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Happy birthday, Hirosi!





Caltech 2006: True California (Boulevard) View



... and where serious work was done, in a truly inspiring
environment:



Pre-fab-era IPMU: First F-theory (annual) conference



... and at Caltech



2006: the solitary scooter



Some serious trendsetting: 2022, worldwide



The real question is: how does he do ALL these things?

We should all aspire to a fraction of what Hirosi has so far achieved in our
field, and for our field and beyond! Apart from the obvious research
leadership, he’s an author, science educator, a movie advisor, etc, etc, and
chairs these wonderful institutions:



Symmetries

One outstanding feature of Hirosi’s research is its breadth in terms of
relevance for different fields: CFT, string theory, quantum gravity, holography,
mathematics, etc.

Symmetries are central to a multitude of questions

• QFT: d = 2,3,4, · · ·

• Holography

• Quantum Gravity, string theory, Swampland, Weak Gravity

• Math: topology, category theory

Goal of this talk is to summarize recent progress on constructions of
somewhat unexpected symmetries, aspiring to touch upon almost all of the
above topics.



Symmetries from Topological Operators

2022: Topological defects correspond to symmetries.

This is a long way from Emmy Noether∗’s 1918 continuous ”Lieschen” type
symmetries, though the core idea is the same:

O
Dg

d−1

* Whose 140th birthday was
also this year in March.



Higher Form, Higher Group, Higher Cat(egorie)s

Recent explosion of types of symmetries:

1. Higher-form symmetries Γ(p):
p-dimensional charged defects, whose charge is measured by topological
operators Dg

q=d−(p+1), g ∈ Γ(p) [Gaiotto, Kapustin, Seiberg, Willett, 2014]

Dg
q ⊗Dh

q = Dgh
q , g, h ∈ Γ(p)

Background fields are Bp+1 ∈ Hp+1(M,Γ(0)).

2. Higher-group symmetries: [Sharpe][Tachikawa][Benini, Cordova, Hsin]...
Higher-form symmetries might not form product groups, but a type of
group extension. E.g. 0-form F (0) and Γ(1) form a 2-group

δB2 = B∗
1Θ

where Θ ∈ H2(BF (0),Γ(1)), and B1 :Md→ BF (0).



3. Non-invertible symmetries:
relax group law⇒ fusion algebra

Di
p ⊗Dj

p =
⊕
k

N ij
k Dk

p

This is very well developed in 2d and to some extent 3d, but unchartered
until recently in d > 3.

4. Higher-categorical symmetries:
topological operators of dimensions 0, · · · , d− 1, with non-invertible
fusion.

⇒ Formulation in terms of objects and higher-morphisms and mutual
consistency conditions.

The main (surprising?) point to remember is:
these are symmetries that occur in vanilla 4d Yang-Mills theories (no susy, no
matter).



Non-invertible Symmetries in d > 3:

In the context of QFTs in d > 3 within the last year

[Heidenreich, McNamara, Monteiro, Reece, Rudelius, Valenzuela]

[Koide, Nagoya, Yamaguchi]

[Kaidi, Ohmori, Zheng]

[Choi, Cordova, Hsin, Lam, Shao]

[Roumpedakis, Seifnashri, Shao]

[Bhardwaj, Bottini, SSN, Tiwari]

[Antinucci, Galati, Rizi]

[Choi, Cordova, Hsin, Lam, Shao]

[Kaidi, Zafrir, Zheng]

[Choi, Lam, Shao]

[Cordova, Ohmori]

[Bhardwaj, SSN, Wu]

[Bartsch, Bullimore, Ferrari, Pearson]

· · ·



Plan

1. Generalized Gauging and Non-invertible Symmetries

2. Symmetry Categories and their Webs

3. Symmetry TFT and Non-invertible Symmetries in holography/string
theory

This work was done together with phantastic collaborators:

Lakshya Bhwardaj (Oxford), Lea Bottini (Oxford), Apoorv Tiwari (Stockholm)
Lakshya Bhwardaj (Oxford), Jingxiang Wu (Oxford)

Fabio Apruzzi (Bern/Padova), Ibou Bah (JHU), Federico Bonetti (Oxford)



Symmetry Categories

Consider a d-dimensional QFT T. Then the set of all topological defects

Di
q , q = 0, · · · , d− 1

will form a (d− 1)-category.

D2

D1

D′
1D0

• Objects Dd−1

• 1-morphisms Dd−2 between objects

• 2-morphism Dd−3 between 1-morphisms

• · · ·

• (d− 2)-morphisms: local operators

Topological operators can be genuine or non-
genuine (ends of other topological operators)

The symmetry category CT encodes the fu-
sion of these topological defects. ”Higher fu-
sion category”. Higher =2: [Douglas, Reutter].



Non-invertibles from Gauging

2d: gauging of fusion 1-categories [Runkel, Schweigert, Carqueville, ...][Bhardwaj,

Tachikawa]

3d: [Barkeshli, Bonderson, M. Cheng, Z. Wang][Teo, Hughes, Fradkin].

d > 2: Distinct – and sometimes overlapping – approaches developed in the last
year, motivated by QFT:

– [Kaidi, Ohmori, Zheng] Mixed anomalies to non-invertibles

– [Choi, Cordova, Hsin, Lam, Shao] Duality defects

– [Bhardwaj, Bottini, SSN, Tiwari] Gauging outer automorphisms

Examples:

• Spin(4N) Yang-Mills in any dim has a Z(0)
2 outer automorphism, gauging

results in Pin+(4N)

• Gauging charge conjugation in Yang-Mills

• S3-gauging of Spin(8) Yang-Mills⇒ allows non-abelian discrete gauging



Warmup: Gauging in 1-categories

Consider a 3d theory T, finite 0-form symmetry G generated by Dg
2 , g ∈ G. Let

C and CG be the cat of topological lines before and after gauging.

Objects of CG:

1. Gauge-invariants topological lines of C, labeled by orbits O of G:

D
(O)
1 =

⊕
i∈O

D
(i)
1

2. Topological lines D(R)
1 , R= irrep of G.

They form a subcategory Rep(G)⇒ 1d TQFTs with G symmetry.

1d G-TQFT

T gauge G

Topological line defect D1

T/G

3. Mixture of both: GO be the stabilizer group of object in D
(O)
1 . We can

dress D(0)
1 by a rep RO of GO: D(O,RO)

1



Morphisms and Fusion

Morphisms in CG are topological point-operators:

1. G-invariant combinations of morphisms of C, i.e. operators on
G-invariant topological lines

2. Morphisms in the category Rep(G), i.e. 0d interfaces between 1d TQFTs

Fusion of Lines in CG:

1. Fusion in Rep(G):

D
(R)
1 ⊗D

(R′)
1 = D

(RR′)
1 , R,R′ ∈ Ĝ

2. Mixed fusion
D

(O,RO)
1 ⊗D

(S)
1 = D

(O,ROSO)
1

where SO is the image of S under Ĝ→ ĜO.



Note: Fusion is determined from the morphism space:

D
(O′′,RO′′ )
1

D
(O,RO)
1 D

(O′,RO′ )
1

Then
D

(O,RO)
1 ⊗D

(O′,R′
O′ )

1 ⊃ dim
(
V

(O′′,RO′′ )
(O,RO),(O′,RO′ )

)
×D

(O′′,R′′
O′′ )

1



Example: Gauging Outer Automorphisms

3d Spin(4N) Yang-Mills, and the outer automorphism G(0) = Z(0)
2 that

exchanges the two factors in

Γ(1) = Z(S)
2 ×Z(C)

2

Lets consider the category formed by the topological lines. Objects in this cat
are:

Cob
Spin(4N) =

{
D

(id)
1 ,D

(S)
1 ,D

(C)
1 ,D

(V )
1

}
V is the diagonal of S and C.

G(0) = Z(0)
2 acts as the outer automorphism:

D
(S)
1 ←→ D

(C)
1 , D

(id)
1 and D

(V )
1 are invariant

and gauging results in Pin+(4N).



D
(g)
2

D
(S)
1

g ·D(S)
1 = D

(C)
1



Gauged Category

After gauging, the dual to the 0-form symmetry becomes a topological line
D

(−)
1 . Objects in CZ(0)

2
= CPin+(4N) are one of:

1. Orbits, i.e. invariants:

D
(SC)
1 :=

(
D

(S)
1 ⊕D

(C)
1

)
CSpin

to be a simple object. Furthermore we have D
(id)
1 and D

(V )
1 .

2. The topological lines that generate Rep(Z2): D
(id)
1 and D

(−)
1 .

3. Combination of invariants and D
(−)
1 :

D
(V−)
1

Thus
Cob

Pin+(4N) =
{
D

(id)
1 ,D

(−)
1 ,D

(SC)
1 ,D

(V )
1 ,D

(V−)
1

}



Fusion in CPin+(4N)

It is useful to compute the fusion in the original CSpin(4N):(
D

(SC)
1 ⊗D

(V )
1

)
CSpin(4N)

=
(
(D

(S)
1 ⊕D

(C)
1 )⊗D

(V )
1

)
=
(
D

(C)
1 ⊕D

(S)
1

)
=
(
D

(SC)
1

)
CSpin(4N)

To see whether D(SC)
1 is also present in the gauged category we need to

determine the Z2 transformation properties of the morphisms

D
(SC)
1 ⊗D

(V )
1 → D

(SC)
1

There are two morphisms:

D
(S⊗C,V )
0 : D

(S)
1 ⊗D

(C)
1 → D

(V )
1

D
(C⊗S,V )
0 : D

(C)
1 ⊗D

(S)
1 → D

(V )
1

These are exchanged under Z(0)
2 and thus the morphism space is 2d splitting

as 1+ ⊕ 1−. Since both Z2 representations are present:

D
(SC)
1 ⊗D

(V )
1 = D

(SC)
1

D
(SC)
1 ⊗D

(V−)
1 = D

(SC)
1



Fusion in CPin+(4N)

(
D

(SC)
1 ⊗D

(SC)
1

)
CSpin(4N)

=
(
2D

(id)
1 ⊕ 2D

(V )
1

)
CSpin(4N)

Again determining the morphism spaces and their Z2 representation
decomposition we find

D
(SC)
1 ⊗D

(SC)
1 = D

(id)
1 ⊕D

(−)
1 ⊕D

(V )
1 ⊕D

(V−)
1

In fact this category is of Tambara-Yamagami type for Z2 ×Z2 and has
associators identifying it with

CPin+(4N) = Rep(D8)



Fusion 2-categories

Objects: D2 topological surfaces; e.g. Γ(p=d−3) form symmetry

1-Morphisms: D1 topological lines; e.g. Γ(p=d−2) form symmetry

2-Morphisms: D0 topological point operators

=

D
(2)
2D

(1)
2 D

(12)
2



D
(a,b)
1 D

(a,b)′

1

D
(a)
2

D
(b)
2



Gauging 2-categories

Start with a theory with a 2-fusion category symmetry C, with a 0-form
symmetry acting on C [Bhardwaj, Bottini, SSN, Tiwari]

To begin with we start with invertible category:

Objects: D2 topological surfaces⇒ generates Γ(p=d−3) form symmetry

1-Morphisms: D1 topological lines⇒ generates Γ(p=d−2) form symmetry

2-Morphisms: D0 topological point operators

After gauging 0-form symmetry G, we get a new category CG, whose objects
are:

1. G-invariant objects of C, labeled by orbits O.

2. Objects of 2Rep(G) = ”module category” of 2Vec(G) (2-representation
category)



Generalized gauging

Again the latter have an interpretation in terms of TQFTs: giving rise to a
universal sector of gauging [Bhardwaj, SSN, Wu], related work by [Bartsch, Bullimore,

Ferrari, Pearson].

2d TQFT with symmetry G

T gauge G

Topological surface defect

T/G



Generalized gauging

T

SPTχ
gauge Γ(p)

T/Γ(p)

Dχ
p+1

Gauging a p-form symmetry of a theory T:
Stack a (p+ 1)-dim TQFT SPTχ, protected by Γ(p), associated to Γ(p) character
χ. Gauge diagonal Γ(p). The SPT becomes a topological defect in the gauged
theory, which generates a (d− p− 2)-form symmetry.



Symmetry 2-Categories

Lets revisit T = 3d Spin(4N) gauge theory. This has Γ(1) = Z2 ×Z2 and
Γ(0) = Z2. Strictly speaking, because the 0-form symmetry acts on the 1-form
symmetry, the theory has a (split) 2-group: ρ : Γ(0)→ Aut(Γ(1)). The 2-group is

G = (Z(1)
2 ×Z(1)

2 )⋊Z(0)
2

In terms of background fields

δB2 = A1C2

where B2, C2 are backgrounds for Γ(1), and A1 for Z(0)
2 .

This collection of surfaces and lines form a 2-category:

2Vec
(
(Z(1)

2 ×Z(1)
2 )⋊Z(0)

2

)
Contains 2Rep(Z2

2) and 2Vec(Z2).



2Rep from 2Vec

After gauging Z(0)
2 the symmetry category is:

2Rep(Γ̃0) , Γ̃(0) = Γ̂(1) ⋊ρ̂ Γ
(0)

Construction of T/Γ(0)

1. First gauge Γ(1): this results in a theory with Γ̃(0) 0-form symmetry:

2-categorical symmetry is 2Vec(Γ̃(0))

2. Gauge Γ̃(0): 2-categorical symmetry is 2Rep(Γ̃(0))

In the example: Γ̃(0) = (Z×Z2)⋊Z2 = D8.



Categorical Symmetry Webs: 3d so(4N)

Spin(4N)

2Vec((Z(1)
2 ×Z(1)

2 )⋊Z(0)
2 )

2-group

PSO(4N)

2Vec(D(0)
8 )

group

Pin+(4N)

2Rep(D(0)
8 )

non-invertibles

PO(4N)

2Rep((Z(1)
2 ×Z(1)

2 )⋊Z(0)
2 )

non-invertibles

Z(1)
2 ×Z(1)

2

Z(0)
2 ×Z(0)

2

Z(0)
2 Z(1)

2 Z(0)
2 Z(1)

2



d-dim Categorical Symmetry Web

[Bhardwaj, Bottini, SSN, Tiwari, wip]

Spin(4N)

(d− 1)Vec(2-Group)
2-group

Ss(4N)

(d− 1)Rep((d− 1)-Group)
non-invertibles

PSO(4N)

(d− 1)Vec((d− 2)-Group)
(d− 2)-group

SO(4N)

(d− 1)Vecω(Group)
mixed-anomaly

Pin+(4N)

(d− 1)Rep((d− 2)-Group)
non-invertibles

O(4N)

(d− 1)Vec((d− 1)-Group)
(d− 1)-group

PO(4N)

(d− 1)Rep(2-Group)
non-invertibles



Drinfeld Center and SymTFT

n-categorical webs characterize all symmetries of different ”generalized
global forms” of the gauge theory. Mathematically manifested in the
statement that the n-categories in a given web share the same Drinfeld center.

Well studied case in 2d: Turaev-Viro TVC 3d TQFTs characterize the set of lines
of the Drinfeld center of 2d theories with fusion symmetry C. Long history in
cond-mat, math. See recent work by [Kaidi, Ohmori, Zheng] for C = TY (ZN ).

In d > 2: generate the categorical symmetry webs through different b.c. on the
Drinfeld center. [Bhardwaj, SSN; wip].

We don’t need to go all categorical: this is in fact a very familiar concept to
QFT’ers, string theorists, holographers, and nowadays goes under the name of

⇒ Symmetry TFT



Anomaly Theories

T be a d-dimensional QFT, with global symmetries. ’t Hooft anomalies are
detected by coupling the theory to background fields Bp+1 for a p-form
symmetry, and perform background gauge transformations.

Z(Bp+1 + δλp) = φ(λp,Bp+1)×Z(Bp+1) ,

where φ(λp,Bp+1) ∈ U(1) is the partition function of the anomaly theory
Ad+1(Bp+1), which is an SPT protected by p-form symmetry.



Symmetry TFT or ”The Sandwich”

[Freed, Teleman][Gaiotto, Kulp][Apruzzi, Bonetti, Garcia-Extebarria, Hosseini, SSN][Freed,

Moore, Teleman][Kaidi, Ohmori, Zheng]

The Symmetry TFT or SymTFT SSymTFT is a (d+ 1)-dimensional topological
field theory, which admits gapped boundary conditions:

SSymTFTA

BphyBtop

A is the anomaly theory, and the theory T is obtained after collapsing the
interval. Different choices of b.c. result in different ”global forms” of the
theory.



Example: BF-Theories as Symmetry TFTs

Consider a 5d BF-theory

N

∫
M5

B2 ∧ dC2

This could e.g. be the SymTFT for 4d pure YM with gauge algebra su(N), as
discussed in the context of holography by [Witten ’98].

The gapped, topological b.c. are given in terms of B2 and C2. E.g. Dirichlet
b.c. for B2. This results in line operators (e.g. Wilson or ’t Hooft) in the dual
CFT [Gross, Ooguri].

B.c. are picking out maximal commuting set of (parital) Wilson surfaces
Wn(B2,M2), Wm(C2,M

′
2), which satisfy the flux non-commutativity in 5d

[Maldacena, Moore, Seiberg][Witten]

Wn(B2,M2)Wm(C2,M
′
2) =Wm(C2,M

′
2)Wn(B2,M2)e

2πinmM2·M ′
2



SymTFT from String Theory/Holography

Two conjectures/observations:

1. Geometric Engineering:
Consider M-/string theory compactified on a non-compact, special
holonomy space X to d-dim QFT TX . The reduction of the topological
couplings in 11d/10d on ∂X result in the SymTFT of TX

2. Holography:
The bulk topological couplings in the supergravity on AdSd+1 or Md+1

(e.g. for Klebanov Strassler) give rise to the SymTFT of the
holographically dual boundary theory.

By now there is a huge amount of evidence for this:
including the construction of non-invertible symmetries in holography
[Apruzzi, Bah, Bonetti, SSN], [Gracia-Extebarria][Antinucci, Benini, Copetti, Galati, Rizzi]



Holographic dual to 4d N = 1 SYM and Symmetries from Branes

[Apruzzi, Bah, Bonetti, SSN]

• D3s at the conifold C(T 1,1) are dual to IIB on AdS5 × T 1,1,
∫
F5 = N .

• T 1,1 ∼ S3 × S2: wrap D5-branes on S2, inducing
∫
S3 F3 = M

⇒ breaks conformal invariance

[Klebanov-Strassler] (KS) solution: Dual to a cascade of Seiberg dualities, which
end in pure su(M) N = 1 SYM:

ds2 =
r2

R2
dx2 +

R2

r2
dr2︸ ︷︷ ︸

M5

+R2ds2T 1,1 .

r= radial direction, RG-flow; R(r) ∼ ln( r
rs
)1/4, rs = r0e

−N/gM2−1/4.

Near horizon limit: r→ r0. Global form of gauge group is not fixed by this
data alone.



QFT Interlude: Non-Invertibles in 4d SYM

SU(M) pure SYM has M confining vacua, and invertible symmetries.
⇒What about PSU(M)?

4d N = 1 SU(M) SYM has Γ(0) = Z2M , whose background field is A1, and
1-form symmetry Γ(1) = ZM with background field B2 with a mixed anomaly:

A = −2π 1

M

∫
A1 ∪

P(B2)

2
,

Gauge Γ(1) to get to PSU(M). However this is precisely a KOZ [Kaidi, Ohmori,

Zheng]-applicable setup:

Γ(0)-generator transforms in presence of background fields for Γ(1):

Dg
3(M3)→ Dg

3(M3) exp

(∫
M4

−2πi

M

P(B2)

2

)
for ∂M4 =M3.



Non-Invertible Symmetries in 4d SYM

Gauging Z(1)
M to PSU(M) is consistent after dressing Dg

3 with a (e.g. minimal)
TQFT that which has 1-form symmetry ZM and cancels the anomaly.

For ZM the minimal (spin) TQFT is AM,1 = U(1)M [Hsin, Lam, Seiberg]. The
dressed defect is

N (1)
3 = D

(1)
3 ⊗AM,1

For M odd the TQFTs obey AM,1 ⊗AM,1 = AM,2 ⊗AM,2. Results in
non-invertibles in the PSU(M) theory

N (1)
3 ⊗N (1)

3 = AM,2N (2)
3

Defining the conjugate N (1)†
3 = D−1

3 ⊗AM,−1 results in

N (1)
3 ⊗N (1)†

3 =
∑

M2∈H2(M3,ZM )

(−1)Q(M2)D2(M2)

|H0(M3,ZM )|

which is the condensation defect of the 1-form symmetry on M3 with
D2(M2) = e

i2π
∫
M2

b2/M , where b2 is the gauge field for the 1-form symmetry.
The RHS is a condensation defect of the 1-form symmetry. [Gaiotto,

Johnson-Freyd][Choi, Cordova, Hsin, Lam Shao][Rumpedakis, Seifnashri, Shao]



SymTFT from Sugra

The full 5d topological action for this background is, in the near horizon limit:
[Cassani, Faedo][Apruzzi, van Beest, Gould, SSN][Apruzzi, Bah, Bonetti, SSN]

SSymTFT = 2π

∫
M5

(
1

2
N(b2dc2 − c2db2) +M(A1dc3 + c3dA1) +Nb2f

b
3 +A1(g

b
2)

2

)
⇒ structure of BF-couplings for 1-form fields and 0-/2-form symmetries, as
well as mixed anomalies.

A1 R-symmetry background
b2, c2 come from H3 and F3

f b
1 , gb2, integral lifts of classes in H1(M,Z2M ) and H2(M,ZM ): gauge fields for

0-form and 1-form symmetries.

Symmetries can be extract using the Gauss law constraints, generalizing [Belov,

Moore]. This reconstructs the expected invertible (SU(M)) and non-invertible
(PSU(M)) symmetries generated by:

N (1)
3 (M3) =

∫
Dae

2πi
∫
M3

(c3+ 1
2Mada+agb

2)



Alternative: Symmetries from Branes

[Apruzzi, Bah, Bonetti, SSN]

Observation: in the near horizon limit, branes inserted in a holographic setup
furnish symmetry generators, with the topological couplings remaining.
Close to the boundary r→∞:
TDp ∼ rp (p > 0), such that the DBI part of the action decouples.

In the KS setup:
D5-branes on S3 ×M3⊂ T 1,1 ×M4 give rise to

SD5 = 2π

∫
M3

(
c3 +

M

2
ada+ adb1

)
Origin of fields: c3 (from C6 on S3), b1 (from C4 on S3, and db1 = gb2 ), U(1)

gauge field a on the brane.

What happens when we fuse two branes?

Naively: U(2) non-abelian gauge theory on the world-volume. However, in
the presence of B2 flux in the transverse S2 gives rise to the Myers effect: D5s
puff up to a D7

2×D5 +B2 → D7 with flux
∫
S2

f2 = 2



The theory on the 7-brane on S2 × S3 ×M3 is

SD7 = 2π

∫
M3

(2c3 +Mada+ 2adb1)

This precisely reproduces the non-invertible fusion in the field theory

N (1)
3 ⊗N (1)

3 = AM,2N (2)
2

The N (1)
3 ⊗ (N (1)

3 )† = condensation defect for the 1-form symmetry on M3, has
to come from D5-D5 via tachyon condensation [Sen] resulting in the
condensation defect!

The holographic interpretation of branes as symmetry generators has been
extended to geometric engineering [Heckman, Hubner, Thorres, Zheng], realizing
symmetries e.g. in F-theory geometric engineering.



Disorder Operators from Hanany-Witten transition

[Apruzzi, Bah, Bonetti, SSN]

The cherry on top is the implementation of the action of the non-invertible
symmetry on the ’t Hooft lines:

• Charged line operators:
D3s stretching along the radial direction and wrapped on S2 × S1 give
rise to ’t Hooft lines.

• Topological defects:
D5s on S3 ×M3 generate the non-invertible codim 1 topological defects.

Brane x0 x1 x2 x3 r z1 z2 w1 w2 w3

D3 X X X X

D5 X X X X X X

F1 X X

D3 and D5 link and undergo a Hanany-Witten transition when the D3 is
passed through along x3:

Preserving the linkning requires the creation of an F1:



D3 D5

=⇒

D5 D3

F1

H N (1)
3

=⇒

HN (1)
3



Outlook

Generalized symmetries – higher form, higher group and non-invertible
symmetries – are ubiquitous in QFTs

1. Learn to gauge higher-categorical symmetries; ’t Hooft anomalies

2. Physical implications of these symmetries (confinement, pion decay etc)

3. Develop a mathematically sound framework for higher fusion categories
(higher meaning ≥ 2)

4. Is this the most general ”symmetry structure” for QFTs?

5. Implications for quantum gravity, weak gravity conjecture, no-global
symmetry conjectures

6. Constraints on asymptotic growth of state from non-invertibles in higher
dim [Harlow, Ooguri][Lin, Okada, Seifnashri, Tachikawa]



Thank you and Happy Birthday,
Hirosi!

And many happy returns!



· · ·


