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1. Prelude



My postdoc days at Caltech (September of 2000 to August of 2003)

Seiberg and Witten found that noncommutative gauge theories (gauge the-
ories based on noncommutative geometry) can be realized on D-branes in
string theory.

Seiberg and Witten, hep-th/9908142

We studied the coupling of noncommutative gauge theories to gravity by
calculating disk amplitudes with one closed string and an arbitrary number
of open strings.

Okawa and Ooguri, hep-th/0012218



We then realized that the energy-momentum tensor of the gauge theory on
D-branes in the decoupling limit (which was also called the DKPS limit or
the Sen-Seiberg limit) can be derived using the same method.

Okawa and Ooguri, hep-th/0103124

Futhermore, we derived an exact expression for the Seiberg-Witten map
by studying the coupling of non-commutative gauge theories to Ramond-
Ramond gauge fields in string theory.

Okawa and Ooguri, hep-th/0104036



On Wednesdays, the Caltech people make a trip to USC to participate in the
seminar.

On Fridays, the USC people come to Caltech to participate in the seminar.

Sometimes we have two seminars a day.

Sometimes we have four seminars a week!

We had a gorgeous selection of seminars, which was an ideal environment for
postdocs like me.
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One of such seminars which influenced me a lot was the one by Ashoke Sen
on open string field theory. I was impressed by their geometric method based
on CFT to describe various string fields.

I got interested in this subject and wrote my first paper on string field theory,
and got a postdoc ticket to MIT.
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I realized that my current research is deeply rooted in my postdoc days at
Caltech.

The motivation behind the work I will explain today is directly related to the
calculation of the energy-momentum tensor of the gauge theory on D-branes
in the decoupling limit by Hirosi and myself.

The aim of the work I will explain today is its application to open string field
theory.



2. Introduction



Closed string theory is a consistent theory including quantum gravity, but it
is defined only perturbatively.

While closed string field theory is useful, for example, in the discussion of
mass renormalization or vacuum shift, it would not be promising to use closed
string field theory for a nonperturbative definition of closed string theory.

This is because gauge invariance in the classical theory is anomalous and we
need correction terms at every loop order to recover gauge invariance.



The most promising approach to the nonperturbative definition of closed
string theory would be the AdS/CFT correspondence, but the world-sheet
picture is gone in the strict low-energy limit of the gauge theory on D-branes.

It might be useful to consider the theory on D-branes before taking the low-
energy limit.

We may think that such a theory would be open-closed string field theory,
but my claim is that it can be described by open string field theory with the
source term for gauge-invariant operators.

This seems to be the case at least for the bosonic string as a consequence of
a few nontrivial facts.



Unlike closed string field theory, gauge invariance of open bosonic string field
theory is not anomalous, and we do not need correction terms to the classical
action.

It is in general difficult to construct gauge-invariant operators in string field
theory, but a class of gauge-invariant operators are constructed in open
bosonic string field theory.

hep-th/0111092, Hashimoto and Itzhaki
hep-th/0111129, Gaiotto, Rastelli, Sen and Zwiebach

We can construct a gauge-invariant operator for each on-shell closed string
state, and peculiarly it is linear in the open string field.



Open string field theory with the source term for gauge-invariant operators
can be obtained in a special limit of open-closed string field theory, and it
generates all Feynman diagrams which contain at least one boundary.

hep-th/9202015, Zwiebach

Purely closed-string diagrams without boundaries are not generated, but
their contributions vanish in the low-energy limit we are interested in.



It is crucially important whether or not this scenario can be extended to open
superstring field theory.

The long-standing problem of constructing an action involving the Ramond
sector has been overcome in superstring field theory.

Kunitomo and Okawa, arXiv:1508.00366
Sen, arXiv:1508.05387

While the formulations of open superstring field theory need to be devel-
oped further, we consider that we are in a position to discuss how we use
open superstring field theory to understand the mechanism which realizes
the AdS/CFT correspondence.



So what should we do?

Instead of scattering amplitudes, we should consider correlation functions of
gauge-invariant operators in open string field theory.

We evaluate correlation functions in the 1/N expansion and turn it into the
genus expansion of closed string theory.

This step would be the most difficult part and we need to generalize the
world-sheet derivation of the large N duality of the topological string by
Ooguri and Vafa to the superstring.

hep-th/0205297, Ooguri and Vafa



The quantum treatment of open string field theory must be crucial for the
duality, but such calculations would be technically difficult for open super-
string field theory.

We do not need to calculate correlation functions explicitly, but we want to
understand the structure of the theory in the low-energy limit.

Homotopy algebras can be useful tools for this purpose.

We have used homotopy algebras such as A∞ algebras and L∞ algebras in
the construction of actions of string field theory.

However, we might not have fully appreciated the power of homotopy alge-
bras, and they can be also useful in solving the theory.
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3. A∞ algebra



Open bosonic string field theory is described in terms of string field, which
is a state of the boundary conformal field theory.

The Hilbert space H can be decomposed based on the ghost number as

H = . . .⊕H−1 ⊕H0 ⊕H1 ⊕H2 ⊕ . . . ,

and the classical action is written in terms of Ψ in H1.

Consider an action of the form:

S = − 1

2
⟨Ψ, V1(Ψ) ⟩ − g

3
⟨Ψ, V2(Ψ,Ψ) ⟩ − g2

4
⟨Ψ, V3(Ψ,Ψ,Ψ) ⟩+O(g3) ,

where ⟨A1, A2 ⟩ is the BPZ inner product of A1 and A2, Vn is an n-string
product, and g is the string coupling constant.



This action is invariant up to O(g3) under the gauge transformation with the
gauge parameter Λ in H0 given by

δΛΨ = V1(Λ) + g (V2(Ψ,Λ)− V2(Λ,Ψ) )

+ g2 (V3(Ψ,Ψ,Λ)− V3(Ψ,Λ,Ψ) + V3(Λ,Ψ,Ψ) ) +O(g3)

if the multi-string products satisfy the following relations:

V1(V1(A1)) = 0 ,

V1(V2(A1, A2))− V2(V1(A1), A2)− (−1)A1V2(A1, V1(A2)) = 0 ,

V1(V3(A1, A2, A3)) + V3(V1(A1), A2, A3)

+ (−1)A1V3(A1, V1(A2), A3) + (−1)A1+A2V3(A1, A2, V1(A3))

− V2(V2(A1, A2), A3) + V2(A1, V2(A2, A3)) = 0 .

These relations can be extended to higher orders and called A∞ relations.
(In this talk all the discussions on cyclic properties are omitted.)



Let us simplify the description of A∞ relations in three steps.

Step 1: Degree

We introduce degree defined by

deg(A) = ϵ(A) + 1 mod 2 ,

where ϵ(A) is the Grassmann parity of A, and we define

ω(A1, A2) = (−1)deg(A1)⟨A1, A2 ⟩ ,
M1(A1) = V1(A1) ,

M2(A1, A2) = (−1)deg(A1) V2(A1, A2) ,

M3(A1, A2, A3) = (−1)deg(A2) V3(A1, A2, A3) ,

...



Step 2: Tensor products of H

We denote the tensor product of n copies of H by H⊗n. For an n-string
product cn(A1, A2, . . . , An) we define a corresponding operator cn which maps
H⊗n into H by

cn (A1 ⊗A2 ⊗ . . .⊗An) ≡ cn(A1, A2, . . . , An) .

We also introduce the vector space for the zero-string space denoted by H⊗0.
It is a one-dimensional vector space given by multiplying a single basis vector
1 by complex numbers. The vector 1 satisfies

1⊗A = A , A⊗ 1 = A

for any string field A.



The A∞ relations are written as

M1M1 = 0 ,

M1M2 +M2 (M1 ⊗ I+ I⊗M1 ) = 0 ,

M1M3 +M3 (M1 ⊗ I⊗ I+ I⊗M1 ⊗ I+ I⊗ I⊗M1 )

+M2 (M2 ⊗ I+ I⊗M2 ) = 0 ,

...

where we denoted the identity map from H to H by I .



Step 3: Coderivations

It is convenient to consider linear operators acting on the vector space TH
defined by

TH = H⊗0 ⊕H⊕H⊗2 ⊕H⊗3 ⊕ . . . .

We denote the projection operator onto H⊗n by πn.

For a map cn from H⊗n to H, we define an associated operator cn acting on
TH as follows.

cn πm = 0 for m < n ,

cn πn = cn πn ,

cn πn+1 = ( cn ⊗ I+ I⊗ cn )πn+1 ,

cn πn+2 = ( cn ⊗ I⊗ I+ I⊗ cn ⊗ I+ I⊗ I⊗ cn )πn+2 ,

...



An operator acting on TH of this form is called a coderivation.

We define M by
M = M1 +M2 +M3 + . . .

for coderivations Mn associated with Mn. Then the A∞ relations can be
compactly expressed as

M2 = 0 .



When we consider projections onto subspaces of H, homotopy algebras have
turned out to provide useful tools.

• Projection onto on-shell states → on-shell scattering amplitudes
Kajiura, math/0306332

• Projection onto the physical sector
→ mapping between covariant and light-cone string field theories

Erler and Matsunaga, arXiv:2012.09521

• Projection onto the massless sector → the low-energy effective action
Sen, arXiv:1609.00459
Erbin, Maccaferri, Schnabl and Vošmera, arXiv:2006.16270
Koyama, Okawa and Suzuki, arXiv:2006.16710

Let us decompose M as
M = Q+m ,

where Q describes the free theory and m is for interactions. We consider
projections which commute with Q.



We denote the projection operator by P :

P 2 = P , P Q = QP .

We then promote P on H to P on TH as follows:

Pπ0 = π0 ,

Pπ1 = P π1 ,

Pπ2 = (P ⊗ P )π2 ,

Pπ3 = (P ⊗ P ⊗ P )π3 ,

...

The operators Q and P satisfy

P2 = P , QP = PQ .



In the context of the projection onto the massless sector, the propagator h
for massive fields is given by

h =
b0
L0

( I− P ) .

In general we consider h satisfying the following relations:

Qh+ hQ = I− P , hP = 0 , P h = 0 , h2 = 0 .

We then promote h on H to h on TH as follows:

hπ0 = 0 ,

hπ1 = hπ1 ,

hπ2 = (h⊗ P + I⊗ h )π2 ,

hπ3 = (h⊗ P ⊗ P + I⊗ h⊗ P + I⊗ I⊗ h )π3 ,

...



The relations involving Q, P , and h are promoted to the following relations

Qh+ hQ = I−P , hP = 0 , Ph = 0 , h2 = 0 ,

where I is the identity operator on TH.

The important point is that the theory after the projection inherits the A∞
structure from the theory before the projection as follows:

Q+m → PQP+Pm
1

I+ hm
P ,

which is known as homological perturbation lemma.



On-shell scattering amplitudes at the tree level can be calculated from this
formula with the projection onto on-shell states.

On-shell scattering amplitudes at the loop level can also be calculated by
extending A∞ algebras to quantum A∞ algebras (to be discussed later).

The formula from quantum A∞ algebras has not been explored much.

In addition to scattering amplitudes we are also interested in correlation
functions.



Actually, when actions are written in terms of homotopy algebras, expressions
of on-shell scattering amplitudes are universal for both string field theories
and ordinary field theories.

Let us study scalar field theories in terms of quantum A∞ algebras to gain
insights into quantum aspects of string field theories.

We also find that correlation functions of scalar field theories can also be
described in terms of homotopy algebras.

Okawa, arXiv:2203.05366



4. Formula for correlation functions



Let us consider φ3 theory in d dimensions:

S =

∫
ddx

[
− 1

2
∂µφ(x) ∂

µφ(x)− 1

2
m2 φ(x)2 +

1

6
g φ(x)3

]
.

To describe this action in terms of an A∞ algebra, we introduce two copies
of the vector space of functions of x. We denote them by H1 and H2, and H
is given by

H = H1 ⊕H2 .

We define ω, Q, and m by

ω (φ1(x), φ2(x) ) =

∫
ddxφ1(x)φ2(x) for φ1(x) ∈ H1 , φ2(x) ∈ H2 ,

Qφ(x) = ( − ∂2 +m2 )φ(x) ∈ H2 for φ(x) ∈ H1 ,

m (φ1(x)⊗ φ2(x) ) = − g

2
φ1(x)φ2(x) ∈ H2 for φ1(x) , φ2(x) ∈ H1 .



The A∞ structure of the classical action is described by Q + m. The A∞
relations are trivially satisfied for this theory without gauge symmetries.

When we consider on-shell scattering amplitudes, we use the projection onto
on-shell states. The action of h on φ(x) in H2 is given by

hφ(x) =

∫
ddy

∫
ddp

(2π)d
e−ip (x−y)

p2 +m2 − iϵ
φ(y) .

In the case of the projection onto on-shell states, PQP vanishes and on-shell
scattering amplitudes at the tree level can be calculated from

Pm
1

I+ hm
P .



When we discuss the quantum theory, we need to include conterterms, and
the counterterms are included inm. On-shell scattering amplitudes including
loop diagrams can be calculated from

Pm
1

I+ hm+ iℏhU
P .

The operator U consists of maps from H⊗n to H⊗(n+2). When the vector
space H is given by H1 ⊕ H2, the operator U incorporates a pair of basis
vectors of H1 and H2. We denote the basis vector of H1 by eα, where α is
the label of the basis vectors. For H2 we denote the basis vector by eα, and
repeated indices are implicitly summed over. We use the following choice for
eα and eα:

. . .⊗ eα ⊗ . . .⊗ eα ⊗ . . . =

∫
ddp

(2π)d
. . .⊗ e−ipx ⊗ . . .⊗ eipx ⊗ . . . .



The action of U on H⊗0 is given by

U1 = eα ⊗ eα + eα ⊗ eα ,

and the action of U on H is given by

Uφ(x) = eα ⊗ eα ⊗ φ(x) + (−1)deg(φ)eα ⊗ φ(x)⊗ eα

+ (−1)deg(φ)φ(x)⊗ eα ⊗ eα + eα ⊗ eα ⊗ φ(x)

+ eα ⊗ φ(x)⊗ eα + (−1)deg(φ)φ(x)⊗ eα ⊗ eα .

A∞ algebras are extended to quantum A∞ algebras in the quantum theory.
The quantum A∞ relations are again trivially satisfied for this theory without
gauge symmetries.



If we recall that the projection onto the massless sector corresponds to inte-
grating out massive fields, carrying out the path integral completely should
correspond to the projection with

P = 0 .

The associated operator P corresponds to the projection onto H⊗0:

P = π0 .

This may result in a trivial theory at the classical case, but it can be nontrivial
for the quantum case and in fact it is exactly what we do when we calculate
correlation functions.



Let us consider scalar field theories in Euclidean space. We define f by

f =
1

I+ hm− hU
,

which corresponds to
1

I+ hm+ iℏhU

in Minkowski space.

While Pmf P vanishes, f is nonvanishing and this operator plays a central
role in generating Feynman diagrams.

We claim that information on correlation functions is encoded in f 1 associ-
ated with the case where P = 0.



More explicitly, correlation functions are given by

⟨φ(x1)φ(x2) . . . φ(xn) ⟩
= ωn (πn f 1 , δd(x− x1)⊗ δd(x− x2)⊗ . . .⊗ δd(x− xn) ) ,

where

ωn (φ1(x)⊗ φ2(x)⊗ . . .⊗ φn(x) , φ
′
1(x)⊗ φ′

2(x)⊗ . . .⊗ φ′
n(x) )

=

n∏
i=1

ω (φi(x) , φ
′
i(x) ) .

The formula may look complicated, but it states that πn f 1 gives the n-point
function by simply replacing x with xi in the i-th sector in H⊗n.



For example, when π3 f 1 takes the form

π3 f 1 =
∑
a

fa(x)⊗ ga(x)⊗ ha(x) ,

the three-point function is given by

⟨φ(x1)φ(x2)φ(x3) ⟩
= ω3 (π3 f 1 , δd(x− x1)⊗ δd(x− x2)⊗ δd(x− x3) )

=
∑
a

fa(x1) ga(x2)ha(x3) .

This can be summarized as the following replacement rule:

π3 f 1 =
∑
a

fa(x)⊗ ga(x)⊗ ha(x)

↓

⟨φ(x1)φ(x2)φ(x3) ⟩ =
∑
a

fa(x1) ga(x2)ha(x3) .



Let us first demonstrate that correlation functions of the free theory are
correctly reproduced. We denote correlation functions of the free theory by
⟨φ(x1)φ(x2) . . . φ(xn) ⟩(0). We find

π2 f 1 = π2 hU1 = eα ⊗ h eα =

∫
ddp

(2π)d
e−ipx ⊗ 1

p2 +m2
eipx .

Following the replacement rule, the two-point function is given by

⟨φ(x1)φ(x2) ⟩(0) =
∫

ddp

(2π)d
e−ip (x1−x2)

p2 +m2
.



The four-point function can be calculated from π4 f 1. Since

π4 f 1 = π4 hUhU1

= eβ ⊗ eα ⊗ h eα ⊗ h eβ + eα ⊗ eβ ⊗ h eα ⊗ h eβ

+ eα ⊗ h eα ⊗ eβ ⊗ h eβ ,

the four-point function is given by

⟨φ(x1)φ(x2)φ(x3)φ(x4) ⟩(0)

= ⟨φ(x2)φ(x3) ⟩(0) ⟨φ(x1)φ(x4) ⟩(0) + ⟨φ(x1)φ(x3) ⟩(0) ⟨φ(x2)φ(x4) ⟩(0)

+ ⟨φ(x1)φ(x2) ⟩(0) ⟨φ(x3)φ(x4) ⟩(0) .

We have thus reproduced Wick’s theorem for four-point functions, and it is
not difficult to extend the analysis to six-point functions and further.



Let us next consider φ3 theory. The action including counterterms is given
by

S =

∫
ddx

[
1

2
Zφ ∂µφ(x) ∂µφ(x) +

1

2
Zmm2 φ(x)2 − 1

6
Zg g φ(x)

3 − Y φ(x)

]
,

where Y , Zφ, Zm, and Zg are constants. We expand Y , Zφ, Zm, and Zg in
g as follows:

Y = g Y (1) +O(g3) ,

Zφ = 1 + g2Z(1)
φ +O(g4) ,

Zm = 1 + g2Z(1)
m +O(g4) ,

Zg = 1 + g2Z(1)
g +O(g4) .

The one-point function is given by

⟨φ(x1) ⟩ =
g

m2

[
1

2

∫
ddp

(2π)d
1

p2 +m2
+ Y (1)

]
+O(g2) .



We have reproduced the contribution from the one-loop tadpole diagram:

Note that the correct symmetry factor appeared.

The two-point function is given by

⟨φ(x1)φ(x2) ⟩ = ω2 (π2 f 1 , δd(x− x1)⊗ δd(x− x2) )

= ⟨φ(x1)φ(x2) ⟩(0) + ⟨φ(x1)φ(x2) ⟩(1)C

+ ⟨φ(x1) ⟩(1) ⟨φ(x2) ⟩(1) +O(g3) .



The connected part is given by

⟨φ(x1)φ(x2) ⟩(1)C

= − g2
∫

ddp

(2π)d
e−ip (x1−x2)

( p2 +m2 )2

[
− 1

2

∫
ddℓ

(2π)d
1

(ℓ+ p)2 +m2

1

ℓ2 +m2

+ Z(1)
φ p2 + Z(1)

m m2

]
+ g2

∫
ddp

(2π)d
e−ip (x1−x2)

m2 ( p2 +m2 )2

[
1

2

∫
ddℓ

(2π)d
1

ℓ2 +m2
+ Y (1)

]
.



We can show that correlation functions from our formula satisfy the Schwinger-
Dyson equations as an immediate consequence of the structure

( I+ hm− hU )
1

I+ hm− hU
1 = 1 .

We can extend the formula for correlation functions to incorporate Dirac
fermions.

Konosu and Okawa, in progress



5. Renormalization group



The construction of h from h is not unique. In addition to P for P = 0, let
us introduce PΛ for the projection onto modes below the energy scale Λ, and
use h given by

h = hH + hL ,

where the propagator hH for high-energy modes satisfy

QhH + hH Q = I−PΛ , hH PΛ = 0 , PΛ hH = 0 , h2
H = 0

and the propagator hL for low-energy modes satisfy

QhL +hLQ = PΛ −P , hL ( I−PΛ ) = 0 , ( I−PΛ )hL = 0 , h2
L = 0 .



Then we can write f P as

1

I+ hm− hU
P

=
1

I+ hH m− hH U

(
I+ hL (m−U )

1

I+ hH m− hH U

)−1

P

=
1

I+ hH m− hH U
PΛ

1

I+ hLmΛ − hLU
P ,

where

mΛ = PΛ

[
(m−U )

1

I+ hH m− hH U
+U

]
PΛ .

The operator mΛ describes the Wilsonian effective action at the energy scale
Λ, and correlation functions are calculated from a product of the operator
for high-energy modes and the operator for low-energy modes.



We can introduce a sequence of projections and write f P as

1

I+ hm− hU
P =

∏
i

1

I+ himi − hiU
Pi

with
h =

∑
i

hi .

While perturbative expressions for correlation functions with the previous h
do not converge, this choice of h may lead to nonperturbative expressions for
correlation functions.



6. Summary



We proposed the formula

⟨φ(x1)φ(x2) . . . φ(xn) ⟩ = ωn (πn f 1 , δd(x−x1)⊗δd(x−x2)⊗. . .⊗δd(x−xn) )

for correlation function of scalar field theories in perturbation theory using
quantum A∞ algebras.

Our ultimate goal is to provide a framework to prove the AdS/CFT corre-
spondence using open string field theory with source terms for gauge-invariant
operators. The quantum treatment of open string field theory must be cru-
cial for this program, and we hope that quantum A∞ algebras will provide
us with powerful tools in this endeavor.



Happy 60th birthday, Ooguri san!

大栗さん、還暦おめでとうございます！




