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Type 0B string theory in two dimensions

World-sheet theory contains,

1. A free scalar X0 and its superpartner Majorana fermion ψ0

2. A super-Liouville theory with c=27/2

3. b, c, β, γ, b̄, c̄, β̄, γ̄ ghosts

GSO projection acts simultaneously on left and right sector,
leading to only NSNS and RR sectors

Physical spectrum:

A massless scalar φNS in NSNS sector

A massless scalar φR in the RR sector 4



This string theory has D-instantons and anti-D-instantons

– obtained by imposing the ZZ brane boundary condition on the
Liouville field and Dirichlet boundary condition on X0, ψ0

– give non-perturbative contribution ∝ e−π/gs to the S-matrix

gs: appropriately normalized closed string coupling constant

We work in the α′ = 2 convention Balthazar, Rodriguez, Yin
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Dual matrix model description: Free non-interacting fermions ψ
with single particle Hamiltonian:

H =
p2

2
− q2

2

Fermi level: Height µ below the top of the potential
Takayanagi, Toumbas; Douglas, Klebanov, Kutasov, Maldacena, Martinec, Seiberg; Balthazar, Rodriguez, Yin

µ = 1/gs

EF

ρ = ψ†ψ creates fermion hole pair excitations

⇒ massless scalars χL, χR on the left / right side of the barrier
Das, Jevicki; Moore, Plesser, Ramgoolam

Map: φNS = χL + χR, φR = χR − χL up to normalization 5



Perturbative closed string amplitudes are mapped to reflection
of fermion-hole pair from the barrier, ignoring tunneling

Effect of tunneling is captured by the D-instanton effects

D-instanton: Effect of fermion tunneling from right to left or hole
tunneling from left to right

Anti-D-instanton: Effect of hole tunneling from right to left or
fermion tunneling from left to right

⇒ a D-instanton will convert a fermion-hole pair on the right to a
transmitted fermion on the left and a reflected hole on the right

– does not have a regular closed string description! 6



In the D-instanton amplitude in string theory, this effect shows
up as infrared divergences in the annulus partition function

– makes the amplitudes with finite no of external closed strings
vanish DeWolfe, Roiban, Spradlin, Volovich, Walcher; Balthazar, Rodriguez, Yin

The goal of this talk:

1. Define appropriate infrared finite semi-inclusive cross section
induced by D-instanton

2. Compare the results on the string theory side with the matrix
model side

Balthazar, Rogriguez, Yin (BRY), arXiv:2204.01747

Chakravarty, A.S., arXiv: 2207.07138

A.S., arXiV: 2012.00041, 2208.07385 7



Leading order D-instanton amplitude

– can have disconnected world-sheet since individual
world-sheet amplitudes do not conserve energy / momentum

– maximize the number of disks since each disk gives 1/gs

– can use as many annuli as we want since annuli ∼ (gs)0

mexp
[ ]

exp[−π/gs] × × × ×· · ·
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mexp
[ ]

= exp
[
−
∫∞

0
dt
2t

]

2 t: ratio of circumference to the width of the annulus

– the exponent diverges at large and small t

Divergence at large t is associated with open string zero modes

– can be treated using open string field theory (to be discussed)

Divergence at small t is associated with IR divergence in the
closed string channel

– makes the amplitude vanish

– reflects the impossibility for single D-instanton process to
produce finite number of final state closed strings 9



Consider D-instanton anti-D-instaton induced process:

1. Overall factor exp[−2π/gs] instead of exp[−π/gs]

2. Exponential of the annulus amplitude is replaced by,

mexp
[

+ m m]+ 2

– : anti-D-instanton boundary condition

3. Each disk one point function is replaced by

����+× ×����
(σe±σπP+iσωEx1 − σe∓πσP+iσωEx2 ) +,− : χR, χL

ωE = −iω, ω = energy, P = Liouville momentum

σ = 1(−1) for incoming (outgoing) 10



The expression for

mexp
[

+ m m]+ 2

in α′ = 2 units is

exp

[∫ ∞
0

dt
2t

{
−2 + 2 e

2πt
(

1
2−

1
2

(
x1−x2

2π

)2
)}]

x1,x2: Positions of D-instanton and anti-D-instanton in the
Euclidean time direction

Note: No divergence from the small t region

However there are divergences in the large t region

1. −2 represents the effect of open string zero modes

2. For x1 − x2 < 2π there are additional divergences due to open
string tachyons 11



Strategy for dealing with large t divergence:

1. Use the identities, valid for hb,hf > 0,

exp
[∫

dt
2t

(e−2πthb − e−2πthf )

]
=

√
hf

hb

h−1/2
b =

∫
dφb√

2π
e−

1
2 hbφ

2
b , φb : grassmann even

hf =

∫
dpfdqfe−hfpfqf , pf,qf : grassmann odd

2. Interpret the modes φb, pf, qf as open string fields (D=0) and
the exponent as open string field theory action in Siegel gauge

3. Modes with hb < 0 are tachyonic modes and integration over
them can be carried out along the steepest descent contour

4. Modes with hb = 0 and hf = 0 represent respectively the
bosonic and fermionic zero modes

– need to be treated carefully. 12



In the present example, we have

1. 2 bosonic zero modes associated with the freedom of
translating the instanton and the anti-instanton along the
euclidean time

Remedy: Change variables from bosonic zero modes to
D-instanton positions x1,x2, picking up the Jacobian factor.

2. 4 fermion zero modes coming from ghost - anti-ghost pair on
the instanton and the anti-instanton

– result of wrongly fixing the U(1) ‘gauge symmetry’ on the
instanton and anti-instanton

Remedy: Undo the gauge fixing by using a gauge invariant form
of the path integral 13



This is a well tested procedure that has been verified in many
cases.

1. c=1 bosonic string theory A.S.

2. c<1 bosonic string theory Eniceicu, Mahajan, Murdia, A.S.

3. Type IIB in D=10 A.S.

4. Type IIA / IIB on CY3 Alexandrov, A.S., Stefanski

We shall skip the details and quote the result. 14



Result: Joydeep Chakravarty, A.S.

The annulus partition function is replaced by

1
4π2

∫
dx1dx2

1
(x1 − x2)2 − 4π2

Integration over x1,x2 needs to be done after taking the product
with disk one point functions

The normalization agrees with the one found by BRY by
comparison with the matrix model result.

Poles at x1 = x2 ± 2π needs to be treated using principal value
prescription if we want to preserve unitarity. A.S.

BRY checked that the amplitudes computed this way agrees with
the matrix model results. 15



Subtleties with unitarity:

Mn(a,b): n-instanton (or anti-instanton) contribution to S(a→ b)

Consider the amplitude of a closed string χR of energy ω1 to get
reflected as a closed string χR of energy ω2.

M2(ω1, ω2) = −e−2π/gs
1

2π
δ(ω1 − ω2) cosh(2πω1)sinh(2πω1)

In a unitary theory, we have

M2(ω1, ω2) + M∗2(ω2, ω1) +
∑

n

M1(ω1,n)M1(ω2,n)∗ = 0

If M1 vanishes due to IR divergence, we have a contradiction!

We’ll now describe the remedy BRY; A.S.
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Express the original expression of M2(ω1, ω2) as

M2(ω1, ω2) = e−2π/gs exp

[∫ ∞
ε

dt
2t
{
−2 + 2e−πth}− ∫ ∞

ε

dt
t

e−πth

+

∫ ∞
0

dt
t

{
e

2πt
(

1
2−

1
2

(
x1−x2

2π

)2
)
− H(ε− t)

}]
(eπP1+iωE

1 x1 − e−πP1+iωE
1 x2 )(eπP2−iωE

2 x2 − e−πP2−iωE
2 x1 ), ωE = −iω

First two lines are rewriting of the annulus partition function,
with h, ε arbitrary positive number and H the step function

Last line is the product of disk amplitudes

For small ε, we have Chakravarty, A.S.

exp

[∫ ∞
ε

dt
2t
{
−2 + 2e−πth}−∫ ∞

ε

dt
t

e−πth

]
⇒ 1

16π4h

∫
dx1dx2×π εh eγE

by treating the zero modes using open string field theory. 17



1. For the rest, change variable to s=1/(2t)

2. Represent the s dependent integrand as result of momentum
integration in closed string channel

3. Do the s integral

M2(ω1, ω2) = e−2π/gs ε

16π3
eγE

∫
dx1dx2

exp

[
2

π

∫ d2kE

k2
E

{
e−iωE(x1−x2)

(
cosh2(πP) + sinh2(πP)

)
− e−πk2

E/ε
}]

(eπP1+iωE
1 x1 − e−πP1+iωE

1 x2 )(eπP2−iωE
2 x2 − e−πP2−iωE

2 x1 ), kE ≡ (ωE
, P)∫

d2kE ≡
∫ ∞

0
dP
∫ ∞
−∞

dωE

Note: There is no divergence from kE = 0 region

We shall now put a lower cut-off η on P and manipulate the term
by writing it as a sum of terms, each of which diverges as η → 0.∫

d2kE ≡
∫ ∞
η

dP
∫ ∞
−∞

dωE

18



By expanding the exponential, we can interpret M2 as a sum over
Feynman diagrams

...
...

... ...
...

...
...• ◦ ◦ • �1 2 1 2 1 2(a) (b) (c)

...
...

... ...
...

...• ◦ ◦ •1

2 2

1(d) (e)
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Single D-instanton induced n-point vertex • with external closed strings of momenta
k1 = (ω1, P1), · · · , kn = (ωn, Pn):

• : 2π i δ

 n∑
i=1

σiωi

(e−2π/gs ε

16π3
eγE

)1/2 n∏
i=1

e−πk2
i /(2ε)

(
σi coshπPi

sinhπPi

)
,

cosh(πP) refers to RR-sector states, sinh(πP) refers to NSNS sector states and σi takes value +1 if the i-th
state is incoming and −1 if the i-th state is outgoing.

Single anti-D-instanton induced n-point vertex ◦ with external closed strings of momenta
k1 = (ω1, P1), · · · , kn = (ωn, Pn):

◦ : 2π i δ

 n∑
i=1

σiωi

(e−2π/gs ε

16π3
eγE

)1/2 n∏
i=1

e−πk2
i /(2ε)

(−σi coshπPi

sinhπPi

)
.

D-instanton - anti-D-instanton induced composite n-point vertex � with external closed strings of momenta
k1 = (ω1, P1), · · · , kn = (ωn, Pn):

� : 2π i δ

 n∑
i=1

σiωi

 e−2π/gs ε

16π3
eγE

∫
dy

n∏
i=1

e−πk2
i /(2ε)

(σi coshπPi(e
iy σiω

E
i /2 − e−iy σiω

E
i /2

)

sinhπPi(e
iy σiω

E
i /2

+ e−iy σiω
E
i /2

)

)
[

exp

{
2

π

∫ d2kE

k2
E

(
1 − e−πk2

E/ε
){

e−iωEy(cosh2(πP) + sinh2(πP))
}}

− 1

]
.

– correspond to real term in the effective action if we use principal value prescription for integrating
through the singularity at y ≡ x1 − x2 = 2π. 20



Propagator of a closed string of momentum k = (ω,P)

− 8πi
k2 − iε

=
8πi

ω2 − P2 + iε
,

Integration measure over the internal momenta

d2k/(4π2) = i d2kE/(4π2)

21



Once we have expressed the result in terms of sum over
Feynman diagrams, unitarity is manifest

– follows from Cutkosky rules since the effective action is real.

−(M2 + M∗2) is given by the sum of cut diagrams

...
... ... ...

...
...• ◦ ◦ •

1 2 21

(a) (b)

This gives
−(M2 + M∗2) = M†1M1

– statement of unitarity

But M1 is supposed to vanish due to IR divergence! 22



...
... ... ...

...
...• ◦ ◦ •

1 2 21

(a) (b)

If we keep the number of cut propagators fixed and sum over all
possible virtual closed strings, then the result does vanish as
we take the IR cut-off η to zero

Exponentiation of the virtual loop contribution gives 0 due to IR
divergence.

However if for fixed η we first sum over all possible cut
propagators and then take η → 0 limit, we get a finite result that
agrees with the unitarity prediction 23



Once we have understood how unitarity is realized, we can
compute semi-inclusive cross section

What is the cross section for producing a fixed set of closed
strings in specific energy range plus anything?

– requires fixing the mometa of a finite set of cut propagators
and summing over the rest

The specification of the final state closed strings can be done
either in the φNS, φR basis or in the χL, χR basis.

We shall choose χL, χR basis.

Incoming state: A single χR 24



Result: For infinitesimal δei, δe′i
∑

n

′
M1(ω1, n) M1(ω2, n)∗

= e−2π/gs


r∏

i=1

δei

ei


∏̀

i=1

δe′i
e′i

 δ (ω1 − ω2)
1

π
sinh

2π

ω1 −
r∑

i=1

ei −
∑̀
i=1

e′i


×cosh

2π

ω1 +
∑̀
i=1

e′i −
r∑

i=1

ei


∑′

n on the left hand side denotes sum over all final states that
contain

– r right sector closed string states of energies in the range
(e1,e1 + δe1), · · · , (er,er + δer)

– ` left sector closed string states of energies in the range
(e′1,e

′
1 + δe′1), · · · , (e′`,e′` + δe′`)

– and any number of other closed string states.

Note: For ` ≥ 1 this is the leading contribution. 25



Computation in the matrix model:

Sum over ‘any number of other states’ can be done in any basis

Free fermions and holes provide a convenient basis of states in
the matrix model. DeWolfe, Roiban, Spradlin, Volovich, Walcher

So we can sum over final states containing a given set of closed
strings and an arbitrary number of fermions and holes on either
side of the potential

– can be computed Moore, Plesser, Ramgoolam
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Pictorial representation

· · · · · ·
e1 e2 ere′1e′2e′` R

e−
∑

i ei

L
e′ −

∑
i e′i

P
e′ e

ω1

Thick lines: Fermion / hole, Thin lines: closed strings

At the leading order, the relevant term is the transmission
coefficient of the fermion / hole 27



· · · · · ·
e1 e2 ere′1e′2e′` R

e−
∑

i ei

L
e′ −

∑
i e′i

P
e′ e

ω1

∑
n

′
M1(ω1, n)M1(ω2, n)∗ =


r∏

i=1

δei

ei


∏̀

i=1

δe′i
e′i

 2πδ(ω1 − ω2)

∫ ω1−
∑

ei∑
e′i

de′

2π

[∣∣∣∣e−π(µ−2e′)
∣∣∣∣2 +

∣∣∣∣e−π(µ+2e′)
∣∣∣∣2
]

– agrees with the string theory result.

Note: No IR divergence issues even at the intermediate steps!
28



The matrix model avoids the IR divergences by representing
‘any number of other states’ by fermion hole pair states.

In string theory the role of single fermions / holes is played by
the rolling tachyon configuration on unstable D0-branes. A.S.

McGreevy, Verlinde; Takayanagi, Toumbas; Douglas, Klebanov, Kutasov, Maldacena, Martinec, Seiberg

This suggests that if in string theory we could calculate
amplitudes with such final states, we could avoid the IR
divergences even at the intermediate stages. 29



Speculation:

Rolling tachyon solution on unstable D-branes also exists in
critical string theory A.S.

– could provide a new basis of states that may be more useful
than the usual closed string states for some computation

For example, the free fermion basis is known to be better suited
for computing entanglement entropy in the matrix model

Das; Hartnoll, Mazenc; Das, Jevicki, Zheng

It will be worth exploring if the basis of rolling tachyon states
can provide a more useful basis for computing entanglement
entropy in string theory. 30


