1)$ degrees of freedom, dense low-lying spectrum.
- Large N superconformal simple gauge theories can be classified. AdS version of the Weak Gravity Conjecture works even for 'non-holographic' SCFTs.
- We have a 'landscape' of genuinely $\mathcal{N}=1$, 2 SCFTs with a = c, exact in N.

- Conformal anomalies of 4d CFT capture several interesting aspects of the theory.
- The scaling behavior of *a* & *c* in the large *N* gauge theory is not universal: *c*-*a* can have either signs, $a \sim c \sim O(N^2)$ or $O(N^1)$
 - 'exotic' large N theory: $O(N^1)$ degrees of freedom, dense low-lying spectrum.
- Large N superconformal simple gauge theories can be classified. AdS version of the Weak Gravity Conjecture works even for 'non-holographic' SCFTs.
- We have a 'landscape' of genuinely $\mathcal{N}=1$, 2 SCFTs with a = c, exact in N.
 - The Schur index of $\mathcal{N}=2$ SCFTs $\widehat{\Gamma}(G)$ is almost identical to that of $\mathcal{N}=4$ SYM upon rescaling: $I_{\widehat{\Gamma}(G)}(q) = I_G^{\mathcal{N}=4}(q^{\alpha_{\Gamma}}, q^{\alpha_{\Gamma}/2-1})$

- **Conformal anomalies** of 4d CFT capture several interesting aspects of the theory. •
- The scaling behavior of a & c in the large N gauge theory is not universal: *c-a* can have either signs, $a \sim c \sim O(N^2)$ or $O(N^1)$
 - 'exotic' large N theory: $O(N^1)$ degrees of freedom, dense low-lying spectrum.
- Large N superconformal simple gauge theories can be classified. AdS version of the Weak Gravity Conjecture works even for 'non-holographic' SCFTs.
- We have a 'landscape' of genuinely $\mathcal{N}=1$, 2 SCFTs with a = c, exact in N.
 - The Schur index of $\mathcal{N}=2$ SCFTs $\widehat{\Gamma}(G)$ is almost identical to that of $\mathcal{N}=4$ SYM upon rescaling: $I_{\widehat{\Gamma}(G)}(q) = I_G^{\mathcal{N}=4}(q^{\alpha_{\Gamma}}, q^{\alpha_{\Gamma}/2-1})$

• Holographic interpretation? The term $R^2_{\mu\nu\rho\sigma}$ "forbidden" without any symmetry in SUGRA EFT.

- **Conformal anomalies** of 4d CFT capture several interesting aspects of the theory. •
- The scaling behavior of a & c in the large N gauge theory is not universal: *c-a* can have either signs, $a \sim c \sim O(N^2)$ or $O(N^1)$
 - 'exotic' large N theory: $O(N^1)$ degrees of freedom, dense low-lying spectrum.
- Large N superconformal simple gauge theories can be classified. AdS version of the Weak Gravity Conjecture works even for 'non-holographic' SCFTs.
- We have a 'landscape' of genuinely $\mathcal{N}=1$, 2 SCFTs with a = c, exact in N.
 - The Schur index of $\mathcal{N}=2$ SCFTs $\widehat{\Gamma}(G)$ is almost identical to that of $\mathcal{N}=4$ SYM upon rescaling: $I_{\widehat{\Gamma}(G)}(q) = I_G^{\mathcal{N}=4}(q^{\alpha_{\Gamma}}, q^{\alpha_{\Gamma}/2-1})$

• Holographic interpretation? The term $R^2_{\mu\nu\rho\sigma}$ "forbidden" without any symmetry in SUGRA EFT. Why?

Congratulations Hirosi!