$\psi^{(a)}(z) \psi^{(b)}(w)=\psi^{(b)}(w) \psi^{(a)}(z)$,
$\psi^{(a)}(z) e^{(b)}(w) \simeq \varphi^{b \ni a}(\Delta) e^{(b)}(w) \psi^{(a)}(z)$,
(0,1)
$e^{(a)}(z) e^{(b)}(w) \sim(-1)^{|a||b|} \varphi^{b \Rightarrow a}(\Delta) e^{(b)}(w) e^{(a)}(z)$,
$\psi^{(a)}(z) f^{(b)}(w) \simeq \varphi^{b \neq a}(\Delta)^{-1} f^{(b)}(w) \psi^{(a)}(z)$,
$f^{(a)}(z) f^{(b)}(w) \sim(-1)^{|a||b|} \varphi^{b \Rightarrow a}(\Delta)^{-1} f^{(b)}(w) f^{(a)}(z)$,
$\left[e^{(a)}(z), f^{(b)}(w)\right\} \sim-\delta^{a, b} \frac{\psi^{(a)}(z)-\psi^{(b)}(w)}{z-w}$,

Crystal Meltings Revisited

Masahito Yamazaki

Hirosifest @ Kavli IPMU
October 20, 2022

Turning Point

Through a chain of unexpected events, I became Hirosi's student

This is one of the best things which happened in my life

and has opened up a whole new world to me...

I coauthored 4 papers with Hirosi which became the basis of my Ph.D. thesis

Crystal Melting and Toric Calabi-Yau Manifolds

Hirosi Ooguri ${ }^{1,2}$, Masahito Yamazaki ${ }^{1,2,3}$
${ }^{1}$ California Institute of Technology, 452-48, Pasadena, CA 91125, USA
2 Institute for the Physics and Mathematics of the Universe, University of Tokyo, Kashiwa, Chiba 277-8586, Japan

0902.3996

Emergent Calabi-Yau Geometry

[^0]

Generalization of [Okounov-Reshetikhin-Vafa]

We studied BPS state counting problem

toric diagram $\left(x y=z w^{2}\right)$

Type IIA on toric C_{3}

$$
\begin{aligned}
& +D 6 / D 4 / D 2 / D 0 \\
& 3 \\
& \sqrt{3}
\end{aligned}
$$

$N=4$ SQM on D-brane

$$
X\left(\mu_{\text {vacuum }}\right)
$$ fixed point

$$
Z_{B P S}=Z_{\text {cristal }}=\sum_{\Lambda} q^{\Lambda}
$$

For toric CY3 without compact 4-cycles, Z has an infinite-product form
[Szendroi, Young, Nagao,‥]

$$
\begin{aligned}
& \text { conifold }: Z \sim \prod_{n \geq 0}\left(1-Q q^{n}\right)^{n} \\
& x y=z w: Z \sim \prod_{n \geq 0}\left(1-Q_{1} q^{n}\right)^{n}\left(1-Q_{1} Q_{2} q^{n}\right)^{n} \\
& \operatorname{SPP} \\
& \left.x y=z w^{2} \cdot Z Q_{2} q^{n}\right)^{n}
\end{aligned}
$$

Why?

M-theory explanation of the infinite product
[Aganagic, Ooguri, Vafa, Y]

Underlying Algebra?

$$
\begin{gathered}
Z \sim \prod_{n \geq 0}\left(1-Q_{1} 8^{n}\right)^{n}\left(1-Q_{1} Q_{2} \delta^{n}\right)^{n}\left(1-Q_{2} q^{n}\right)^{-n} \\
\binom{n \delta+\alpha_{1}, n \delta+\alpha_{2}, n \delta+\alpha_{1}+\alpha_{2}}{\text { odd }} ?
\end{gathered}
$$

[Nagao-MY] discussed chamber structures in terms of affine Weyl groups

Kyoji: Salto
Elliptic !!

Michio Jimbo
Quantum toroidal !!

Later important developments on quantum toroidal algebras (Ding-lohara-Miki) and affine Yangians by [B. Feigin, E. Feigin, Jimbo, Miwa, Mukhin; Tsymbaulik; Prochazka, \cdots], also in higher spin algebras [Gaberdiel, Gopakumar; Li, Peng, \cdots]

I now have the answer to my original question: Quiver Yangian

uiver

Based on
Wei Li + MY
(2003.08909 [hep-th])

Dmitry Galakhov + MY
(2008.07006 [hep-th])

Dimitry Galakhov+Wei Li + MY (2106.01230 [hep-th])

See Y (2206.13340 [hep-th] for review)

new algebra

Quiver Q \& Superpotential W smeric $C Y_{3}$

$$
\begin{aligned}
& *\left(Q=Q_{y} Q_{h_{1}}^{x_{1}} \quad W=\operatorname{Tr}(x y z-x z y) \quad C Y_{3}=\mathbb{C}^{3}\right. \\
& *(Q=\overbrace{h_{3} B_{2}}^{h_{h_{4}}}{ }_{h_{1}+h_{2}+h_{3}+h_{4}=0}^{A_{1} A_{2}^{2}} \quad W=\operatorname{Tr}\left(A_{1} B_{1} A_{2} B_{2}-A_{1} B_{2} A_{2} B_{1}\right))\{ \\
& C Y_{3}=\text { conifold }
\end{aligned}
$$

(hI: flavor chorges/ equiv. poram.)

Generatons
(zispectrol ponameter)

$$
\sim_{\sim}^{e^{(a)}(z)} \equiv \sum_{n=0}^{+\infty} \frac{e_{n}^{(a)}}{z^{n+1}}, \quad \sim_{\sim}^{\psi^{(a)}}(z) \equiv \sum_{n=-\infty}^{+\infty} \frac{\psi_{n}^{(a)}}{z^{n+1}}, \quad \underbrace{f^{(a)}(z)} \equiv \sum_{n=0}^{+\infty} \frac{f_{n}^{(a)}}{z^{n+1}},
$$

$$
n=-k
$$

a: quiver vertex
区2-grading
"k-shifted
Quiser Yangion"

$$
|a|= \begin{cases}0 & (\exists \text { edge } I \text { s.t. } I \text { stonts ond ends ot } a) \\ 1 & \text { (otherwise) }\end{cases}
$$

Relations

$$
\begin{aligned}
\psi^{(a)}(z) \psi^{(b)}(w) & =\psi^{(b)}(w) \psi^{(a)}(z), \\
\psi^{(a)}(z) e^{(b)}(w) & \simeq \varphi^{b \Rightarrow a}(\Delta) e^{(b)}(w) \psi^{(a)}(z), \\
e^{(a)}(z) e^{(b)}(w) & \sim(-1)^{|a||b|} \varphi^{b \Rightarrow a}(\Delta) e^{(b)}(w) e^{(a)}(z), \\
\psi^{(a)}(z) f^{(b)}(w) & \simeq \varphi^{b \Rightarrow a}(\Delta)^{-1} f^{(b)}(w) \psi^{(a)}(z), \\
f^{(a)}(z) f^{(b)}(w) & \sim(-1)^{|a||b|} \varphi^{b \Rightarrow a}(\Delta)^{-1} f^{(b)}(w) f^{(a)}(z), \\
{\left[e^{(a)}(z), f^{(b)}(w)\right\} } & \sim-\delta^{a, b} \frac{\psi^{(a)}(z)-\psi^{(b)}(w)}{z-w},
\end{aligned}
$$

$$
\text { " } \simeq \text { " means equality up to } z^{n} w^{m \geq 0} \text { terms }
$$

$$
\text { " } \sim \text { " means equality up to } z^{n \geq 0} w^{m} \text { and } z^{n} w^{m \geq 0} \text { terms }
$$

bonding factor equivoriont weight

$$
\varphi^{a \Rightarrow b}(u) \equiv \frac{\prod_{I \in\{b \rightarrow a\}}\left(u+h_{I}\right)}{\prod_{T A\{a \rightarrow b\}}\left(u-h_{I}\right)}
$$

edge

$$
* x y=z^{n} w^{m} \leadsto Y\left(\hat{g l_{m} \mid n}\right)
$$

[Rapcak; Bezerra-Mukhin]

* general toric $\mathrm{CH}_{3} \leadsto Y(Q, W)$ YYes form
\downarrow No? $\square \Delta \mathbb{Z}^{2}$ has no "oy"

$$
\begin{aligned}
& \text { * conifold } \left.\leadsto Q=\stackrel{\bullet}{\rightleftarrows} \text {. } \underset{\sim}{\left(g l_{111}\right.}\right) \\
& W=\operatorname{Tr}\left(A_{1} B_{1} A_{2} B_{2}-A_{1} B_{2} A_{2} B_{1}\right)
\end{aligned}
$$

$$
\begin{aligned}
& W=\operatorname{Tr}(X Y Z-X Z Y) \quad \text { Tsymbaulik; Prochazka; } \\
& \text { Gaberdiel, Gopakumar, Li, Peng, } \cdots \text {] }
\end{aligned}
$$

We con derive quiver Yangion representations $\left\{\begin{array}{rr}\text { by "bootstrapping" from crystal } \\ & {[\text { [Li-MY'20] }}\end{array}\right.$ (by equivoriont localization in SUSY QM

cf. earlier developments on quantum toroidal algebras (Ding-lohara-Miki) and affine Yangians by [Feigin, Jimbo, Miwa, Mukhin; Tsymbaulik; Prochazka; Rapcak; Gaberdiel, Gopakumar; Li, Peng,‥]

Representation by crystal melting [Li-MY '20], inspired by [FFJMM] and [Prochazka]
crystal

add/remove on atom

(2D crystal case)
TITA: Add

Representation by crystal melting [Li-MY '20], inspired by [FFJMM] and [Prochazka]
crystal
$\psi^{(a)}(z)|\mathrm{K}\rangle=\Psi_{\mathrm{K}}^{(a)}(z)|\mathrm{K}\rangle$,

poles for atom a
add/remove on atom

Representation by crystal melting [Li-MY '20], inspired by [FFJMM] and [Prochazka]

$$
\begin{aligned}
& \psi^{(a)}(z)|\mathrm{K}\rangle=\Psi_{\mathrm{K}}^{(a)}(z)|\mathrm{K}\rangle, \\
& e^{(a)}(z)|\mathrm{K}\rangle=\sum_{a \in \operatorname{Add}(\mathrm{~K})} \frac{E^{(a)}(\mathrm{K} \rightarrow \mathrm{~K}+a)}{z-h(\square)}|\mathrm{K}+a\rangle, \\
& f^{(a)}(z)|\mathrm{K}\rangle=\sum_{a \mid \in \operatorname{Rem}(\mathrm{K})} \frac{F^{(a)}(\mathrm{K} \rightarrow \mathrm{~K}-\sqrt{a})}{z^{z-h(\sqrt{a})}|\mathrm{K}-a\rangle,} \\
& \text { poles for } \\
& \text { atom } \\
& h(\boxed{a}) \equiv \sum_{I \in \operatorname{path}[\mathfrak{o} \rightarrow \boxed{a}]} h_{I} . \\
& \varphi^{a \Rightarrow b}(u) \equiv \frac{\prod_{I \in\{b \rightarrow a\}}\left(u+h_{I}\right)}{\prod_{I \in\{a \rightarrow b\}}\left(u-h_{I}\right)} \\
& E^{(a)} / F^{(c)}: E^{(c)} / F^{(a)}=\sqrt{ \pm \begin{array}{l}
\operatorname{Res} \\
u=h(a)
\end{array} \Psi_{k}^{(c)}(u)}
\end{aligned}
$$

$$
\psi^{(a)}(z)|\varnothing\rangle=\underbrace{\psi_{0}^{(a)}(z)|\varnothing\rangle}_{\text {Vacuum charge function } \leftrightarrow \text { representation }} \quad[\text { Galakhov-Li-MY'21] }
$$

$$
\psi^{(a)}(z)|\varnothing\rangle=\sim_{\sim}^{\psi_{0}^{(a)}(z)}|\varnothing\rangle \quad[\text { Galakhov-Li-MY '21] }
$$

Valuum charge function \leftrightarrow representation

We con obtoin rother generd reps by using storter / panser / stoppers
e.g. Open / closed BPS stote counting and their wall onossings

conifold: ∞-chamber conifold: finite chomber [Nagao-Nakajima; Jafferis-Moore; Chuang-Jafferis, .. '08]

Revisiting Gouge/Bethe
[Galakhov-Li-Y ('22)]

Puzzle of Gouge/Bethe

quiver Yangion?

We con make "crystal chains" by bringing together crystals in Spectral-porameter plane [Galakhov-Y, Galakhov-Li-Y ('21)]

$$
\left|\mathrm{K}_{1},{ }^{\sharp} \mathcal{C}_{1}\right\rangle_{u_{1}} \otimes\left|\mathrm{~K}_{2},{ }^{,} \mathcal{C}_{2}\right\rangle_{u_{2}} \otimes \ldots \otimes\left|\mathrm{~K}_{n},{ }^{\sharp} \mathcal{C}_{n}\right\rangle_{u_{n}} .
$$

- "coproduct"

$$
\Delta_{0}: \operatorname{Rep} Y \rightarrow \operatorname{Rep}(Y \otimes Y)
$$

$$
\begin{aligned}
\Delta_{0} e & =e \otimes 1+\psi \vec{\otimes} e, \\
\Delta_{0} f & =1 \otimes f+f \overleftarrow{\otimes} \psi, \\
\Delta_{0} \psi & =\psi \otimes \psi
\end{aligned}
$$

- However, $\triangle 0$ does NOT reproduce

$$
(B A E)=\text { (vacuum equation) }
$$

We need to search "correct" Δ.

$$
\Delta=U^{-1} \Delta_{0} u^{E^{\text {render miargalor }}}
$$

cf. stable envelope of [Maulik-Okounov]
"Yes - Go"
[Galakhov-Li-Y ('22)]
See also [Feigin-Jimbo-Miwa-Mukhin ('15)]
[Litvinov-Vilkovisky ('20)] [Chistyakova-Litvinov-Orlov ('21)]
[Kolyaskin, A. Litvinov, and A. Zhukov ('22)] [Bao ('22)]

* For $2 d$-crystal repr.
of $Y(\hat{g})$ w) $\quad o g=g l m i n, D(2,1 ; \alpha)$ $\uparrow z$ has product form

BAE \because Gange/Bethe

No - Go" [Galakhov-Li-Y ('22)]

* For $Y(Q, W)$ without underlying of [chiral quiver / toric $C Y_{3}$ with 4-cycle]

We have obstructions $\binom{$ under some }{ assumptions } to finding consistent Δ / R who se BAE matches vacuum eqn

Summary

- We now have

Quiver Yongion $Y=B P S$ algebra
underlying BPS state counting

$$
\begin{gathered}
Z_{B P S}=Z_{\text {crystal }}=\text { character of } Y \\
\mu_{\text {BPS }} \rightarrow Y \\
\text { crystal }
\end{gathered}
$$

Big Thank You

 and
Happy birthday, Hirosi !!!

[^0]: Hirosi Ooguri ${ }^{1,2}$ and Masahito Yamazaki ${ }^{1,2,3}$
 ${ }^{1}$ California Institute of Technology, Pasadena, California 91125, USA
 ${ }^{2}$ Institute for the Physics and Mathematics of the Universe, University of Tokyo, Kashiwa, Chiba 277-8586, Japan
 ${ }^{3}$ Department of Physics, University of Tokyo, Hongo 7-3-1, Tokyo 113-0033, Japan
 (Received 27 February 2009; published 21 April 2009)

