Simulation of Fuzzy Dark Matter

Jowett Chan (Tohoku U)

In collaboration with : Masashi Chiba (Tohoku U) Elisa Ferreira (Kavli IPMU) Simon May (MPA) Hayashi Kohei (Ichinoseki College)

Research Strategy

Alternative Dark Matter

Spurious haloes of WDM

High resolution of FDM

May 2021

Paduroiu 2022

Research Strategy

The Diversity of Core Halo Structure in the Fuzzy Dark Matter Model (Chan, Elisa, Chiba,. et al, 2022, MRNAS, 511, 943)

Core-Halo Structure

Halo(NFW) gravity vs velocity dispersion Core gravity vs Quantum pressure

Observational Constraints (Excluded Bound)

No agreement between groups!

K. Hayashi, E. Ferreira, J. Chan. 2021

Schrodinger-Poisson system

$$\begin{split} i\hbar\partial_t\psi &= \left[-\frac{\hbar^2}{2ma^2}\nabla^2 + \frac{m\Phi}{a}\right]\psi \qquad \nabla^2\Phi = 4\pi Gm|\psi|^2 \\ \\ \hline & \\ \textbf{Operator Splitting Method} \\ 1 \text{st Step} & i\hbar\partial_t\psi = -\frac{\hbar^2}{2ma^2}\nabla^2\psi \\ 2 \text{nd Step} & i\hbar\partial_t\psi = -\frac{m\Phi}{a}\psi \\ 3 \text{rd Step} & i\hbar\partial_t\psi = -\frac{\hbar^2}{2ma^2}\nabla^2\psi \\ \end{split} \end{split}$$

Simulation

Simulation

Code Comparison

Simulation Set Up

	(This Work)	(May+21)		
	Soliton merger	Large-box cosmological		
L	$0.3~{ m Mpc}$	$10 \mathrm{Mpc/h}$		
N^3	512^{3}	8640^{3}		
mc^2	$10^{-22} {\rm eV}$	$7 \times 10^{-23} \text{ eV}$		
$z_{ m f}$	3	3		
Δx	$0.644 \mathrm{\ kpc}$	1.547 = kpc		

Difficult to simulate FDM!

Simulation

largeキュー

このキューは各カテゴリごとに以下の設定値でジョブを実行できるキューです。

カテゴリ	XC-A	XC-B+	XC-B	XC-MD	XC-Trial
キュー名	large-a	large-bp	large-b	large-md	large-t
最大同時利用可能コア数	20000	3440	1040	800	120
単一ジョブ最大コア数	20000	3440	520	400	120
最大同時投入数	無制限	無制限	無制限	無制限	無制限
最大同時実行数(括弧内は混雑した場合の値)	10(1)	10(1)	10(1)	10(1)	5(1)
継続時間	24 hour	24 hour	24 hour	24 hour	4 hour

Density profile

Density profile

Our Results

Transition radius

Confirming the core profile

Our Results

Confirming the core profile

The core-halo relation

Dispersion in the core-halo relation

Problem with FDM

Summary & future work

We need Zoom-in simulation of MW size halo until z=0

Thank you for listening!

Reference:

- The Diversity of Core Halo Structure in the Fuzzy Dark Matter Model (Chan, Elisa, Chiba,. et al, 2022, MRNAS, 511, 943)
- Narrowing the mass range of Fuzzy Dark Matter with Ultra-faint Dwarfs (Kohei., Elisa., Chan, 2021, ApJ, 912, L3)
- Structure formation in large-volume cosmological simulations of FDM (May., Springel, 2021, MNRAS, 506, 2603)