Laser interferometric searches for ultralight dark matter

<u>Koji Nagano</u> on behalf of B01 group (ISAS/JAXA)

Abstract

- Laser interferometer that is used for the precision measurement is one of the promising instruments for the cutting-edge ultra-light (UL) DM searches.
- We have two strategy:
 - -Using the existing big instrument, e.g. KAGRA,
 - -Development of the new table-top experiments.
- In this fiscal year,
 - -We prepared instruments and analysis pipelines for the ULDM searches using KAGRA, (axion DM, vector DM)
 - We performed the first test axion DM observation using the 50-cm-long bow-tie cavity.
- Observation run will start in near future.

Dark matter search with interferometers

- Laser interferometers are widely used for the precision measurement, e.g. gravitational wave observatory.
- There are various proposals to use the interferometer for the ultralight dark matters (DMs) which behaves as classical waves.

Transformative Research Area "Dark Matter" Symposium (Online, Mar. 29th-30th, 2022)

Many studies!

- Axion-like particles (Pseudoscalar)
 - -A. Melissinos, PRL 102, 202001 (2009)
 - -W. DeRocco+, PRD 98, 035021 (2018)
 - -I. Obata+, PRL 121, 161301 (2018)
 - -H. Liu+, PRD 100, 023548 (2019)
 - -KN+, PRL 123, 111301 (2019)
 - -D. Martynov+, PRD 101, 095034 (2020)
 - -KN+, PRD 104, 062008 (2021)
- <u>Scalar boson dark matter</u>
 - -Y. Stadnik+, PRL 114, 161301 (2015)
 - -Y. Stadnik+, PRA 93, 063630 (2016)
 - -A. Geraci+, PRL 123, 031304 (2019)
 - -H. Grote+, PRR 1, 033187 (2019)
 - -S. Morisaki+, PRD 100, 123512 (2019)
 - -C. Kennedy+, PRL 125, 201302 (2020)
 - -E. Savalle+, PRL 126, 051301 (2021)
 - -S. M. Vermeulen+, Nature 600, 424 (2021)

Not exhaustive.

The ones that require magnetic field are not listed.

- <u>U(1)B or U(1)B-L gauge bosons</u> (vector)
 - -P. Graham+, PRD 93, 075029 (2016)
 - -A. Pierce+, PRL 121, 061102 (2018)
 - -H-K Guo+, Commun. Phys 2, 155 (2019)
 - -Y. Michimura+, PRD 102, 102001 (2020)
 - -D. Carmey+, New J. Phys. 23 023041 (2021)
 - -J. Manley+, PRL 126, 061301 (2021)
 - -S. Morisaki+, PRD 103, L051702 (2021)
 - -LVK Collab., arXiv:2105.13085 (2021)
- Other candidate (not ULDM)
 - –A. Kawasaki, PRD 99, 023005 (2019)[kg-scale DM]
 - –S. Tsuchida+, PRD 101, 023005 (2020)[WIMP]
 - -F. Monteiro+, PRL 125, 181102 (2020) [Composite dark matter]

Many studies!

- Axion-like particles (Pseudoscalar)
 - -A. Melissinos, PRL 102, 202001 (2009)
 - -W. DeRocco+, PRD 98, 035021 (2018)
 - -I. Obata+, PRL 121, 161301 (2018)
 - -H. Liu+, PRD 100, 023548 (2019)
 - -KN+, PRL 123, 111301 (2019)
 - -D. Martynov+, PRD 101, 095034 (2020) -KN+, PRD 104, 062008 (2021)
- <u>Scalar boson dark matter</u>
 - -Y. Stadnik+, PRL 114, 161301 (2015)
 - -Y. Stadnik+, PRA 93, 063630 (2016)
 - -A. Geraci+, PRL 123, 031304 (2019)
 - -H. Grote+, PRR 1, 033187 (2019)
 - -S. Morisaki+, PRD 100, 123512 (2019)
 - -C. Kennedy+, PRL 125, 201302 (2020)
 - -E. Savalle+, PRL 126, 051301 (2021)
 - -S. M. Vermeulen+, Nature 600, 424 (2021)

Not exhaustive.

The ones that require magnetic field are not listed.

- <u>U(1)B or U(1)B-L gauge bosons</u> (vector)
 - P. Graham+, PRD 93, 075029 (2016)
 - -A. Pierce+, PRL 121, 061102 (2018)
 - -H-K Guo+, Commun. Phys 2, 155 (2019)
 - -Y. Michimura+, PRD 102, 102001 (2020)
 - -D. Carmey+, New J. Phys. 23 023041 (2021)
 - -J. Manley+, PRL 126, 061301 (2021)
 - -S. Morisaki+, PRD 103, L051702 (2021)
 - -LVK Collab., arXiv:2105.13085 (2021)
- Other candidate (not ULDM)
 - –A. Kawasaki, PRD 99, 023005 (2019)[kg-scale DM]
 - –S. Tsuchida+, PRD 101, 023005 (2020)[WIMP]
 - -F. Monteiro+, PRL 125, 181102 (2020) [Composite dark matter]

Researches in/around B01 group

	Existing instrument, KAGRA	Table-top experiments
Axion DM	 Installation of the optic for the next (GW) observation Analysis pipeline development 	 Development of the prototype experiment: DANCE First test axion DM observation
Vector DM	 Ready for the observation (No additional installation is necessary.) Analysis pipeline development 	

Researches in/around B01 group

	Existing instrument, KAGRA	Table-top experiments
Axion DM	 Installation of the optic for the next (GW) observation Analysis pipeline development 	 Development of the prototype experiment: DANCE First test axion DM observation
Vector DM	 Ready for the observation (No additional installation is necessary.) Analysis pipeline development 	

Axion and axion-like particle (ALP)

- Axion was originally proposed in 1970s to solve the strong CP problem in QCD physics.
- Recently, string theory suggested a plentitude of ALPs.
- Feature (In this talk, ALPs are also called axions.)
 - -Typically have a small mass (<< eV).
 - -Weakly couple with gauge bosons. In particular photon.
 - E.g.: Primakoff effect (axion-photon conversion).

Schematic of the Primakoff effect.

Axion dark matter search

- The conventional way to probe axion is to use strong magnets, i.e. the Primakoff effect.
 - However, the magnet could cause noises (vibration/electric noise) and increase cost.
- Recently, new approaches to search for axion were proposed that do not need any magnets but use interferometer.

Conventional way with the Primakoff effect. (J. K. Vogel+, arXiv1302:3273)

Axion interaction with photons

 Axion varies phase velocity between two circular-polarized photons.

Transformative Research Area "Dark Matter" Symposium (Online, Mar. 29th-30th, 2022)

How to measure?

- However, the polarization rotation is small for the short interferometer since the interaction duration is short.
- In addition, the liner optical cavity is not so effective, unlike the gravitational wave detector, due to the parity transformation of the mirror.

Gravitational wave observatory, such as KAGRA

Table-top experiment (DANCE at UTokyo)

I. Obata, T. Fujita, Y. Michimura, PRL 121, 161301 (2018)

Transformative Research Area "Dark Matter" Symposium (Online, Mar. 29th-30th, 2022)

Gravitational wave observatory, such as KAGRA Illustration of KAGRA. (Credit: ICRR)

KN+, PRL 123 , 111301 (2019); KN+, PRD 104, 062008 (2021)

Table-top experiment (DANCE at UTokyo)

Transformative Research Area "Dark Matter" Symposium (Online, Mar. 29th-30th, 2022)

KAGRA

How to search for axions with KAGRA

(Case1) Axion is very light [= Polarization modulation is very slow]

How to search for axions with KAGRA

(Case2) Axion is relatively heavy [= Polarization modulation is relativity fast]

Axion dark matter search with gravitational wave detectors (ADAM-GD)

- This scheme can be applied to GW detectors just by putting polarizer and photodetectors.
- Axion dark matter search can be performed even during the GW observation.

Sensitivity estimation

Sensitivity estimation

Sensitivity estimation

Polarization monitor at TMS in KAGRA

- Polarization monitor has been mostly installed at X-arm transmission monitor system (TMS).
 - This is used for polarization
 monitor during commissioning.

Upcoming schedule

- Up to FY2021, instrumental installations are (almost) done for the ADAM-GD.
- In the next fiscal year (FY2022),
 - We will prepare the analysis pipeline, which can be an application of (or the same to) the vector dark matter search or the continuous GW waves.
 - KAGRA will join the international GW observation run (called 04) in which the axion DM is also searched.

Gravitational wave observatory, such as KAGRA Illustration of KAGRA. (Credit: ICRR) KN+, PRL 123 , 111301 (2019); KN+, PRD 104, 062008 (2021)

Table-top experiment (DANCE at UTokyo)

I. Obata, T. Fujita, Y. Michimura, PRL 121, 161301 (2018)

Transformative Research Area "Dark Matter" Symposium (Online, Mar. 29th-30th, 2022)

Search for axions with pair mirrors

- Polarization modulation can be enhanced.
- Table-top experiments can achieve as high sensitivity as the large instrument.

I. Obata, T. Fujita, Y. Michimura, PRL 121, 161301 (2018)

DANCE experiment

 DANCE: Dark matter Axion search with riNg Cavity Experiment

DANCE overview

- DANCE aims to reach beyond CAST limit by 5 orders of magnitude, at most.
- DANCE Act-1 is the prototype experiment with moderate parameters to impose the comparable limit to CAST independently.
 Y. Oshima+, arXiv:2110.10607 (Modified)

	DANCE	DANCE Act-1	$\begin{array}{c c} & & & & & \\ \hline & & & & \\ \hline \\ & & & \\ \hline \\ \hline$
Optical path length	10 m	1 m	5 10 ⁻¹¹ SN1987A SHAFT 5 00110 ⁻¹² NGC1275
Input laser power	100 W	1 W	DANCE DOINCE Act-1 DANCE
Finesse (~ # of round trip)	1x10 ⁶	3x10 ³	- 10 ⁻¹⁶ 10 ⁻¹⁷ 10 ⁻¹⁶ 10 ⁻¹⁵ 10 ⁻¹⁴ 10 ⁻¹³ 10 ⁻¹³ 10 ⁻¹² 10 ⁻¹¹ 10 ⁻¹⁰ 10 ⁻¹⁰ 10 ⁻⁹ 10 ⁻⁸ 10 ⁻⁷ Axion mass <i>m</i> [eV] Design sensitivity. (only shot noise)

Transformative Research Area "Dark Matter" Symposium (Online, Mar. 29th-30th, 2022)

DANCE act-1 test observation

- In May 2021, the 12-days first test observing run was performed.
- Design sensitivity (= shot noise limit) was far.
 → Some practical issues.
- Non-simultaneous resonance of the pand s-polarized light.
 - Reflection phases of the two polarizations are different.

Simultaneous resonance is required

 To enhance the sensitivity, the s-pol. (carrier) and p-pol. (signal) lights should simultaneously resonate in the cavity.

Phase compensation of p-polarization

 Auxiliary interferometer to compensate the phase difference can lead to the simultaneous Martynov & Miao PRD 101, 095034 (2020) resonance. H. Fujimoto+, arXiv:2110.12023 Laser source Bow-tie ring cavity **Auxiliary** interferometer Pol. detector frequency (Hz) 10-2 10-1 100 10⁶ 107 10⁸ axion-photon coupling $|g_{ay}|$ (GeV $^{-1}$) 10-10-10-6

10-10-

 10^{-9} 10-10 Shot noise can

be improved.

10-7

Simultaneous resonance demonstration

- (Partial) simultaneous resonance by the auxiliary cavity has been demonstrated.
- However, there are still phase difference and excess noises.
- Further investigation is on going.

frequency (Hz) 10^{-1} 10⁰ 10^{6} 10^{7} 10^{8} coupling $|g_{a\gamma}|$ (GeV⁻¹ 10-2 10^{-3} 10^{-4} 10^{-5} **Excess noise** 10^{-6} 10-7 10^{-8} erence 10^{-9} 10^{-10} CAST axion-photon SN1987A 10^{-11} 10^{-12} NGC1275 10-13 sitivity (worst case) 10^{-14} shot noise (worst case) 10-17 10^{-16} 10^{-15} 10-13 10^{-12} 10^{-11} 10^{-10} 10^{-14} 10-9 10-8 10^{-7} 10-6 Provided by H. Fujimoto. axion mass m_a (eV) Current sensitivity estimation. (1 year observation is assumed.)

H. Fujimoto, Master Thesis, UTokyo (2022)

Researches in/around B01 group

	Existing instrument, KAGRA	Table-top experiments
Axion DM	 Installation of the optic for the next (GW) observation Analysis pipeline development 	 Development of the prototype experiment: DANCE First test axion DM observation
Vector DM	 Ready for the observation (No additional installation is necessary.) Analysis pipeline development 	

A few words on vector DM searches

- Vector DM behaves as force applied to the mirror in GW observatory.
 = GW observatory can intrinsically search for the vector DM.
- New upper limit has been put using the actual data of the GW detectors. H-K Guo+, Communications Physics 2, 155 (2019) LIGO, Virgo, KAGRA Collaboration, arXiv:2105.13085
- KAGRA, which has different material mirrors (sapphire and fused silica), can contribute in another way.
 - Y. Michimura+, PRD 102, 102001 (2020) S. Morisaki+, PRD 103, L051702 (2021)

Summary

- Axion makes phase velocity modulation (or polarization-modulation) of the light.
- New schemes to search for the axion dark matter with laser interferometers are proposed and have been demonstrated.
 - -Axion DM search with GW detector (ADAM-GD)
 - -DANCE experiment
- Observation run will start in near future.

Bonus slide Basic idea how to prove polarization rotation

