

Part 1: Cosmic Birefringence from Domain Wall without a string

Part 2: Dark Matter stability from Pauliexclusion principle

Wen Yin (Tohoku University)

@29 March 2022 "What is dark matter? - Comprehensive study of the huge discovery space in dark matter"

Cosmic Birefringence from Domain Wall without a string

Based on Takahashi, WY, 2012.11576 and ongoing project in collaboration with Takahashi, Kitajima and Kozai

ALP DW without a string following scaling solution (\equiv attractor solution with O(1) domains within a Hubble horizon) explains the isotropic CB.

Strings with DWs cannot induce isotropic CB Agrawal et al, 1912.02823;

ALP DW without a string following scaling solution (\equiv attractor solution with O(1) domains within a Hubble horizon) explains the isotropic CB.

Strings with DWs cannot induce isotropic CB Agrawal et al, 1912.02823;

Predicted anisotropic birefringence can be tested.

We use 4096*4096 Lattice simulation to estimate the power spectrum of anisotropic cosmic-birefringence.

Takahashi, Kitajima, Kozai, WY, preliminary

Parameter region and other testability

Takahashi, WY, 2012.11576

Parameter region and other testability

Takahashi, WY, 2012.11576

Part 2

DM stability from Pauli-exclusion principle

Based on ongoing project in collaboration with Brian Batell (Pittsburgh University)

Dark matter

- •What is dark matter? Very stable Neutral Cold $\rho_{\rm DM} \sim {\rm keV cm^{-3}}$
- •Why is dark matter very stable?

"Charge" conservation, e.g. WIMP Small mass/coupling,

c.f. electron, proton

 $1/\Gamma_{\rm DM}^{\rm decay} \gg 13.8 {\rm Gyr}$

c.f. neutrino

Dark matter

- •What is dark matter? Very stable Neutral Cold $\rho_{\rm DM} \sim {\rm keV cm}^{-3}$
- •Why is dark matter very stable?
- "Charge" conservation, e.g. WIMP Small mass/coupling,
- DM on Sea of Fermions

Batell, WY, in progress

 $1/\Gamma_{\rm DM}^{\rm decay} \ll 13.8 {\rm Gyr}$

What I will be talking about

Conclusions 1. DM is stabilized due to Pauli-blocking from the produced fermi-gas.

2. Dark radiation of the fermi gas is self-interacting and may alleviate the Hubble tensions.

$\phi: DM \quad \psi: light fermion$

 $1/\Gamma_{\phi \to \psi \psi} \ll 13.8 \text{Gyr}$

Generic conditions for DM on Sea of Fermions

Generic conditions for DM on Sea of Fermions

 $T_{\rm F} \gtrsim m_{\phi}/2$

Generic conditions for DM on Sea of Fermions

Present Universe should have

 $m_{\phi} \lesssim 0.01 \mathrm{eV}$

Thus I will talk about a system

- DM is light
- Number density is large

Cosmology of DM on Sea of Fermions

We can also consider other production mechanisms as well, such as the light DM from inflaton decay, Moroi WY, 2011.09475; 2011.12285

 $\phi: DM \quad \psi: \text{light fermion}$

$$1/\Gamma_{\phi \to \psi \psi} \ll 13.8 \mathrm{Gyr}$$

3. DM is stable until the 2. Initial Fermi sea produced via parametric resonance $Q \sim 1$ Greene:1998nh,Baacke:1998di,Greene:2000ew

$$Q \sim y^2 \phi_{\rm amp}^2 / m_{\phi}^2$$

 $\rho_{\psi} \sim \frac{g_{\psi}}{2\pi^2} Q^{5/4} m_{\phi}^4 = \frac{g_{\psi}}{\pi^2} y^2 Q^{1/4} \rho_{\phi}$ $\sim m_{\phi}^4 \quad (Q \sim 1)$

We can also consider other production mechanisms as well, such as the light DM from inflaton decay, Moroi WY, 2011.09475; 2011.12285

 $\phi: DM \quad \psi: \text{light fermion}$

$$1/\Gamma_{\phi \to \psi \psi} \ll 13.8 \mathrm{Gyr}$$

3. DM is stable until the 2. Initial Fermi sea produced via parametric resonance $Q \sim 1$ Greene:1998nh,Baacke:1998di,Greene:2000ew

$$Q \sim y^2 \phi_{\rm amp}^2 / m_{\phi}^2$$

 $\rho_{\psi} \sim \frac{g_{\psi}}{2\pi^2} Q^{5/4} m_{\phi}^4 = \frac{g_{\psi}}{\pi^2} y^2 Q^{1/4} \rho_{\phi}$ $\sim m_{\phi}^4 \quad (Q \sim 1)$

We can also consider other production mechanisms as well, such as the light DM from inflaton decay, Moroi WY, 2011.09475; 2011.12285

 $\phi: DM \quad \psi: \text{light fermion}$

$$1/\Gamma_{\phi \to \psi \psi} \ll 13.8 \mathrm{Gyr}$$

3. DM is stable until the 2. Initial Fermi sea produced $Q \sim 1$ via parametric resonance Greene:1998nh,Baacke:1998di,Greene:2000ew

$$Q \sim y^2 \phi_{\rm amp}^2 / m_{\phi}^2$$

$$\rho_{\psi} \sim \frac{g_{\psi}}{2\pi^2} Q^{5/4} m_{\phi}^4 = \frac{g_{\psi}}{\pi^2} y^2 Q^{1/4} \rho_{\phi}$$
$$\sim m_{\phi}^4 \quad (Q \sim 1)$$

DM stability in perturbative regime Q redshifts to $Q \ll 1$, we can use the Boltzmann equation to study the stability.

e.g.
$$C^{\phi} \supset C^{\phi}_{\phi \leftrightarrow \psi \psi} = -\frac{1}{S_{\psi}} \frac{1}{g_{\phi}} \frac{1}{2E_{\phi}} \sum_{\text{spins}} \int \frac{d^3 p_1}{(2\pi)^3 2E_1} \frac{d^3 p_2}{(2\pi)^3 2E_2} (2\pi)^4 \delta^4(p_{\phi} - p_1 - p_2) |\mathcal{M}|^2 \times \left\{ f_{\phi}(p_{\phi})[1 - f_{\psi}(p_1)][1 - f_{\psi}(p_2)] - [1 + f_{\phi}(p_{\phi})]f_{\psi}(p_1)f_{\psi}(p_2) \right\}.$$

Pauli-blocking, Bose-enhancement factors are very important

Life-time of the DM

We solve the Boltzmann equation by neglecting Hubble expansion with some approximations.

Initial conditions:

 $n_{\phi}[0]/m_{\phi}^3 = 10^8,$ $T[0] = 3/2m_{\phi},$ $\mu_{\psi}[0] = \mu_{\phi}[0] = 0,$ $y = 10^{-8}$ $M_{\psi} = m_{\phi}/50$

Life-time of the DM

We solve the Boltzmann equation by neglecting Hubble expansion with some approximations.

Initial conditions:

 $n_{\phi}[0]/m_{\phi}^3 = 10^8,$ $T[0] = 3/2m_{\phi},$ $\mu_{\psi}[0] = \mu_{\phi}[0] = 0,$ $y = 10^{-8}$ $M_{\psi} = m_{\phi}/50$

Life-time of the DM

We solve the Boltzmann equation by neglecting Hubble expansion with some approximations.

Initial conditions:

 $n_{\phi}[0]/m_{\phi}^3 = 10^8,$ $T[0] = 3/2m_{\phi},$ $\mu_{\psi}[0] = \mu_{\phi}[0] = 0,$ $y = 10^{-8}$ $M_{\psi} = m_{\phi}/50$

Dark radiation self-interaction prevents DM from decay. Kinetic Initial

conditions:

 $n_{\phi}[0]/m_{\phi}^3 = 10^8,$ $T[0] = 3/2m_{\phi},$ $\mu_{\psi}[0] = \mu_{\phi}[0] = 0,$ $y = 10^{-8}$ $M_{\psi} = m_{\phi}/50$

Produced Dirac sea 10⁻⁴ is self-interacting!

Parameter region

Conclusions

explains the isotropic CB. 2. The scenario can be fully tested in the future observation of anisotropic CB.

1. ALP DW without a string following scaling solution naturally Takahashi, WY, 2012.11576

Takahashi, Kitajima, Kozai, WY, in progress

Batell, WY, in progress. **1.** DM can be stabilized if $m_{\phi} < 0.01 eV, y \leq 10^{-7}$, even if $\Gamma_{decav.vac} \gg H_0$.

self-interacting and may alleviate the Hubble tension.

DM stabilized by CnuB may predict the enhancement of ν_e capturing rate by ~ 5 in PTOLEMY.

