Measurement-based quantum simulation of gauge theories

Takuya Okuda University of Tokyo, Komaba

@ Hirosifest, October 21, 2022. Work with Hiroki Sukeno.

- I went to Caltech as a graduate student in 2000. Hirosi was there as a faculty. In 2001 I became his student.
- Around the time, the hep-th people at Caltech and USC had joint activities.
- Hirosi, Okawa san, and I started working on a project about string field theory. We spent quite a bit of time, but eventually Okawa san wrote one paper and I wrote another paper, which was my first research paper.
- Later Hirosi and I wrote two papers on topological strings (one after I gradated).
- I found Hirosi's projects tough. To make progress I had to struggle, reading papers, talking to people, and coming up with related projects (and writing papers on them). Helped me become independent.

He was generous about his time for discussing physics. Whenever I had something I wanted to discuss with him, he either welcomed me into his room on the spot or booked a time in the near future.

- What did I learn from Hirosi?
 - Intensity during discussion
 - Importance of interacting with people
 - Thinking in a broader context
 - Diversity in research themes

Measurement-based quantum simulation of gauge theories

Work with Hiroki Sukeno, should have appeared just now

Plan of the talk

- Motivations and background
- Hamiltonian lattice gauge theories
- Measurement-based quantum computation and resource states
- Simulation protocols
- Holography/bulk-boundary correspondence

Motivations and background

- Quantum computing
 - Methods for quantum simulation of QFTs to be explored
 - New quantum simulation scheme for lattice QFTs
- Holography and quantum information
 - New type of bulk-boundary/holographic correspondence

Measurement-based simulation Schematic picture

- Choose Hamiltonian lattice model to simulate.
- Prepare (experimentally) a resource state with $|\Psi(0)\rangle$ on one boundary
- Measure qubits adaptively.
 - Implement discrete time evolution deterministically.
 - Deal with "byproduct operators" that arise probabilistically.
- Obtain $|\Psi(t)\rangle$.

Hamiltonian lattice \mathbb{Z}_2 gauge theory in 2+1 dimensions

• Notations: Pauli matrices

$$X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, Y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

- Cell complex for a square lattice.
 - 0-cells $\sigma_0 \in \Delta_0$
 - 1-cells $\sigma_1 \in \Delta_1$ —
 - 2-cells $\sigma_2 \in \Delta_2$
- Degrees of freedom are on 1-cells (bonds) $\sigma_1 \in \Delta_1.$

Hamiltonian lattice \mathbb{Z}_2 gauge theory

• Hamiltonian

$$H = -\sum_{\sigma_1 \in \Delta_1} X(\sigma_1) - \lambda \sum_{\sigma_2 \in \Delta_2} Z(\partial \sigma_2).$$

•
$$Z(\partial \sigma_2) = \prod_{\sigma_1 \in \partial \sigma_2} Z(\sigma_1).$$

• Gauss law constraint: for any $\sigma_0 \in \Delta_0$,

$$X(\partial^* \sigma_0) | \psi_{\text{phys}} \rangle = | \psi_{\text{phys}} \rangle.$$

• Generalization: \mathbb{Z}_2 gauge theory in 2+1 dimensions = $M_{(3,2)} \Rightarrow$ **Wegner's model** $M_{(d,n)}$: (n-2)-form gauge theory in d dimensions.

Trotterization

• Ideally we want to implement the continuous time evolution e^{-iHt} for any *t*. Decompose $H = H_1 + H_2$. $H_1 = -\sum X(\sigma_1)$ and

 $\sigma_1 \in \Delta_1$

$$H_2 = -\lambda \sum_{\sigma_2 \in \Delta_2} Z(\partial \sigma_2) \text{ do not commute.}$$

- In digital quantum simulation (such as by quantum circuits), we implement e^{-iH_1t} and e^{-iH_2t} separately.
- Suzuki-Trotter approximation: $e^{-Ht} \simeq \left(e^{-iH_1t/n}e^{-iH_2t/n}\right)^n$.

We want to realize
$$e^{-iH_1\delta t} = \prod_{\sigma_1\in\Delta_1} e^{i\delta tX(\sigma_1)}$$
 and $e^{-iH_2\delta t} = \prod_{\sigma_2\in\Delta_2} e^{i\lambda\delta tZ(\partial\sigma_2)}$.

Measurement-based quantum computation

Measurement-based quantum computation (MBQC) is, like the more standard circuit-based quantum computation, is a model capable of **universal** quantum computation. [Raussendorf-Briegel]

Measurement-based quantum computation

- One first prepares an entangled resource state (cluster state, AKLT state, ...).
- Computation is driven by local measurements that induce gate teleportation.
- (Measurement-base simulation of lattice models does NOT require universality. We use a resource state tailored to simulate lattice models.)

Gate teleportation

- X-eigenstate $X \mid \pm \rangle = \pm \mid \pm \rangle$
- $|\Psi
 angle$ is an arbitrary 1-qubit state

- Entangle $|\Psi\rangle$ and $|+\rangle$ by a controlled-Z gate $CZ_{ab}(=CZ_{ba})$.
- Measure the first qubit in bases $\{e^{i\xi Z} | \pm \rangle\}$. The measurement outcome is s = 0,1 corresponding to $\pm 1 = (-1)^s$.
- The state on the second qubit becomes $X^s e^{-i\xi X}H|\Psi\rangle$. Up to X^s and H, the unitary transformation (a part of time evolution) $e^{-i\xi X}$ is implemented. X^s is an example of a "byproduct operator".
- Different measurements give rise to Z^s as a byproduct operator. Note that $e^{-i\xi X}Z^s = Z^s e^{-(-1)^s\xi X}$. We may redefine ξ to absorb $(-1)^s$.

Resource state for \mathbb{Z}_2 lattice gauge theory in 2+1 dimensions

- Place one qubit on each 1-cell $\sigma_1 \in \Delta_1$ and 2-cell $\sigma_2 \in \Delta_2$.
- Entangle the neighboring 1cells and 2-cells by controlled-Z gates. $|\operatorname{res}\rangle = \prod_{\sigma_1 \in \partial \sigma_2} CZ_{\sigma_1,\sigma_2} |+\rangle^{\otimes \Delta_1 \cup \Delta_2}$

- A version of three-dimensional cluster state.
- Stabilizers $K(\sigma_2) = X(\sigma_2)X(\partial\sigma_2)$ and $K(\sigma_1) = X(\sigma_1)X(\partial^*\sigma_1).$

$$K(\boldsymbol{\sigma}_1) | \operatorname{res} \rangle = K(\boldsymbol{\sigma}_2) | \operatorname{res} \rangle = | \operatorname{res} \rangle$$

Measurement pattern = simulation protocol

- Trotterized time evolution is implemented by the measurement pattern and adaptive choices of the measurement angles ξ to absorb minus signs $(-1)^s$.
- Main result of the paper. The resource state reflects the spacetime structure of the simulated gauge theory.

SPT order of the resource state

- Often, the computational power of a resource state can be attributed to the symmetry-protected topological (SPT) order. Examples: AKLT state and 1d cluster state protected by $\mathbb{Z}_2 \times \mathbb{Z}_2$.
- Claim: the natural resource state (qubits on *n* and (n 1)-cells) for simulating Wegner's model $M_{(d,n)}$ is protected by global \mathbb{Z}_2 (n 1)- and $\mathbb{Z}_2 (d n)$ -form symmetries.
- For the \mathbb{Z}_2 gauge theory in 2 + 1 dimensions $M_{(3,2)}$, they are both one-form symmetries generated by membrane (surface) operators $\prod_{\sigma_2 \subset z_2} X(\sigma_2)$ with 2-cycle z_2 ($\partial z_2 = 0$) and $\prod_{\sigma_1 \subset z_2^*} X(\sigma_1)$ with dual 2-cycle z_2^* ($\partial^* z_2^* = 0$).

SPT order of the resource state

- The SPT order of the resource state for $M_{(d,n)}$ can be demonstrated by showing that "gauging" the symmetries of the resource state and the product state give rise to distinct topological orders. [Levin-Gu, Yoshida]
- Other evidence for the SPT order includes
 - appearance of a projective representation on the boundary
 - appearance of a projective representation in the tensor network representation of the resource state

Generalizations/extensions in the paper

- In the paper we generalize the measurement-based simulation to
 - (n-2)-form gauge symmetry in d dimensions (Wegner's generalized Ising model)
 - \mathbb{Z}_N and \mathbb{R} (non-compact U(1)) gauge groups
 - Kitaev Majorana chain
- Enforcing Gauss law constraint against noise by error correction
- Imaginary time evolution
- Partition function in terms of the resource state

New type of holography

- Holography for 1d AKLT state has been discussed. [Miyake]
- The simulated theory lives on the codimension-1 boundary of the resource state.
- The states of the simulated theory are in the Hilbert space of the edge modes of the SPT state. They are degenerate.
- Symmetries of the bulk and the boundary are related.
- Unlike other holographic relations (AdS, dS, Minkowski, ...), the direction transverse to the boundary is the **real time** direction for the simulated theory, and a spatial direction for the bulk resource state.

Symmetries in bulk and boundary

- Symmetries on the boundary
 - Gauge (0-form) symmetry \Rightarrow Gauss law constraint $X(\partial^*\sigma_0) = 1 \Rightarrow$ Shape invariance of the loop operator X(C)with $\partial^*C = 0 \Rightarrow \mathbb{Z}_2$ 1-form symmetry
- Symmetries in the bulk resource state
 - Stabilizers \Rightarrow Invariance under surface operators X(S) with $\partial S = 0$ and $X(\tilde{S})$ with $\partial^* \tilde{S} = 0$ (or = C).

Toward experimental realization

- The measurement-based approach requires only simple interactions (such as Ising interactions) between qubits because interactions are only used to create the resource state.
- Since the resource state includes the time direction, the measurement-based approach requires more qubits than the circuit-based approach.
- Possible experimental platforms:
 - Optical lattices formed by cold atoms
 - Cluster states (for continuous variables) created by photons

Measurement-based simulation (Recap)

- Choose Hamiltonian lattice model to simulate.
- Prepare (experimentally) a resource state with $|\Psi(0)\rangle$ on one boundary
- Measure qubits adaptively.
 - Implement discrete time evolution deterministically.
 - Deal with byproduct operators that arise probabilistically.
- Obtain $|\Psi(t)\rangle$.

Summary

- Proposed a measurement-based quantum simulation scheme for abelian lattice (possibly higher-form) gauge theories and the Kitaev Majorana chain.
- Defined resource states for the lattice gauge theories.
- Demonstrated that the resource states are have (higher-form) SPT orders.

Future directions

- Non-abelian gauge groups.
- More general fermions.
- Characterization of the higher-form SPT order by an analog of group cohomology or cobordism?
- Relate SPT order to computational power.
- Experimental realizations.
- Quantum simulation on cloud quantum computers with midcircuit measurement capabilities.

Thank you for the support over the years

Happy 60th birthday!

