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Part 1

Cosmic Birefringence from Domain Wall 
without a string

Based on Takahashi, WY, 2012.11576  
and ongoing project in collaboration with Takahashi, Kitajima and Kozai

https://arxiv.org/abs/2012.11576


What does the measured parity-violating cosmic birefringence (CB) suggest?

Φ(Ω)

βobs = 0.30 ± 0.11 deg,
Diego-Palazuelos et al, 2201.07682  
see also Minami and Komatsu, 2006.15982, and  
B06’s session. 
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FμνF̃μν★ An ALP can alter the Maxwell equation

Averaged  on last scattering surfaceϕ

Carroll, Field, Jackiw,1990; Harari, Sikivie,1992; Carroll,1998;

γ

https://scienceblogs.com/startswithabang

(in non-singular field space)

cγ ( ϕEarth − ϕ̄LSS

fϕ ) ∼ (0.9π − 1.9π)
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Isotropic CB by ALP varying in space: ALP domain wall (DW).

Isotropic CB by ALP varying in time: slow-rolling ALP
Minami and Komatsu, 2006.15982, Fujita et al, 2011.11894, (CB and  tension) 
Mehta et al, 2103.06812, (Many ALPs), Nakagawa et al, 2103.08153, (Very light ALP)  see Masaki’s talk 

H0

Takahashi, WY, 2012.11576 my focus

https://arxiv.org/abs/2103.06812
https://arxiv.org/abs/2103.08153
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ALP DW without a string following scaling solution (  attractor 
solution with O(1) domains within a Hubble horizon) explains 
the isotropic CB.

≡

Takahashi, WY, 2012.11576

|β | = 0.21deg |cγ |

Strings with DWs cannot induce isotropic CB Agrawal et al, 1912.02823;
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Predicted anisotropic birefringence can be tested. 
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2D Lattice result of scaling  
DW configuration example

Takahashi, Kitajima, Kozai, WY, preliminary
We use 4096*4096 Lattice simulation to estimate the power spectrum of anisotropic cosmic-birefringence. 
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Future reaches from Pogosian et al, 1904.07855

https://arxiv.org/abs/1904.07855
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Any parameter set 
has the same  
conclusions

https://arxiv.org/abs/2012.11576


DM stability from  
Pauli-exclusion  
principle

Based on ongoing project in collaboration with Brian Batell (Pittsburgh University) 
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Dark matter
•What is dark matter?

Very stable 
Neutral 
Cold 
ρDM ∼ keVcm−3 wikipedia

•Why is dark matter very stable?

“Charge” conservation, e.g. WIMP 

Small mass/coupling,

c.f. electron, proton

c.f. neutrino

1/Γdecay
DM ≫ 13.8Gyr
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DM on Sea of Fermions Batell, WY, in progress 1/Γdecay
DM ≪ 13.8Gyr



What I will be talking about

ℒ ⊃ −
y
2

ϕψ̄cψ ϕ : DM ψ : light  fermion
1/Γϕ→ψψ ≪ 13.8Gyr

setup

Conclusions
1. DM is stabilized due to Pauli-blocking from the produced  

fermi-gas.  

2. Dark radiation of the fermi gas is self-interacting  
and may alleviate the Hubble tensions. 

V = m2
ϕϕ2/2



Generic conditions for DM on Sea of Fermions
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ψ, ψ̄

Generic conditions for DM on Sea of Fermions
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TF ρϕ ∼ keVcm−3 ≫ T4
F

mϕ ≲ 0.01eV

Thus I will talk about a system

•DM is light  
•Number density is large

Present Universe should have

ψ

ψ̄

TF ≳ mϕ/2



Cosmology of DM on Sea of Fermions
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1. Misalignment mechanism 
to produce  condensate. ϕ

2. Initial Fermi sea produced  
via parametric resonance 

3. DM is stable until the  
Q ∼ 1

Greene:1998nh,Baacke:1998di,Greene:2000ew

We can also consider other production mechanisms as well, such as the light DM from inflaton decay, Moroi WY, 2011.09475; 2011.12285

Preskill et al, 1983;  
Abbott, Sikivie, 1983;  
Dine, Fishler, 1983; 

1/Γϕ→ψψ ≪ 13.8Gyr

ψ : light  fermion

See Fumi’s talk
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DM stability in perturbative regime
Q redshifts to Q , we can use the Boltzmann equation to study the 
stability.

≪ 1

∂fϕ(pϕ, t)
∂t

− pϕH
∂fϕ(pϕ, t)

∂pϕ
= Cϕ(pϕ, t),

∂fψ(pψ, t)
∂t

− pψH
∂fψ(pψ, t)

∂pψ
= Cψ(pψ, t) .

Cϕ
ϕ↔ψ ψ = −

1
Sψ

1
gϕ

1
2Eϕ ∑

spins
∫

d3p1

(2π)32E1

d3p2

(2π)32E2
(2π)4δ4(pϕ − p1 − p2) |ℳ |2

× {fϕ(pϕ)[1 − fψ(p1)][1 − fψ(p2)] − [1 + fϕ(pϕ)] fψ(p1)fψ(p2)} .

e.g. Cϕ ⊃

Pauli-blocking, Bose-enhancement factors are very important

Boltzmann equation

Cϕ
ϕϕ↔ψ ψ = −

1
Sψ

1
gϕ

1
2Eϕ ∑

spins
∫

d3p2

(2π)32E2

d3p3

(2π)32E3

d3p4

(2π)32E4
(2π)4δ4(pϕ + p2 − p3 − p4) |ℳ |2

× {fϕ(pϕ)fϕ(p2)[1 − fψ(p3)][1 − fψ(p4)] − [1 + fϕ(pϕ)][1 + fϕ(p2)] fψ(p3)fψ(p4)} .

ϕ
ϕ

ϕ

ψ

ψ ψ

ψ



Preliminary
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Life-time of the DM

nϕ[0]/m3
ϕ = 108,

T[0] = 3/2mϕ,
μψ[0] = μϕ[0] = 0,

y = 10−8

Initial 
conditions:

lifetime  
in the vacuum Slow-thermalization DM lifetime

Mψ = mϕ/50

We solve the Boltzmann equation by neglecting Hubble expansion with some approximations.
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eq Slow-thermalization DM lifetime

 
Produced Dirac sea  
is self-interacting! Preliminary

nϕ[0]/m3
ϕ = 108,

T[0] = 3/2mϕ,
μψ[0] = μϕ[0] = 0,

y = 10−8

Initial 
conditions:

Mψ = mϕ/50



Dark radiation and deviation from CDMΛ

Initial conditions:
ρϕ(z = 105) = ρΛCDM

DM  and T[z = 105] = mϕ .

Self-interacting DR  
significantly produced.  

DM comoving density  
does not change much. 

ΔNDDM
eff (free-stream)

ΔNDMODS
eff (non free-stream)

1 − ρDMODS
ϕ /ρΛCDM

DM

1 − ρDDM
ϕ /ρΛCDM

DM (ΓDM = 0.1H0)

ΔNDMODS
eff [zrec] ≃ 0.4 (non free-stream)

-4 -2 0 2 410-5
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log10[z]
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� D
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C
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M

c.f. DDM bound 
Bringmann:2018jpr, Enqvist:2019tsa

c.f. Best fit \sim 0.39 of the Hubble tensions 
Schoneberg:2021qvd

y = 7.4 × 10−10, mϕ = 10−4eV and Mψ = mϕ/5.

Preliminary

We solve (integrated) Boltzmann equation with Hubble expansion

★DM differs from  by O(1%) 
with  

ΛCDM

ΔNeff(zrec) = O(0.1) .



Parameter region 
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Conclusions

1. DM can be stabilized if , even if . 
2. The resulting dark radiation of the Fermi gas is  

self-interacting and may alleviate the Hubble tension.  
3. The present Universe DM density has an upper bound.  

DM stabilized by CnuB may predict the enhancement of  capturing rate by  in PTOLEMY.  
(will appear in our paper) 

mϕ < 0.01eV, y ≲ 10−7 Γdecay,vac ≫ H0

νe ∼ 5

Batell, WY, in progress.

1. ALP DW without a string following scaling solution naturally 
explains the isotropic CB. 

2. The scenario can be fully tested in the future observation of 
anisotropic CB.

Takahashi, WY, 2012.11576

Takahashi, Kitajima, Kozai, WY, in progress

https://arxiv.org/abs/2012.11576

