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Goals: Small scale structure
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density 
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CDM

Satellite Galaxies in WDM 5

Figure 3. Images of the CDM (left) and WDM (right) level 2 haloes at z = 0. Intensity indicates the line-of-sight projected square
of the density, and hue the projected density-weighted velocity dispersion, ranging from blue (low velocity dispersion) to yellow (high
velocity dispersion). Each box is 1.5 Mpc on a side. Note the sharp caustics visible at large radii in the WDM image, several of which
are also present, although less well defined, in the CDM case.
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Figure 4. The correlation between subhalo maximum circular
velocity and the radius at which this maximum occurs. Sub-
haloes lying within 300kpc of the main halo centre are in-
cluded. The 12 CDM and WDM subhaloes with the most mas-
sive progenitors are shown as blue and red filled circles respec-
tively; the remaining subhaloes are shown as empty circles. The
shaded area represents the 2σ confidence region for possible hosts
of the 9 bright Milky Way dwarf spheroidals determined by
Boylan-Kolchin et al. (2011).

the same radii in the simulated subhaloes. To provide a fair
comparison we must choose the simulated subhaloes that
are most likely to correspond to those that host the 9 bright
dwarf spheroidals in the Milky Way. As stripping of sub-
haloes preferentially removes dark matter relative to the
more centrally concentrated stellar component, we choose to

associate final satellite luminosity with the maximum pro-
genitor mass for each surviving subhalo. This is essentially
the mass of the object as it falls into the main halo. The
smallest subhalo in each of our samples has an infall mass
of 3.2 × 109M! in the WDM case, and 6.0 × 109M! in the
CDM case.

The LMC, SMC and the Sagittarius dwarf are all
more luminous than the 9 dwarf spheroidals considered by
Boylan-Kolchin et al. (2011) and by us. As noted above, the
Milky Way is exceptional in hosting galaxies as bright as
the Magellanic Clouds, while Sagittarius is in the process of
being disrupted so its current mass is difficult to estimate.
Boylan-Kolchin et al. hypothesize that these three galaxies
all have values of Vmax > 60kms−1 at infall and exclude sim-
ulated subhaloes that have these values at infall as well as
Vmax > 40kms−1 at the present day from their analysis. In
what follows, we retain all subhaloes but, where appropri-
ate, we highlight those that might host large satellites akin
to the Magellanic Clouds and Sagittarius.

The circular velocity curves at z = 0 for the 12 sub-
haloes which had the most massive progenitors at infall are
shown in Fig. 5 for both WDM and CDM. The circular
velocities within the half-light radius of the 9 satellites mea-
sured by Wolf et al. (2010) are also plotted as symbols. Leo-
II has the smallest half-light radius, ∼ 200pc. To compare
the satellite data with the simulations we must first check
the convergence of the simulated subhalo masses within at
least this radius. We find that the median of the ratio of the
mass within 200pc in the Aq-W2 and Aq-W3 simulations is
W 2/W 3 ∼ 1.22, i.e., the mass within 200pc in the Aq-W2
simulation has converged to better than ∼ 22%.

As can be inferred from Fig. 5, the WDM subhaloes
have similar central masses to the observed satellite galax-
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Figure 1. The most massive halo in our sample (M200 ⇠ 2 ⇥ 1015 M� h�1) in the CDM (left) and SIDM1 (right) cases. The circle
marks the virial radius of the halo (R200 ⇠ 2 Mpc h�1).

40963 particles in the highest resolution region, which is sur-
rounded by regions of intermediate resolution and finally a
low resolution volume with an e↵ective resolution of 2563

particles. To construct the initial conditions of the zoom
simulations we followed closely the methodology described
in e.g. Onorbe et al. (2014):

• Pick the sample of 28 most massive “relaxed” haloes in
the parent simulation, as described above.

• Select the Lagrangian region around each of these
haloes at z = 0 in the parent simulation. This is the tar-
get region for resimulation.

• Traceback the particles to the initial target redshift for
resimulation (z = 50) by matching the unique particle ID
numbers across redshifts.

• Compute the initial conditions for the zoom simulation
using the code MUSIC2 (Hahn & Abel 2011), specifying the
ellipsoidal (or cuboid) region containing the targeted parti-
cles at z = 50 as the high resolution region (see Appendix
A1 for more details and convergence tests).

For the high resolution region, the e↵ective Plummer
equivalent gravitational softening length is ✏ = 5.4 kpc h�1,
while the particle mass is mp = 1.271⇥ 109 M� h�1.

Our final simulation suite consists of 28 haloes sim-
ulated with the same initial conditions in CDM, SIDM1
and SIDM0.1, with a virial mass and radius range in be-
tween: R200 ⇡ 1300 � 2000 kpc h�1, and M200 ⇡ 0.5 �

1.9 ⇥ 1015 M� h�1. Except for the most massive clus-
ter, the sample has a narrow distribution centered around
M200 ⇠ 0.9 ⇥ 1015 M� h�1 and R200 ⇠ 1550 kpc h�1 (see
figure A1). A visual impression structural di↵erences be-
tween CDM and SIDM haloes is given in Figure 1, where
we show dark matter density projections for the most mas-
sive of our haloes for CDM and SIDM1 in the left and right
panels, respectively. For each simulation, we have created
halo catalogues, first by using the friends-of-friends (FOF)
algorithm and then using the SUBFIND algorithm (Springel

2 https://people.phys.ethz.ch/⇠hahn/MUSIC/

et al. 2001) to identify selfbound (sub)haloes. The particles
within the main halo of a given structure are the main focus
of our study.

We note that for the main halo properties analysed in
this work – density, halo shape, and velocity anisotropy ra-
dial profiles – we performed convergence tests to determine
the spatial resolutions we can trust. These are described in
Appendix A.

3 RESULTS

3.1 Relaxation

Having defined our halo relaxation criteria in section 2, we
now study how our ensemble of haloes di↵er between the
CDM and SIDM1 parent simulations in regards to their equi-
librium states (there is a negligible di↵erence between CDM
and SIDM0.1) by looking at all haloes with more than 500
particles. We find that the number of haloes satisfying our
relaxation criteria di↵er significantly between the two cos-
mologies, with almost 20% more relaxed haloes in SIDM1
at z = 0 (40% if we only examine the most massive haloes
with more than 1000 particles, see Table 1).

Examining each criteria separately, we find that the viri-
alization threshold, 2T/|U | < 1.35, is the most important
one in explaining this di↵erence (this holds up to z ⇠ 1;
the number of resolved haloes drops quickly above this
redshift). The median of the distribution of 2T/|U | values
is approximately 0.5�1% lower in SIDM1 than in CDM
(0 < z < 1). We interpret this result as a consequence of
the inside-out ‘heat’ transfer that occurs during dark mat-
ter self-interactions, which leads to the thermalization of the
central regions. Despite commonly assumed to impact only
the innermost regions of haloes, we find that self-interactions
with a cross section of 1 cm2 gr�1 are strong enough to a↵ect
the global virial ratio of the entire halo.

Kim et al. (2017) found that dark matter self-
interactions ultimately shorten the timescales of halo merg-
ers, despite competition between the enhanced momentum
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Figure 1. Volume rendering of the density field in one of our simulations of the formation of a virialized BECDM halo through multiple

mergers. We merge isolated soliton cores (t = 0) until a single bound halo forms, which is characterised by a stable soliton core at the

center of the halo and quantum fluctuations throughout the domain. The volume rendering shows isocontours of density di↵ering by

factors of 10. Insets show projected density in log-space. The bottom panel shows the time evolution of the total energy E, potential

energy W , classical kinetic energy Kv , and quantum gradient energy K⇢ in the simulation.

c� 2017 RAS, MNRAS 000, 1–14

FDM

• Cutoff at 
sub-galaxy 
scale in the 
power 
spectrum

WIMPs, axions, 
ALPs, PBHs

Sterile neutrinos

• Cores in 
density 
profiles 
induced by 
self 
scattering

• Pattern 
induced by 
de Broglie 
length at 
sub-galactic 
scales

Ultralight bosonsSIMPs, dark atoms



Output: Small scale structure

CDM

Satellite Galaxies in WDM 5

Figure 3. Images of the CDM (left) and WDM (right) level 2 haloes at z = 0. Intensity indicates the line-of-sight projected square
of the density, and hue the projected density-weighted velocity dispersion, ranging from blue (low velocity dispersion) to yellow (high
velocity dispersion). Each box is 1.5 Mpc on a side. Note the sharp caustics visible at large radii in the WDM image, several of which
are also present, although less well defined, in the CDM case.
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Figure 4. The correlation between subhalo maximum circular
velocity and the radius at which this maximum occurs. Sub-
haloes lying within 300kpc of the main halo centre are in-
cluded. The 12 CDM and WDM subhaloes with the most mas-
sive progenitors are shown as blue and red filled circles respec-
tively; the remaining subhaloes are shown as empty circles. The
shaded area represents the 2σ confidence region for possible hosts
of the 9 bright Milky Way dwarf spheroidals determined by
Boylan-Kolchin et al. (2011).

the same radii in the simulated subhaloes. To provide a fair
comparison we must choose the simulated subhaloes that
are most likely to correspond to those that host the 9 bright
dwarf spheroidals in the Milky Way. As stripping of sub-
haloes preferentially removes dark matter relative to the
more centrally concentrated stellar component, we choose to

associate final satellite luminosity with the maximum pro-
genitor mass for each surviving subhalo. This is essentially
the mass of the object as it falls into the main halo. The
smallest subhalo in each of our samples has an infall mass
of 3.2 × 109M! in the WDM case, and 6.0 × 109M! in the
CDM case.

The LMC, SMC and the Sagittarius dwarf are all
more luminous than the 9 dwarf spheroidals considered by
Boylan-Kolchin et al. (2011) and by us. As noted above, the
Milky Way is exceptional in hosting galaxies as bright as
the Magellanic Clouds, while Sagittarius is in the process of
being disrupted so its current mass is difficult to estimate.
Boylan-Kolchin et al. hypothesize that these three galaxies
all have values of Vmax > 60kms−1 at infall and exclude sim-
ulated subhaloes that have these values at infall as well as
Vmax > 40kms−1 at the present day from their analysis. In
what follows, we retain all subhaloes but, where appropri-
ate, we highlight those that might host large satellites akin
to the Magellanic Clouds and Sagittarius.

The circular velocity curves at z = 0 for the 12 sub-
haloes which had the most massive progenitors at infall are
shown in Fig. 5 for both WDM and CDM. The circular
velocities within the half-light radius of the 9 satellites mea-
sured by Wolf et al. (2010) are also plotted as symbols. Leo-
II has the smallest half-light radius, ∼ 200pc. To compare
the satellite data with the simulations we must first check
the convergence of the simulated subhalo masses within at
least this radius. We find that the median of the ratio of the
mass within 200pc in the Aq-W2 and Aq-W3 simulations is
W 2/W 3 ∼ 1.22, i.e., the mass within 200pc in the Aq-W2
simulation has converged to better than ∼ 22%.

As can be inferred from Fig. 5, the WDM subhaloes
have similar central masses to the observed satellite galax-
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Figure 1. The most massive halo in our sample (M200 ⇠ 2 ⇥ 1015 M� h�1) in the CDM (left) and SIDM1 (right) cases. The circle
marks the virial radius of the halo (R200 ⇠ 2 Mpc h�1).

40963 particles in the highest resolution region, which is sur-
rounded by regions of intermediate resolution and finally a
low resolution volume with an e↵ective resolution of 2563

particles. To construct the initial conditions of the zoom
simulations we followed closely the methodology described
in e.g. Onorbe et al. (2014):

• Pick the sample of 28 most massive “relaxed” haloes in
the parent simulation, as described above.

• Select the Lagrangian region around each of these
haloes at z = 0 in the parent simulation. This is the tar-
get region for resimulation.

• Traceback the particles to the initial target redshift for
resimulation (z = 50) by matching the unique particle ID
numbers across redshifts.

• Compute the initial conditions for the zoom simulation
using the code MUSIC2 (Hahn & Abel 2011), specifying the
ellipsoidal (or cuboid) region containing the targeted parti-
cles at z = 50 as the high resolution region (see Appendix
A1 for more details and convergence tests).

For the high resolution region, the e↵ective Plummer
equivalent gravitational softening length is ✏ = 5.4 kpc h�1,
while the particle mass is mp = 1.271⇥ 109 M� h�1.

Our final simulation suite consists of 28 haloes sim-
ulated with the same initial conditions in CDM, SIDM1
and SIDM0.1, with a virial mass and radius range in be-
tween: R200 ⇡ 1300 � 2000 kpc h�1, and M200 ⇡ 0.5 �

1.9 ⇥ 1015 M� h�1. Except for the most massive clus-
ter, the sample has a narrow distribution centered around
M200 ⇠ 0.9 ⇥ 1015 M� h�1 and R200 ⇠ 1550 kpc h�1 (see
figure A1). A visual impression structural di↵erences be-
tween CDM and SIDM haloes is given in Figure 1, where
we show dark matter density projections for the most mas-
sive of our haloes for CDM and SIDM1 in the left and right
panels, respectively. For each simulation, we have created
halo catalogues, first by using the friends-of-friends (FOF)
algorithm and then using the SUBFIND algorithm (Springel

2 https://people.phys.ethz.ch/⇠hahn/MUSIC/

et al. 2001) to identify selfbound (sub)haloes. The particles
within the main halo of a given structure are the main focus
of our study.

We note that for the main halo properties analysed in
this work – density, halo shape, and velocity anisotropy ra-
dial profiles – we performed convergence tests to determine
the spatial resolutions we can trust. These are described in
Appendix A.

3 RESULTS

3.1 Relaxation

Having defined our halo relaxation criteria in section 2, we
now study how our ensemble of haloes di↵er between the
CDM and SIDM1 parent simulations in regards to their equi-
librium states (there is a negligible di↵erence between CDM
and SIDM0.1) by looking at all haloes with more than 500
particles. We find that the number of haloes satisfying our
relaxation criteria di↵er significantly between the two cos-
mologies, with almost 20% more relaxed haloes in SIDM1
at z = 0 (40% if we only examine the most massive haloes
with more than 1000 particles, see Table 1).

Examining each criteria separately, we find that the viri-
alization threshold, 2T/|U | < 1.35, is the most important
one in explaining this di↵erence (this holds up to z ⇠ 1;
the number of resolved haloes drops quickly above this
redshift). The median of the distribution of 2T/|U | values
is approximately 0.5�1% lower in SIDM1 than in CDM
(0 < z < 1). We interpret this result as a consequence of
the inside-out ‘heat’ transfer that occurs during dark mat-
ter self-interactions, which leads to the thermalization of the
central regions. Despite commonly assumed to impact only
the innermost regions of haloes, we find that self-interactions
with a cross section of 1 cm2 gr�1 are strong enough to a↵ect
the global virial ratio of the entire halo.

Kim et al. (2017) found that dark matter self-
interactions ultimately shorten the timescales of halo merg-
ers, despite competition between the enhanced momentum
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Figure 1. Volume rendering of the density field in one of our simulations of the formation of a virialized BECDM halo through multiple

mergers. We merge isolated soliton cores (t = 0) until a single bound halo forms, which is characterised by a stable soliton core at the

center of the halo and quantum fluctuations throughout the domain. The volume rendering shows isocontours of density di↵ering by

factors of 10. Insets show projected density in log-space. The bottom panel shows the time evolution of the total energy E, potential

energy W , classical kinetic energy Kv , and quantum gradient energy K⇢ in the simulation.
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• Phase-space structure (Enomoto, 
Nishimichi, Taruya)

• Numerical simulations of 
WDM halos and subhalos 
(Okamoto, Inoue et al.) 


• Developing semi-analytical 
models and constraints from 
satellite number counts (Ando 
et al.)

• Simulation of SIDM subhalos 
falling onto the SIDM halo 
(Shirasaki et al.)

• Tight constraints using stellar 
motion in ultrafaint dwarf 
galaxies (Dalal et al.)
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Figure 3. Images of the CDM (left) and WDM (right) level 2 haloes at z = 0. Intensity indicates the line-of-sight projected square
of the density, and hue the projected density-weighted velocity dispersion, ranging from blue (low velocity dispersion) to yellow (high
velocity dispersion). Each box is 1.5 Mpc on a side. Note the sharp caustics visible at large radii in the WDM image, several of which
are also present, although less well defined, in the CDM case.
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Figure 4. The correlation between subhalo maximum circular
velocity and the radius at which this maximum occurs. Sub-
haloes lying within 300kpc of the main halo centre are in-
cluded. The 12 CDM and WDM subhaloes with the most mas-
sive progenitors are shown as blue and red filled circles respec-
tively; the remaining subhaloes are shown as empty circles. The
shaded area represents the 2σ confidence region for possible hosts
of the 9 bright Milky Way dwarf spheroidals determined by
Boylan-Kolchin et al. (2011).

the same radii in the simulated subhaloes. To provide a fair
comparison we must choose the simulated subhaloes that
are most likely to correspond to those that host the 9 bright
dwarf spheroidals in the Milky Way. As stripping of sub-
haloes preferentially removes dark matter relative to the
more centrally concentrated stellar component, we choose to

associate final satellite luminosity with the maximum pro-
genitor mass for each surviving subhalo. This is essentially
the mass of the object as it falls into the main halo. The
smallest subhalo in each of our samples has an infall mass
of 3.2 × 109M! in the WDM case, and 6.0 × 109M! in the
CDM case.

The LMC, SMC and the Sagittarius dwarf are all
more luminous than the 9 dwarf spheroidals considered by
Boylan-Kolchin et al. (2011) and by us. As noted above, the
Milky Way is exceptional in hosting galaxies as bright as
the Magellanic Clouds, while Sagittarius is in the process of
being disrupted so its current mass is difficult to estimate.
Boylan-Kolchin et al. hypothesize that these three galaxies
all have values of Vmax > 60kms−1 at infall and exclude sim-
ulated subhaloes that have these values at infall as well as
Vmax > 40kms−1 at the present day from their analysis. In
what follows, we retain all subhaloes but, where appropri-
ate, we highlight those that might host large satellites akin
to the Magellanic Clouds and Sagittarius.

The circular velocity curves at z = 0 for the 12 sub-
haloes which had the most massive progenitors at infall are
shown in Fig. 5 for both WDM and CDM. The circular
velocities within the half-light radius of the 9 satellites mea-
sured by Wolf et al. (2010) are also plotted as symbols. Leo-
II has the smallest half-light radius, ∼ 200pc. To compare
the satellite data with the simulations we must first check
the convergence of the simulated subhalo masses within at
least this radius. We find that the median of the ratio of the
mass within 200pc in the Aq-W2 and Aq-W3 simulations is
W 2/W 3 ∼ 1.22, i.e., the mass within 200pc in the Aq-W2
simulation has converged to better than ∼ 22%.

As can be inferred from Fig. 5, the WDM subhaloes
have similar central masses to the observed satellite galax-
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Figure 1. The most massive halo in our sample (M200 ⇠ 2 ⇥ 1015 M� h�1) in the CDM (left) and SIDM1 (right) cases. The circle
marks the virial radius of the halo (R200 ⇠ 2 Mpc h�1).

40963 particles in the highest resolution region, which is sur-
rounded by regions of intermediate resolution and finally a
low resolution volume with an e↵ective resolution of 2563

particles. To construct the initial conditions of the zoom
simulations we followed closely the methodology described
in e.g. Onorbe et al. (2014):

• Pick the sample of 28 most massive “relaxed” haloes in
the parent simulation, as described above.

• Select the Lagrangian region around each of these
haloes at z = 0 in the parent simulation. This is the tar-
get region for resimulation.

• Traceback the particles to the initial target redshift for
resimulation (z = 50) by matching the unique particle ID
numbers across redshifts.

• Compute the initial conditions for the zoom simulation
using the code MUSIC2 (Hahn & Abel 2011), specifying the
ellipsoidal (or cuboid) region containing the targeted parti-
cles at z = 50 as the high resolution region (see Appendix
A1 for more details and convergence tests).

For the high resolution region, the e↵ective Plummer
equivalent gravitational softening length is ✏ = 5.4 kpc h�1,
while the particle mass is mp = 1.271⇥ 109 M� h�1.

Our final simulation suite consists of 28 haloes sim-
ulated with the same initial conditions in CDM, SIDM1
and SIDM0.1, with a virial mass and radius range in be-
tween: R200 ⇡ 1300 � 2000 kpc h�1, and M200 ⇡ 0.5 �

1.9 ⇥ 1015 M� h�1. Except for the most massive clus-
ter, the sample has a narrow distribution centered around
M200 ⇠ 0.9 ⇥ 1015 M� h�1 and R200 ⇠ 1550 kpc h�1 (see
figure A1). A visual impression structural di↵erences be-
tween CDM and SIDM haloes is given in Figure 1, where
we show dark matter density projections for the most mas-
sive of our haloes for CDM and SIDM1 in the left and right
panels, respectively. For each simulation, we have created
halo catalogues, first by using the friends-of-friends (FOF)
algorithm and then using the SUBFIND algorithm (Springel

2 https://people.phys.ethz.ch/⇠hahn/MUSIC/

et al. 2001) to identify selfbound (sub)haloes. The particles
within the main halo of a given structure are the main focus
of our study.

We note that for the main halo properties analysed in
this work – density, halo shape, and velocity anisotropy ra-
dial profiles – we performed convergence tests to determine
the spatial resolutions we can trust. These are described in
Appendix A.

3 RESULTS

3.1 Relaxation

Having defined our halo relaxation criteria in section 2, we
now study how our ensemble of haloes di↵er between the
CDM and SIDM1 parent simulations in regards to their equi-
librium states (there is a negligible di↵erence between CDM
and SIDM0.1) by looking at all haloes with more than 500
particles. We find that the number of haloes satisfying our
relaxation criteria di↵er significantly between the two cos-
mologies, with almost 20% more relaxed haloes in SIDM1
at z = 0 (40% if we only examine the most massive haloes
with more than 1000 particles, see Table 1).

Examining each criteria separately, we find that the viri-
alization threshold, 2T/|U | < 1.35, is the most important
one in explaining this di↵erence (this holds up to z ⇠ 1;
the number of resolved haloes drops quickly above this
redshift). The median of the distribution of 2T/|U | values
is approximately 0.5�1% lower in SIDM1 than in CDM
(0 < z < 1). We interpret this result as a consequence of
the inside-out ‘heat’ transfer that occurs during dark mat-
ter self-interactions, which leads to the thermalization of the
central regions. Despite commonly assumed to impact only
the innermost regions of haloes, we find that self-interactions
with a cross section of 1 cm2 gr�1 are strong enough to a↵ect
the global virial ratio of the entire halo.

Kim et al. (2017) found that dark matter self-
interactions ultimately shorten the timescales of halo merg-
ers, despite competition between the enhanced momentum
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Figure 1. Volume rendering of the density field in one of our simulations of the formation of a virialized BECDM halo through multiple

mergers. We merge isolated soliton cores (t = 0) until a single bound halo forms, which is characterised by a stable soliton core at the

center of the halo and quantum fluctuations throughout the domain. The volume rendering shows isocontours of density di↵ering by

factors of 10. Insets show projected density in log-space. The bottom panel shows the time evolution of the total energy E, potential

energy W , classical kinetic energy Kv , and quantum gradient energy K⇢ in the simulation.
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• Phase-space structure (Enomoto, 
Nishimichi, Taruya)

• Numerical simulations of 
WDM halos and subhalos 
(Okamoto, Inoue et al.) 


• Developing semi-analytical 
models and constraints from 
satellite number counts (Ando 
et al.)

• Simulation of SIDM subhalos 
falling onto the SIDM halo 
(Shirasaki et al.)

• Tight constraints using stellar 
motion in ultrafaint dwarf 
galaxies (Dalal et al.)



• Recap: Semi-analytical models 
combining the extended Press-
Schechter formalism with tidal-
evolution prescription


• Well recovers subhalo mass 
function and distribution of 
density profile parameters


• Cost-effective, free from 
numerical resolution and 
Poisson noise
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condition of tidal disruption as follows:

dNsh

dm
=

X

i

wi�(m�m0,i)

⇥

Z
dcvir,accP (cvir,acc|macc,i, zacc,i)

⇥⇥[rt,i(z0|cvir,acc)� 0.77rs,i(z0|cvir,acc)],

(28)

where �(x) and ⇥(x) are the Dirac delta function and
Heaviside step function, respectively.

The subhalo mass function has been studied most com-
monly through N -body simulations in the literature. We
show m2dNsh/dm obtained by the numerical simulations
and by our analytical model [Eq. (28)] in Fig. 2. In
the top panel of Fig. 2, we compare the subahalo mass
function for host masses Mhost = 1.8 ⇥ 1012M� and
5.9⇥1014M� at z = 0 with the fitting functions to the re-
sults of Refs. [20] and [44], respectively. In both cases, the
simulations and analytical models show reasonable agree-
ment, while our model predicts fewer subhalos. In the
middle panel of Fig. 2, we compare the mass function at
z = 2 and z = 4 compared with results of Ref. [45], for the
host that has the mass ofMhost = 1013M� at z = 0. This
again shows very good agreement between the two ap-
proaches, where the subhalos are resolved in the numer-
ical simulations. Our model can also be applied to cases
of even smaller hosts. In the bottom panel of Fig. 2, we
compare the subhalo mass function for Mhost = 106M�
and 107M� at z = 5 with the results of the Phi-2 simu-
lations in Sec. III B. Down to the resolution limit of the
simulations that are around 500–1000M�, both the cal-
culations agree well. Hence, the subhalo mass functions
from our analytical model is well calibrated to the re-
sults of the numerical simulations at high masses, and
since it is physically motivated, the behavior at low-mass
end down to very small masses can also be regarded as
reliable.

In Fig. 3, we show the slope of the subhalo mass func-
tion

� ↵ =
d ln(dNsh/dm)

d lnm
, (29)

(i.e., dNsh/dm / m�↵) for the same models as in Fig. 2.
We find that the slope lies in a range between �2 and
�1.8 for a large range of m except for lower and higher
edges where the mass function features cuto↵s. This is
consistent with one of the findings from the numerical
simulations, again confirming validity of our analytical
model.

Fig. 4 shows the mass fraction of the host mass that is
contained in the form of the subhalos:

fsh =
1

Mhost

Z 0.1Mhost

10�6M�

dm m
dNsh

dm
. (30)

At z = 0, this fraction is smaller than ⇠10% level up
to cluster-size halos. We also find that fsh is larger for
higher redshifts, as the e↵ect of tidal mass loss is sup-
pressed compared with the case of z = 0.

FIG. 2. Mass function of subhalos and comparison with the
results of numerical simulations. Top: Comparison at z = 0.
Thick (blue) lines correspond to the case of Mhost = 1.8 ⇥
1012M� while thin (red) lines to 5.9 ⇥ 1014M�. Solid lines
show the mass function obtained in our analytical modelings
and dashed lines show those obtained by N-body simulations
in Tab.I. We also add fitting fnctions in [20] for Mhost =
1.8⇥1012M� and in [44] for 5.9⇥1014M�. Middle: Cases of
Mhost = 2.3⇥1012M� at z = 2 (solid, blue lines) and Mhost =
4.7 ⇥ 1011M� at z = 4 (thin, red lines). We compare our
results with those of Mhost = 1013M� at z = 0 in [45] evolved
back to z = 2 and z = 4, respectively. Bottom: Comparison
at z = 5. We show cases of Mhost = 106M� (solid, blue
lines) and 107M� (thin, red lines). For details of our N-
body simulations, see Sec. III B). Note that some of the lines
corresponds to our N-body simulations extends higher than
those of the host mass because we stacked halos in mass bins
when deriving mass functions.

Hiroshima, Ando, Ishiyama, Phys. Rev. D 97, 123002 (2018)

Ando, Geringer-Sameth, Hiroshima, Hoof, Trotta, Walker, Phys. Rev. D 102, 061302 (2020) 

N. Hiroshima

Release of public codes for semi-
analytical subhalo models (CDM)

T. Ishiyama



Release of public codes for semi-
analytical subhalo models (CDM)

• Semi-Analytical SubHalo Inference ModelIng


• “Cold” SASHIMI: github.com/shinichiroando/sashimi-c


• Only 760 lines of simple python codes, which enable to 
calculate (nearly) everything we did in Hiroshima et al. (2018)


• Subhalo mass function, substructure boost of dark matter 
annihilation, etc.


• Well documented and useful sample codes provided

N. Hiroshima A. Dekker

https://github.com/shinichiroando/sashimi-c


Cosmological prior for the J-factor 
estimation of dwarf spheroidal galaxies

● Dwarf spheroidal galaxies (dSph) play important roles for dark matter detection but 
their dark matter halo profiles have large uncertainties


● For the halo profile estimation of dSphs, we apply two cosmological priors: 
○ Satellite prior: constraint distribution of halo parameter based on a structure formation model 
○ Stellar-to-halo mass relation prior: empirical relation between stellar mass and halo mass 

● The cosmological priors are useful to decrease the uncertainty in the estimation 
	 	 	 	 and give a better understanding of dSphs 
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S. Horigome 
K. Hayashi



S. Inoue

T. Okamoto



Phase-space structure of dark matter halos by tracking particle trajectories in 
cosmological N-body simulations  a clue to clarify nature of dark matter →

Inner structure of cold dark matter (CDM) halo

Applying the improved version of the method developed by Sugiura et al. (’20),

N-body particles in CDM halos are classified by # of apocenter passages, p

Up to p~60

Density profile for each p shows a 
double power-law feature 

Surprisingly !!Radial phase space
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Enomoto, Nishimichi & Taruya (’22, in prep)



α(p) = − 1 ∼ − 2

β(p) = − 8 ∼ − 9

Irrespective of p or halo mass,Inner slope

Outer slope Summing up all contributions 
leads to total profile

halo 
mass

Fitting 
function

ρ(r; p) =
A(p)

x−α(p)[1 + xα(p)−β(p)]
; x ≡

r
S(p)

Double power-law
NFW

 (  NFW profile)≈

# of apocenter passage, p
Inner cusp in NFW profile has been already built up 

in each multi-stream flow  Hint of its origin→

consistently 

Enomoto, Nishimichi & Taruya (’22, in prep)

Inner structure of cold dark matter (CDM) halo

r/Rvir

Fractional error
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Figure 3. Images of the CDM (left) and WDM (right) level 2 haloes at z = 0. Intensity indicates the line-of-sight projected square
of the density, and hue the projected density-weighted velocity dispersion, ranging from blue (low velocity dispersion) to yellow (high
velocity dispersion). Each box is 1.5 Mpc on a side. Note the sharp caustics visible at large radii in the WDM image, several of which
are also present, although less well defined, in the CDM case.
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Figure 4. The correlation between subhalo maximum circular
velocity and the radius at which this maximum occurs. Sub-
haloes lying within 300kpc of the main halo centre are in-
cluded. The 12 CDM and WDM subhaloes with the most mas-
sive progenitors are shown as blue and red filled circles respec-
tively; the remaining subhaloes are shown as empty circles. The
shaded area represents the 2σ confidence region for possible hosts
of the 9 bright Milky Way dwarf spheroidals determined by
Boylan-Kolchin et al. (2011).

the same radii in the simulated subhaloes. To provide a fair
comparison we must choose the simulated subhaloes that
are most likely to correspond to those that host the 9 bright
dwarf spheroidals in the Milky Way. As stripping of sub-
haloes preferentially removes dark matter relative to the
more centrally concentrated stellar component, we choose to

associate final satellite luminosity with the maximum pro-
genitor mass for each surviving subhalo. This is essentially
the mass of the object as it falls into the main halo. The
smallest subhalo in each of our samples has an infall mass
of 3.2 × 109M! in the WDM case, and 6.0 × 109M! in the
CDM case.

The LMC, SMC and the Sagittarius dwarf are all
more luminous than the 9 dwarf spheroidals considered by
Boylan-Kolchin et al. (2011) and by us. As noted above, the
Milky Way is exceptional in hosting galaxies as bright as
the Magellanic Clouds, while Sagittarius is in the process of
being disrupted so its current mass is difficult to estimate.
Boylan-Kolchin et al. hypothesize that these three galaxies
all have values of Vmax > 60kms−1 at infall and exclude sim-
ulated subhaloes that have these values at infall as well as
Vmax > 40kms−1 at the present day from their analysis. In
what follows, we retain all subhaloes but, where appropri-
ate, we highlight those that might host large satellites akin
to the Magellanic Clouds and Sagittarius.

The circular velocity curves at z = 0 for the 12 sub-
haloes which had the most massive progenitors at infall are
shown in Fig. 5 for both WDM and CDM. The circular
velocities within the half-light radius of the 9 satellites mea-
sured by Wolf et al. (2010) are also plotted as symbols. Leo-
II has the smallest half-light radius, ∼ 200pc. To compare
the satellite data with the simulations we must first check
the convergence of the simulated subhalo masses within at
least this radius. We find that the median of the ratio of the
mass within 200pc in the Aq-W2 and Aq-W3 simulations is
W 2/W 3 ∼ 1.22, i.e., the mass within 200pc in the Aq-W2
simulation has converged to better than ∼ 22%.

As can be inferred from Fig. 5, the WDM subhaloes
have similar central masses to the observed satellite galax-

c© 2011 RAS, MNRAS 000, ??–8

WDM

Structure and assembly of SIDM cluster-size haloes 3

Figure 1. The most massive halo in our sample (M200 ⇠ 2 ⇥ 1015 M� h�1) in the CDM (left) and SIDM1 (right) cases. The circle
marks the virial radius of the halo (R200 ⇠ 2 Mpc h�1).

40963 particles in the highest resolution region, which is sur-
rounded by regions of intermediate resolution and finally a
low resolution volume with an e↵ective resolution of 2563

particles. To construct the initial conditions of the zoom
simulations we followed closely the methodology described
in e.g. Onorbe et al. (2014):

• Pick the sample of 28 most massive “relaxed” haloes in
the parent simulation, as described above.

• Select the Lagrangian region around each of these
haloes at z = 0 in the parent simulation. This is the tar-
get region for resimulation.

• Traceback the particles to the initial target redshift for
resimulation (z = 50) by matching the unique particle ID
numbers across redshifts.

• Compute the initial conditions for the zoom simulation
using the code MUSIC2 (Hahn & Abel 2011), specifying the
ellipsoidal (or cuboid) region containing the targeted parti-
cles at z = 50 as the high resolution region (see Appendix
A1 for more details and convergence tests).

For the high resolution region, the e↵ective Plummer
equivalent gravitational softening length is ✏ = 5.4 kpc h�1,
while the particle mass is mp = 1.271⇥ 109 M� h�1.

Our final simulation suite consists of 28 haloes sim-
ulated with the same initial conditions in CDM, SIDM1
and SIDM0.1, with a virial mass and radius range in be-
tween: R200 ⇡ 1300 � 2000 kpc h�1, and M200 ⇡ 0.5 �

1.9 ⇥ 1015 M� h�1. Except for the most massive clus-
ter, the sample has a narrow distribution centered around
M200 ⇠ 0.9 ⇥ 1015 M� h�1 and R200 ⇠ 1550 kpc h�1 (see
figure A1). A visual impression structural di↵erences be-
tween CDM and SIDM haloes is given in Figure 1, where
we show dark matter density projections for the most mas-
sive of our haloes for CDM and SIDM1 in the left and right
panels, respectively. For each simulation, we have created
halo catalogues, first by using the friends-of-friends (FOF)
algorithm and then using the SUBFIND algorithm (Springel

2 https://people.phys.ethz.ch/⇠hahn/MUSIC/

et al. 2001) to identify selfbound (sub)haloes. The particles
within the main halo of a given structure are the main focus
of our study.

We note that for the main halo properties analysed in
this work – density, halo shape, and velocity anisotropy ra-
dial profiles – we performed convergence tests to determine
the spatial resolutions we can trust. These are described in
Appendix A.

3 RESULTS

3.1 Relaxation

Having defined our halo relaxation criteria in section 2, we
now study how our ensemble of haloes di↵er between the
CDM and SIDM1 parent simulations in regards to their equi-
librium states (there is a negligible di↵erence between CDM
and SIDM0.1) by looking at all haloes with more than 500
particles. We find that the number of haloes satisfying our
relaxation criteria di↵er significantly between the two cos-
mologies, with almost 20% more relaxed haloes in SIDM1
at z = 0 (40% if we only examine the most massive haloes
with more than 1000 particles, see Table 1).

Examining each criteria separately, we find that the viri-
alization threshold, 2T/|U | < 1.35, is the most important
one in explaining this di↵erence (this holds up to z ⇠ 1;
the number of resolved haloes drops quickly above this
redshift). The median of the distribution of 2T/|U | values
is approximately 0.5�1% lower in SIDM1 than in CDM
(0 < z < 1). We interpret this result as a consequence of
the inside-out ‘heat’ transfer that occurs during dark mat-
ter self-interactions, which leads to the thermalization of the
central regions. Despite commonly assumed to impact only
the innermost regions of haloes, we find that self-interactions
with a cross section of 1 cm2 gr�1 are strong enough to a↵ect
the global virial ratio of the entire halo.

Kim et al. (2017) found that dark matter self-
interactions ultimately shorten the timescales of halo merg-
ers, despite competition between the enhanced momentum

MNRAS 000, 000–000 (0000)
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Figure 1. Volume rendering of the density field in one of our simulations of the formation of a virialized BECDM halo through multiple

mergers. We merge isolated soliton cores (t = 0) until a single bound halo forms, which is characterised by a stable soliton core at the

center of the halo and quantum fluctuations throughout the domain. The volume rendering shows isocontours of density di↵ering by

factors of 10. Insets show projected density in log-space. The bottom panel shows the time evolution of the total energy E, potential

energy W , classical kinetic energy Kv , and quantum gradient energy K⇢ in the simulation.
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FDM

• Numerical simulations of 
WDM halos and subhalos 
(Okamoto, Inoue et al.) 


• Developing semi-analytical 
models and constraints from 
satellite number counts (Ando 
et al.)

• Simulation of SIDM subhalos 
falling onto the SIDM halo 
(Shirasaki et al.)

• Tight constraints using stellar 
motion in ultrafaint dwarf 
galaxies (Dalal et al.)

• Release of public codes (Ando et al.)


• Dwarf galaxies (Horigome et al.)


• Galaxies and dark matter structure 
classification (Inoue, Okamoto et al.)


• Phase-space structure (Enomoto, 
Nishimichi, Taruya)



Warm Dark Matter simulations

• A parameterization of the WDM mass function relative to that of the CDM 
is needed


• Lovell (2020) gives such a fitting function with WDM simulations of the 
half-mode mass of  — . 


• We first extend their work to a wider range of the WDM mass  
—  (  — ) and benchmark their 
fitting function


• Then construct a theoretical model that explains the simulation results.  

Mhm = 5 × 108 3.5 × 109 M⊙

mWDM = 1
10 keV Mhm = 6.4 × 106 1.3 × 1010 M⊙

T. Okamoto S. Inoue



Simulations
• Zoom simulations of a Milky Way mass halo 


• 


• Mass resolution: 


• The mean particle separation: 

M200 = 1.18 × 1012 M⊙

mDM = 2.491 × 103 M⊙

3.05 × 10−3h−1 cMpc

1 keV 3 keV 10 keV CDM

1.37x1010 3.52x108 6.40x106 N/A

0.048 0.014 0.0037 N/A

Status Running if necessary Done Done

Mhm (h−1 M⊙)

λfs (h−1 Mpc)

CDM (low-resolution)

CDM (high-resolution)

WDM 1 keV (low-resolution)

WDM 10 keV (high-resolution)



Semi-analytical models
• “Warm” SASHIMI (github.com/

shinichiroando/sashimi-w)


• Applied SASHIMI codes to the 
case of WDM by modifying power 
spectrum, etc.


• Compare with satellite number counts 
(DES+PanSTARRS1)


• Excluding WDM mass of < 3.6-5.1 
keV (without baryon physics 
uncertainties)


• Excluding sterile neutrino dark 
matter (combined with X rays)
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models of Ref. [40] and extend it to the WDM cosmol-
ogy by modifying the mass-loss rate, and adopting ap-
propriate changes to the EPS formalism [41] and to the
concentration-mass-redshift relation for WDM [42]. Our
models enable us to directly probe subhalo properties
for any WDM models as well as any halo and subhalo
masses, resulting in competent and solid constraints, for
which we make extensive comparison pointing out di↵er-
ences among various approaches.

We calculate the number of satellite galaxies in the
Milky Way for a range of WDM and sterile neutrino
models and compare them with the observed number of
satellite galaxies. For observational data, we use 270 es-
timated satellite galaxies observed by the Dark Energy
Survey (DES) and PanSTARRS1 (PS1) after complete-
ness correction [43], as well as a subset of 94 satellite
galaxies that contain kinematics data, to obtain lower
limits on the WDM and sterile neutrino mass. To derive
our canonical, conservative constraints, we assume that
all the subhalos host satellite galaxies. Implementing
galaxy formation in subhalos above some certain thresh-
olds (such as mass) will e↵ectively reduce the number
of satellites that the models predict and lead to stronger
limits. Therefore, we also investigate di↵erent galaxy for-
mation conditions.

As a result, we obtain very stringent and model-
independent constraints on the WDM masses of > 3.6–
5.1 keV at 95% confidence level (CL), estimated for a
range of Milky-Way halo masses M200 = (0.6–2.0) ⇥
1012M� (Fig. 1), where M200 is defined as the enclosed
mass within the radii in which the mean density is 200
times the critical density. We also exclude the sterile neu-
trino dark matter with masses lighter than 11.6 keV for a
Milky-Way halo mass of 1012M� (Fig. 2). By assuming
that only halos with masses heavier than 108M� form
galaxies in them, we obtain even more stringent (model-
dependent) limits on the WDM masses of > 9.0 keV for
Milky-Way halo mass 1012M�.

II. SUBHALO MODELS

A. Subhalo properties

In order to estimate the number of satellites in the
Milky-Way halo, we need models that describe the for-
mation and evolution of both halos and subhalos. The
Milky-Way subhalos are characterized with the mass m,
parameters rs and ⇢s of the Navarro-Frenk-White (NFW)
profile [54], and the truncation radius rt beyond which
the density quickly approaches to zero [55]. All these
quantities are at the current redshift z = 0, after the
tidal evolution of the subhalos. In addition, some sub-
halos may get completely disrupted when the tidal e↵ect
strips substantial amount of masses in the outer radii
such that rt < 0.77rs [56] (but see also Ref. [57]). It
is therefore important to model the subhalo evolution,
and relate the present quantities with those at accretion

FIG. 1. Excluded regions at 95% CL of the WDM mass as
a function of the Milky-Way mass considering the canonical
constraints (red) as well as by adopting the satellite forming
condition with ma > 108M� (yellow). Moreover, the conser-
vative constraints considering satellites with kinematics data
of Vmax > 4 km/s are also shown (purple). The black markers
represent limits from the literature (Sec. V).

FIG. 2. Excluded regions at 95% CL of the mixing angle
sin2(2✓) as a function of sterile neutrino mass m⌫s for the
Milky-Way mass of M200 = 1012M�. The grey hatched
area represents upper limits from the current X-ray con-
straints [44–51] and the black star the best-fit of the uniden-
tified 3.5 keV line with mixing angle, sin2(2✓) ' (0.2–
2)⇥ 10�10 [52, 53].

before experiencing tidal e↵ects.
At the epoch of accretion when a halo becomes a sub-

halo, its density structure is completely characterized by
three parameters: accretion redshift za, virial mass ma,
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models of Ref. [40] and extend it to the WDM cosmol-
ogy by modifying the mass-loss rate, and adopting ap-
propriate changes to the EPS formalism [41] and to the
concentration-mass-redshift relation for WDM [42]. Our
models enable us to directly probe subhalo properties
for any WDM models as well as any halo and subhalo
masses, resulting in competent and solid constraints, for
which we make extensive comparison pointing out di↵er-
ences among various approaches.

We calculate the number of satellite galaxies in the
Milky Way for a range of WDM and sterile neutrino
models and compare them with the observed number of
satellite galaxies. For observational data, we use 270 es-
timated satellite galaxies observed by the Dark Energy
Survey (DES) and PanSTARRS1 (PS1) after complete-
ness correction [43], as well as a subset of 94 satellite
galaxies that contain kinematics data, to obtain lower
limits on the WDM and sterile neutrino mass. To derive
our canonical, conservative constraints, we assume that
all the subhalos host satellite galaxies. Implementing
galaxy formation in subhalos above some certain thresh-
olds (such as mass) will e↵ectively reduce the number
of satellites that the models predict and lead to stronger
limits. Therefore, we also investigate di↵erent galaxy for-
mation conditions.

As a result, we obtain very stringent and model-
independent constraints on the WDM masses of > 3.6–
5.1 keV at 95% confidence level (CL), estimated for a
range of Milky-Way halo masses M200 = (0.6–2.0) ⇥
1012M� (Fig. 1), where M200 is defined as the enclosed
mass within the radii in which the mean density is 200
times the critical density. We also exclude the sterile neu-
trino dark matter with masses lighter than 11.6 keV for a
Milky-Way halo mass of 1012M� (Fig. 2). By assuming
that only halos with masses heavier than 108M� form
galaxies in them, we obtain even more stringent (model-
dependent) limits on the WDM masses of > 9.0 keV for
Milky-Way halo mass 1012M�.

II. SUBHALO MODELS

A. Subhalo properties

In order to estimate the number of satellites in the
Milky-Way halo, we need models that describe the for-
mation and evolution of both halos and subhalos. The
Milky-Way subhalos are characterized with the mass m,
parameters rs and ⇢s of the Navarro-Frenk-White (NFW)
profile [54], and the truncation radius rt beyond which
the density quickly approaches to zero [55]. All these
quantities are at the current redshift z = 0, after the
tidal evolution of the subhalos. In addition, some sub-
halos may get completely disrupted when the tidal e↵ect
strips substantial amount of masses in the outer radii
such that rt < 0.77rs [56] (but see also Ref. [57]). It
is therefore important to model the subhalo evolution,
and relate the present quantities with those at accretion

FIG. 1. Excluded regions at 95% CL of the WDM mass as
a function of the Milky-Way mass considering the canonical
constraints (red) as well as by adopting the satellite forming
condition with ma > 108M� (yellow). Moreover, the conser-
vative constraints considering satellites with kinematics data
of Vmax > 4 km/s are also shown (purple). The black markers
represent limits from the literature (Sec. V).

FIG. 2. Excluded regions at 95% CL of the mixing angle
sin2(2✓) as a function of sterile neutrino mass m⌫s for the
Milky-Way mass of M200 = 1012M�. The grey hatched
area represents upper limits from the current X-ray con-
straints [44–51] and the black star the best-fit of the uniden-
tified 3.5 keV line with mixing angle, sin2(2✓) ' (0.2–
2)⇥ 10�10 [52, 53].

before experiencing tidal e↵ects.
At the epoch of accretion when a halo becomes a sub-

halo, its density structure is completely characterized by
three parameters: accretion redshift za, virial mass ma,

This needs to be calibrated against more numerical simulations!

Dekker, Ando, Correa, Ng, arXiv:2111.13137 [astro-ph.CO]

A. Dekker C. A. Correa K. C. Y. Ng

http://github.com/shinichiroando/sashimi-w
http://github.com/shinichiroando/sashimi-w
http://github.com/shinichiroando/sashimi-w
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Figure 3. Images of the CDM (left) and WDM (right) level 2 haloes at z = 0. Intensity indicates the line-of-sight projected square
of the density, and hue the projected density-weighted velocity dispersion, ranging from blue (low velocity dispersion) to yellow (high
velocity dispersion). Each box is 1.5 Mpc on a side. Note the sharp caustics visible at large radii in the WDM image, several of which
are also present, although less well defined, in the CDM case.
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Figure 4. The correlation between subhalo maximum circular
velocity and the radius at which this maximum occurs. Sub-
haloes lying within 300kpc of the main halo centre are in-
cluded. The 12 CDM and WDM subhaloes with the most mas-
sive progenitors are shown as blue and red filled circles respec-
tively; the remaining subhaloes are shown as empty circles. The
shaded area represents the 2σ confidence region for possible hosts
of the 9 bright Milky Way dwarf spheroidals determined by
Boylan-Kolchin et al. (2011).

the same radii in the simulated subhaloes. To provide a fair
comparison we must choose the simulated subhaloes that
are most likely to correspond to those that host the 9 bright
dwarf spheroidals in the Milky Way. As stripping of sub-
haloes preferentially removes dark matter relative to the
more centrally concentrated stellar component, we choose to

associate final satellite luminosity with the maximum pro-
genitor mass for each surviving subhalo. This is essentially
the mass of the object as it falls into the main halo. The
smallest subhalo in each of our samples has an infall mass
of 3.2 × 109M! in the WDM case, and 6.0 × 109M! in the
CDM case.

The LMC, SMC and the Sagittarius dwarf are all
more luminous than the 9 dwarf spheroidals considered by
Boylan-Kolchin et al. (2011) and by us. As noted above, the
Milky Way is exceptional in hosting galaxies as bright as
the Magellanic Clouds, while Sagittarius is in the process of
being disrupted so its current mass is difficult to estimate.
Boylan-Kolchin et al. hypothesize that these three galaxies
all have values of Vmax > 60kms−1 at infall and exclude sim-
ulated subhaloes that have these values at infall as well as
Vmax > 40kms−1 at the present day from their analysis. In
what follows, we retain all subhaloes but, where appropri-
ate, we highlight those that might host large satellites akin
to the Magellanic Clouds and Sagittarius.

The circular velocity curves at z = 0 for the 12 sub-
haloes which had the most massive progenitors at infall are
shown in Fig. 5 for both WDM and CDM. The circular
velocities within the half-light radius of the 9 satellites mea-
sured by Wolf et al. (2010) are also plotted as symbols. Leo-
II has the smallest half-light radius, ∼ 200pc. To compare
the satellite data with the simulations we must first check
the convergence of the simulated subhalo masses within at
least this radius. We find that the median of the ratio of the
mass within 200pc in the Aq-W2 and Aq-W3 simulations is
W 2/W 3 ∼ 1.22, i.e., the mass within 200pc in the Aq-W2
simulation has converged to better than ∼ 22%.

As can be inferred from Fig. 5, the WDM subhaloes
have similar central masses to the observed satellite galax-
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Figure 1. The most massive halo in our sample (M200 ⇠ 2 ⇥ 1015 M� h�1) in the CDM (left) and SIDM1 (right) cases. The circle
marks the virial radius of the halo (R200 ⇠ 2 Mpc h�1).

40963 particles in the highest resolution region, which is sur-
rounded by regions of intermediate resolution and finally a
low resolution volume with an e↵ective resolution of 2563

particles. To construct the initial conditions of the zoom
simulations we followed closely the methodology described
in e.g. Onorbe et al. (2014):

• Pick the sample of 28 most massive “relaxed” haloes in
the parent simulation, as described above.

• Select the Lagrangian region around each of these
haloes at z = 0 in the parent simulation. This is the tar-
get region for resimulation.

• Traceback the particles to the initial target redshift for
resimulation (z = 50) by matching the unique particle ID
numbers across redshifts.

• Compute the initial conditions for the zoom simulation
using the code MUSIC2 (Hahn & Abel 2011), specifying the
ellipsoidal (or cuboid) region containing the targeted parti-
cles at z = 50 as the high resolution region (see Appendix
A1 for more details and convergence tests).

For the high resolution region, the e↵ective Plummer
equivalent gravitational softening length is ✏ = 5.4 kpc h�1,
while the particle mass is mp = 1.271⇥ 109 M� h�1.

Our final simulation suite consists of 28 haloes sim-
ulated with the same initial conditions in CDM, SIDM1
and SIDM0.1, with a virial mass and radius range in be-
tween: R200 ⇡ 1300 � 2000 kpc h�1, and M200 ⇡ 0.5 �

1.9 ⇥ 1015 M� h�1. Except for the most massive clus-
ter, the sample has a narrow distribution centered around
M200 ⇠ 0.9 ⇥ 1015 M� h�1 and R200 ⇠ 1550 kpc h�1 (see
figure A1). A visual impression structural di↵erences be-
tween CDM and SIDM haloes is given in Figure 1, where
we show dark matter density projections for the most mas-
sive of our haloes for CDM and SIDM1 in the left and right
panels, respectively. For each simulation, we have created
halo catalogues, first by using the friends-of-friends (FOF)
algorithm and then using the SUBFIND algorithm (Springel

2 https://people.phys.ethz.ch/⇠hahn/MUSIC/

et al. 2001) to identify selfbound (sub)haloes. The particles
within the main halo of a given structure are the main focus
of our study.

We note that for the main halo properties analysed in
this work – density, halo shape, and velocity anisotropy ra-
dial profiles – we performed convergence tests to determine
the spatial resolutions we can trust. These are described in
Appendix A.

3 RESULTS

3.1 Relaxation

Having defined our halo relaxation criteria in section 2, we
now study how our ensemble of haloes di↵er between the
CDM and SIDM1 parent simulations in regards to their equi-
librium states (there is a negligible di↵erence between CDM
and SIDM0.1) by looking at all haloes with more than 500
particles. We find that the number of haloes satisfying our
relaxation criteria di↵er significantly between the two cos-
mologies, with almost 20% more relaxed haloes in SIDM1
at z = 0 (40% if we only examine the most massive haloes
with more than 1000 particles, see Table 1).

Examining each criteria separately, we find that the viri-
alization threshold, 2T/|U | < 1.35, is the most important
one in explaining this di↵erence (this holds up to z ⇠ 1;
the number of resolved haloes drops quickly above this
redshift). The median of the distribution of 2T/|U | values
is approximately 0.5�1% lower in SIDM1 than in CDM
(0 < z < 1). We interpret this result as a consequence of
the inside-out ‘heat’ transfer that occurs during dark mat-
ter self-interactions, which leads to the thermalization of the
central regions. Despite commonly assumed to impact only
the innermost regions of haloes, we find that self-interactions
with a cross section of 1 cm2 gr�1 are strong enough to a↵ect
the global virial ratio of the entire halo.

Kim et al. (2017) found that dark matter self-
interactions ultimately shorten the timescales of halo merg-
ers, despite competition between the enhanced momentum
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Figure 1. Volume rendering of the density field in one of our simulations of the formation of a virialized BECDM halo through multiple

mergers. We merge isolated soliton cores (t = 0) until a single bound halo forms, which is characterised by a stable soliton core at the

center of the halo and quantum fluctuations throughout the domain. The volume rendering shows isocontours of density di↵ering by

factors of 10. Insets show projected density in log-space. The bottom panel shows the time evolution of the total energy E, potential

energy W , classical kinetic energy Kv , and quantum gradient energy K⇢ in the simulation.
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FDM

• Numerical simulations of 
WDM halos and subhalos 
(Okamoto, Inoue et al.) 


• Developing semi-analytical 
models and constraints from 
satellite number counts (Ando 
et al.)

• Simulation of SIDM subhalos 
falling onto the SIDM halo 
(Shirasaki et al.)

• Tight constraints using stellar 
motion in ultrafaint dwarf 
galaxies (Dalal et al.)

• Release of public codes (Ando et al.)


• Dwarf galaxies (Horigome et al.)


• Galaxies and dark matter structure 
classification (Inoue, Okamoto et al.)


• Phase-space structure (Enomoto, 
Nishimichi, Taruya)



Semi-analytic model of SIDM subhaloes
Calibration with ideal N-body simulations of minor mergers

• Testing self-interactions of DM 
particles would require a precise 
modeling of 


• thermalization of SIDM halo/
subhalo


• Tidal stripping / Ram pressure


• Develop a semi-analytic model of 
infalling subhalos to a MW-sized 
halo and calibrate it with (isolated) 
N-body simulations Milky-Way-sized host halo 


1012M⊙

 subhalo 109M⊙



A brief summary of our model

Host halo density 
ρh(r, t) ρh(r, t + Δt)

Gravothermal fluid model (e.g. Balberg+2002)

Density 
ρsub(r, t)

Position & 
Velocity 

xsub(t), vsub(t)

Subhalo

Bound Mass 
Msub(t)

··xsub = − ∇Φh + (Dynamical Friction) + (Ram Pressure Deceleration)

·Msub = (Tidal stripping) + (Ram pressure evapolation)

Gravothermal fluid model (e.g. Balberg+2002) Density 
ρsub(r, t + Δt)

Position & Velocity 
xsub(t + Δt), vsub(t + Δt)

Bound Mass 
Msub(t + Δt)

dM/dr = 4πr2ρh(r) d(ρσ2
v )/dr = − GMρ/r2

 re-arranges  and  Heat Flux = − κ (m /kB) ∂σ2
v /∂r ρh σv

Mass conservation Hydrostatic equilibrium

Tidal evolution proposed  
in Green & van den Bosch (2019)

Note: We ignore possible changes of subhalo density profiles due to ram pressure effects 



Comparison with our model and simulations
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Figure 3. Images of the CDM (left) and WDM (right) level 2 haloes at z = 0. Intensity indicates the line-of-sight projected square
of the density, and hue the projected density-weighted velocity dispersion, ranging from blue (low velocity dispersion) to yellow (high
velocity dispersion). Each box is 1.5 Mpc on a side. Note the sharp caustics visible at large radii in the WDM image, several of which
are also present, although less well defined, in the CDM case.
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Figure 4. The correlation between subhalo maximum circular
velocity and the radius at which this maximum occurs. Sub-
haloes lying within 300kpc of the main halo centre are in-
cluded. The 12 CDM and WDM subhaloes with the most mas-
sive progenitors are shown as blue and red filled circles respec-
tively; the remaining subhaloes are shown as empty circles. The
shaded area represents the 2σ confidence region for possible hosts
of the 9 bright Milky Way dwarf spheroidals determined by
Boylan-Kolchin et al. (2011).

the same radii in the simulated subhaloes. To provide a fair
comparison we must choose the simulated subhaloes that
are most likely to correspond to those that host the 9 bright
dwarf spheroidals in the Milky Way. As stripping of sub-
haloes preferentially removes dark matter relative to the
more centrally concentrated stellar component, we choose to

associate final satellite luminosity with the maximum pro-
genitor mass for each surviving subhalo. This is essentially
the mass of the object as it falls into the main halo. The
smallest subhalo in each of our samples has an infall mass
of 3.2 × 109M! in the WDM case, and 6.0 × 109M! in the
CDM case.

The LMC, SMC and the Sagittarius dwarf are all
more luminous than the 9 dwarf spheroidals considered by
Boylan-Kolchin et al. (2011) and by us. As noted above, the
Milky Way is exceptional in hosting galaxies as bright as
the Magellanic Clouds, while Sagittarius is in the process of
being disrupted so its current mass is difficult to estimate.
Boylan-Kolchin et al. hypothesize that these three galaxies
all have values of Vmax > 60kms−1 at infall and exclude sim-
ulated subhaloes that have these values at infall as well as
Vmax > 40kms−1 at the present day from their analysis. In
what follows, we retain all subhaloes but, where appropri-
ate, we highlight those that might host large satellites akin
to the Magellanic Clouds and Sagittarius.

The circular velocity curves at z = 0 for the 12 sub-
haloes which had the most massive progenitors at infall are
shown in Fig. 5 for both WDM and CDM. The circular
velocities within the half-light radius of the 9 satellites mea-
sured by Wolf et al. (2010) are also plotted as symbols. Leo-
II has the smallest half-light radius, ∼ 200pc. To compare
the satellite data with the simulations we must first check
the convergence of the simulated subhalo masses within at
least this radius. We find that the median of the ratio of the
mass within 200pc in the Aq-W2 and Aq-W3 simulations is
W 2/W 3 ∼ 1.22, i.e., the mass within 200pc in the Aq-W2
simulation has converged to better than ∼ 22%.

As can be inferred from Fig. 5, the WDM subhaloes
have similar central masses to the observed satellite galax-
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Figure 1. The most massive halo in our sample (M200 ⇠ 2 ⇥ 1015 M� h�1) in the CDM (left) and SIDM1 (right) cases. The circle
marks the virial radius of the halo (R200 ⇠ 2 Mpc h�1).

40963 particles in the highest resolution region, which is sur-
rounded by regions of intermediate resolution and finally a
low resolution volume with an e↵ective resolution of 2563

particles. To construct the initial conditions of the zoom
simulations we followed closely the methodology described
in e.g. Onorbe et al. (2014):

• Pick the sample of 28 most massive “relaxed” haloes in
the parent simulation, as described above.

• Select the Lagrangian region around each of these
haloes at z = 0 in the parent simulation. This is the tar-
get region for resimulation.

• Traceback the particles to the initial target redshift for
resimulation (z = 50) by matching the unique particle ID
numbers across redshifts.

• Compute the initial conditions for the zoom simulation
using the code MUSIC2 (Hahn & Abel 2011), specifying the
ellipsoidal (or cuboid) region containing the targeted parti-
cles at z = 50 as the high resolution region (see Appendix
A1 for more details and convergence tests).

For the high resolution region, the e↵ective Plummer
equivalent gravitational softening length is ✏ = 5.4 kpc h�1,
while the particle mass is mp = 1.271⇥ 109 M� h�1.

Our final simulation suite consists of 28 haloes sim-
ulated with the same initial conditions in CDM, SIDM1
and SIDM0.1, with a virial mass and radius range in be-
tween: R200 ⇡ 1300 � 2000 kpc h�1, and M200 ⇡ 0.5 �

1.9 ⇥ 1015 M� h�1. Except for the most massive clus-
ter, the sample has a narrow distribution centered around
M200 ⇠ 0.9 ⇥ 1015 M� h�1 and R200 ⇠ 1550 kpc h�1 (see
figure A1). A visual impression structural di↵erences be-
tween CDM and SIDM haloes is given in Figure 1, where
we show dark matter density projections for the most mas-
sive of our haloes for CDM and SIDM1 in the left and right
panels, respectively. For each simulation, we have created
halo catalogues, first by using the friends-of-friends (FOF)
algorithm and then using the SUBFIND algorithm (Springel

2 https://people.phys.ethz.ch/⇠hahn/MUSIC/

et al. 2001) to identify selfbound (sub)haloes. The particles
within the main halo of a given structure are the main focus
of our study.

We note that for the main halo properties analysed in
this work – density, halo shape, and velocity anisotropy ra-
dial profiles – we performed convergence tests to determine
the spatial resolutions we can trust. These are described in
Appendix A.

3 RESULTS

3.1 Relaxation

Having defined our halo relaxation criteria in section 2, we
now study how our ensemble of haloes di↵er between the
CDM and SIDM1 parent simulations in regards to their equi-
librium states (there is a negligible di↵erence between CDM
and SIDM0.1) by looking at all haloes with more than 500
particles. We find that the number of haloes satisfying our
relaxation criteria di↵er significantly between the two cos-
mologies, with almost 20% more relaxed haloes in SIDM1
at z = 0 (40% if we only examine the most massive haloes
with more than 1000 particles, see Table 1).

Examining each criteria separately, we find that the viri-
alization threshold, 2T/|U | < 1.35, is the most important
one in explaining this di↵erence (this holds up to z ⇠ 1;
the number of resolved haloes drops quickly above this
redshift). The median of the distribution of 2T/|U | values
is approximately 0.5�1% lower in SIDM1 than in CDM
(0 < z < 1). We interpret this result as a consequence of
the inside-out ‘heat’ transfer that occurs during dark mat-
ter self-interactions, which leads to the thermalization of the
central regions. Despite commonly assumed to impact only
the innermost regions of haloes, we find that self-interactions
with a cross section of 1 cm2 gr�1 are strong enough to a↵ect
the global virial ratio of the entire halo.

Kim et al. (2017) found that dark matter self-
interactions ultimately shorten the timescales of halo merg-
ers, despite competition between the enhanced momentum
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Figure 1. Volume rendering of the density field in one of our simulations of the formation of a virialized BECDM halo through multiple

mergers. We merge isolated soliton cores (t = 0) until a single bound halo forms, which is characterised by a stable soliton core at the

center of the halo and quantum fluctuations throughout the domain. The volume rendering shows isocontours of density di↵ering by

factors of 10. Insets show projected density in log-space. The bottom panel shows the time evolution of the total energy E, potential

energy W , classical kinetic energy Kv , and quantum gradient energy K⇢ in the simulation.
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• Numerical simulations of 
WDM halos and subhalos 
(Okamoto, Inoue et al.) 


• Developing semi-analytical 
models and constraints from 
satellite number counts (Ando 
et al.)

• Simulation of SIDM subhalos 
falling onto the SIDM halo 
(Shirasaki et al.)

• Tight constraints using stellar 
motion in ultrafaint dwarf 
galaxies (Dalal et al.)

• Release of public codes (Ando et al.)


• Dwarf galaxies (Horigome et al.)


• Galaxies and dark matter structure 
classification (Inoue, Okamoto et al.)


• Phase-space structure (Enomoto, 
Nishimichi, Taruya)
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Gravitational heating from FDM
• Interference fringes have density contrast  everywhere all of the timeδρ ∼ ρ

• These lead to fluctuating gravitational forces that can perturb stars

• Where to look for this signature of FDM? Crude estimate: 

•  ⇒ acceleration perturbation δM ∼ δρ λ3 ∝ ρ/σ3
v δa ∼ G δM/λ2 ∝ Gρ/σv

• At that location, enclosed mass , so M ∼ ρ R3 a ∼ GM/R2 ∝ Gρ R

• So fractional effect δa/a ∝ (R σv)−1

• Biggest effect where  is small and  is small, i.e. centres of smallest halos 
-> ultrafaint dwarf galaxies

R σv
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Ballpark estimate
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• FDM fluctuation of size r

• δM ∼ (r/R)3M, δΦ ∼ GδM/r ≈ 3σ2
v (r/R)2

• δv ∼ δΦ/v ≈ 3σv(r/R)2

• In time , star encounters  blobs, so variance  
increases by 
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Ballpark estimate
• Consider typical star in galaxy of size , moving at velocity R v ∼ σv

• Enclosed mass is M ∼ 3σ2
v R/G

• FDM fluctuation of size r

• δM ∼ (r/R)3M, δΦ ∼ GδM/r ≈ 3σ2
v (r/R)2

• δv ∼ δΦ/v ≈ 3σv(r/R)2

• In time , star encounters  blobs, so variance  
increases by 

t N ∼ vt/r
δσ2

v ≈ N(δv)2 ≈ 9σ3
v tr3/R4 ≈ 9(ℏ/m)3tR−4

• So we can solve for mass  that makes  in time .  
Plugging in  gives 

m δσ2
v ≈ σ2

v t
t = 10 Gyr, R = 50 pc, σv = 3 km/s

m ∼ 10−19 eV
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• Find  at >99% 
confidence, using Segue 1 & Segue 2.  
Previous bounds from Ly-  forests are 




• Essentially, rules out “fuzzy” regime:


• linear power spectrum identical to LCDM 
out to 


• halo mass function identical to LCDM down 
to 

mFDM > 3 × 10−19 eV

α
m ≳ 10−21 eV

k ∼ 200 Mpc−1

M ∼ 2 ⋅ 105M⊙

• Constraints of similar strength are 
obtained by a dynamical analysis of 
ultrafaint dwarf galaxies (Hayashi et al. 
2021)
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Figure 3. Images of the CDM (left) and WDM (right) level 2 haloes at z = 0. Intensity indicates the line-of-sight projected square
of the density, and hue the projected density-weighted velocity dispersion, ranging from blue (low velocity dispersion) to yellow (high
velocity dispersion). Each box is 1.5 Mpc on a side. Note the sharp caustics visible at large radii in the WDM image, several of which
are also present, although less well defined, in the CDM case.

10 20 30 40 50 60 70 80
Vmax [kms−1]

0.5

1.0

2.0

3.0

5.0
7.0

10.0

20.0

r m
ax

 [k
pc

]

10 20 30 40 50 60 70 80
Vmax [kms−1]

0.5

1.0

2.0

3.0

5.0
7.0

10.0

20.0

r m
ax

 [k
pc

]

Cold                 
Warm               

Warm (Top 12) 
Cold (Top 12)   

Figure 4. The correlation between subhalo maximum circular
velocity and the radius at which this maximum occurs. Sub-
haloes lying within 300kpc of the main halo centre are in-
cluded. The 12 CDM and WDM subhaloes with the most mas-
sive progenitors are shown as blue and red filled circles respec-
tively; the remaining subhaloes are shown as empty circles. The
shaded area represents the 2σ confidence region for possible hosts
of the 9 bright Milky Way dwarf spheroidals determined by
Boylan-Kolchin et al. (2011).

the same radii in the simulated subhaloes. To provide a fair
comparison we must choose the simulated subhaloes that
are most likely to correspond to those that host the 9 bright
dwarf spheroidals in the Milky Way. As stripping of sub-
haloes preferentially removes dark matter relative to the
more centrally concentrated stellar component, we choose to

associate final satellite luminosity with the maximum pro-
genitor mass for each surviving subhalo. This is essentially
the mass of the object as it falls into the main halo. The
smallest subhalo in each of our samples has an infall mass
of 3.2 × 109M! in the WDM case, and 6.0 × 109M! in the
CDM case.

The LMC, SMC and the Sagittarius dwarf are all
more luminous than the 9 dwarf spheroidals considered by
Boylan-Kolchin et al. (2011) and by us. As noted above, the
Milky Way is exceptional in hosting galaxies as bright as
the Magellanic Clouds, while Sagittarius is in the process of
being disrupted so its current mass is difficult to estimate.
Boylan-Kolchin et al. hypothesize that these three galaxies
all have values of Vmax > 60kms−1 at infall and exclude sim-
ulated subhaloes that have these values at infall as well as
Vmax > 40kms−1 at the present day from their analysis. In
what follows, we retain all subhaloes but, where appropri-
ate, we highlight those that might host large satellites akin
to the Magellanic Clouds and Sagittarius.

The circular velocity curves at z = 0 for the 12 sub-
haloes which had the most massive progenitors at infall are
shown in Fig. 5 for both WDM and CDM. The circular
velocities within the half-light radius of the 9 satellites mea-
sured by Wolf et al. (2010) are also plotted as symbols. Leo-
II has the smallest half-light radius, ∼ 200pc. To compare
the satellite data with the simulations we must first check
the convergence of the simulated subhalo masses within at
least this radius. We find that the median of the ratio of the
mass within 200pc in the Aq-W2 and Aq-W3 simulations is
W 2/W 3 ∼ 1.22, i.e., the mass within 200pc in the Aq-W2
simulation has converged to better than ∼ 22%.

As can be inferred from Fig. 5, the WDM subhaloes
have similar central masses to the observed satellite galax-
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Figure 1. The most massive halo in our sample (M200 ⇠ 2 ⇥ 1015 M� h�1) in the CDM (left) and SIDM1 (right) cases. The circle
marks the virial radius of the halo (R200 ⇠ 2 Mpc h�1).

40963 particles in the highest resolution region, which is sur-
rounded by regions of intermediate resolution and finally a
low resolution volume with an e↵ective resolution of 2563

particles. To construct the initial conditions of the zoom
simulations we followed closely the methodology described
in e.g. Onorbe et al. (2014):

• Pick the sample of 28 most massive “relaxed” haloes in
the parent simulation, as described above.

• Select the Lagrangian region around each of these
haloes at z = 0 in the parent simulation. This is the tar-
get region for resimulation.

• Traceback the particles to the initial target redshift for
resimulation (z = 50) by matching the unique particle ID
numbers across redshifts.

• Compute the initial conditions for the zoom simulation
using the code MUSIC2 (Hahn & Abel 2011), specifying the
ellipsoidal (or cuboid) region containing the targeted parti-
cles at z = 50 as the high resolution region (see Appendix
A1 for more details and convergence tests).

For the high resolution region, the e↵ective Plummer
equivalent gravitational softening length is ✏ = 5.4 kpc h�1,
while the particle mass is mp = 1.271⇥ 109 M� h�1.

Our final simulation suite consists of 28 haloes sim-
ulated with the same initial conditions in CDM, SIDM1
and SIDM0.1, with a virial mass and radius range in be-
tween: R200 ⇡ 1300 � 2000 kpc h�1, and M200 ⇡ 0.5 �

1.9 ⇥ 1015 M� h�1. Except for the most massive clus-
ter, the sample has a narrow distribution centered around
M200 ⇠ 0.9 ⇥ 1015 M� h�1 and R200 ⇠ 1550 kpc h�1 (see
figure A1). A visual impression structural di↵erences be-
tween CDM and SIDM haloes is given in Figure 1, where
we show dark matter density projections for the most mas-
sive of our haloes for CDM and SIDM1 in the left and right
panels, respectively. For each simulation, we have created
halo catalogues, first by using the friends-of-friends (FOF)
algorithm and then using the SUBFIND algorithm (Springel

2 https://people.phys.ethz.ch/⇠hahn/MUSIC/

et al. 2001) to identify selfbound (sub)haloes. The particles
within the main halo of a given structure are the main focus
of our study.

We note that for the main halo properties analysed in
this work – density, halo shape, and velocity anisotropy ra-
dial profiles – we performed convergence tests to determine
the spatial resolutions we can trust. These are described in
Appendix A.

3 RESULTS

3.1 Relaxation

Having defined our halo relaxation criteria in section 2, we
now study how our ensemble of haloes di↵er between the
CDM and SIDM1 parent simulations in regards to their equi-
librium states (there is a negligible di↵erence between CDM
and SIDM0.1) by looking at all haloes with more than 500
particles. We find that the number of haloes satisfying our
relaxation criteria di↵er significantly between the two cos-
mologies, with almost 20% more relaxed haloes in SIDM1
at z = 0 (40% if we only examine the most massive haloes
with more than 1000 particles, see Table 1).

Examining each criteria separately, we find that the viri-
alization threshold, 2T/|U | < 1.35, is the most important
one in explaining this di↵erence (this holds up to z ⇠ 1;
the number of resolved haloes drops quickly above this
redshift). The median of the distribution of 2T/|U | values
is approximately 0.5�1% lower in SIDM1 than in CDM
(0 < z < 1). We interpret this result as a consequence of
the inside-out ‘heat’ transfer that occurs during dark mat-
ter self-interactions, which leads to the thermalization of the
central regions. Despite commonly assumed to impact only
the innermost regions of haloes, we find that self-interactions
with a cross section of 1 cm2 gr�1 are strong enough to a↵ect
the global virial ratio of the entire halo.

Kim et al. (2017) found that dark matter self-
interactions ultimately shorten the timescales of halo merg-
ers, despite competition between the enhanced momentum
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Figure 1. Volume rendering of the density field in one of our simulations of the formation of a virialized BECDM halo through multiple

mergers. We merge isolated soliton cores (t = 0) until a single bound halo forms, which is characterised by a stable soliton core at the

center of the halo and quantum fluctuations throughout the domain. The volume rendering shows isocontours of density di↵ering by

factors of 10. Insets show projected density in log-space. The bottom panel shows the time evolution of the total energy E, potential

energy W , classical kinetic energy Kv , and quantum gradient energy K⇢ in the simulation.
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• Good progress is being made in all the four directions (CDM, WDM, SIDM, 
FDM)


• Results worth highlighting:


• Strong constraints on WDM and sterile neutrinos using satellite counts 
(and public codes SASHIMI)


• Strong constraints on FDM using stellar velocity data in ultrafaint 
galaxies


• Exploration of CDM phase space, SIDM modeling, and numerical 
simulations is ongoing with exciting results


• More detailed talks by Horigome and Inoue


• Looking forward to collaborations with other groups for FY 2022!


