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Large-scale structure / Cosmic structure / Cosmic web
• Spongy structures in large scales >~10 Mpc

• Galaxy formation/evolution
• Environmental dependence of galaxies
• cluster region v.s. field environment

• Gas supply to filament galaxies

• Cosmology
• Test for the current cosmology

• Lengths of filaments
• Sizes of voids

How can we define voids and filaments?



How to define the cosmic structures
 In theory (cosmological simulations),

 Using DM velocity fields, compute a gradient tensor

 Compute the 3 eigenvalues of the tensor
 How many eigenvalues are larger than 𝜆𝜆𝑡𝑡𝑡 = 0.44

 3: knot
 2: filament
 1: sheet
 0: void

Gradients of DM density and potential 
are also often used, but basically the 
same in the linear regime.

(see Hoffman et al. 2012)
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How to define the cosmic structures

 In observations, DM is not usable.
 Using galaxy distribution instead, with various methods,

 Knot (cluster)
 Overdensity of galaxies with high velocity dispersion 

 Filament
 Connecting saddle point of galaxy density (Sousbie 2008)
 Concatenated cylinders with a constant width (Tempel et al. 2014)

 Void
 Watershed algorithm (e.g. Sutter et al. 2012)
 Maximum sphere devoid of galaxy (Hoyle & Vogeley 2002)

Sousbie et al. (2008)

In observations, 
• The detecting methods are not consistent between the structures
• They assume that galaxy distribution traces DM density fields



From simulations to observations
 The cosmic structures are formed by gravity.

 Therefore, DM-based analysis in theory is thought to be plausible. 
 It is ideal to classify observed galaxies with the DM-based analysis.

From 
simulation

To 
observation

Machine learning



From simulations to observations
 Both DM and galaxies are accessible in cosmological simulations with baryons.

 We use IllustrisTNG (TNG100-1) @ z=0

 Build machine-learning models trained with
 Classification (labelling) based on DM 
 Distribution of galaxies 

3D-CNN
 The models trained with simulation can be applied to observations such as SDSS 

~10 Mpc

knot filament/sheet void



Create learning data
cosmic-structure classification galaxy distribution

classification point

IllustrisTNG @ z=0



Create learning data

We create 10000 cubic data for each class
 6400, 1600 and 2000 are used as training, validation and test data

 The data have only a single channel of number distribution of galaxies 

cosmic-structure classification galaxy distribution

classification point
16 x 16 x 16 voxels

Compute the number of 
galaxies in each voxel, 
and normalize into [0, 1]

class label
void / sheet / filament / knot

IllustrisTNG @ z=0



Our 3D-CNN classifier
 Simple networks with only two convolution layers works enough 



Classification for spatial points
 We randomly select and classify a spatial point in the simulation

 Consider haloes having stars to be “galaxies”

Normalised confusion matrix (%)

F1-score

Macro-averaged F1-score: 0.74



DM vs galaxies
 A similar previous study: Aragon-Calvo (2019)

 U-Net
 Using DM density fields for learning and labelling, rather than galaxies
 Binary classification: filament and sheet

 F1-score ~ 0.7-0.8

sheet

filament



DM vs galaxies
 Our model learns galaxy distribution, rather than DM density fields.

 Our model is as accurate as Aragon-Calvo (2019)

• Galaxy distribution can be a 
substitution for DM density

• Galaxies are observable.
• The classification can be preformed 

with galaxy observations!!



Create learning data

We create 10000 cubic data for each class
 6400, 1600 and 2000 are used as training, validation and test data

 The data have only a single channel of number distribution of galaxies 

cosmic-structure classification galaxy distribution

classification point
16 x 16 x 16 voxels

Compute the number of 
galaxies in each voxel, 
and normalize into [0, 1]

class label
void / sheet / filament / knot

Pick out a galaxy

IllustrisTNG @ z=0



Observational restriction

 Limiting magnitude
 r-band magnitude for SDSS spectroscopy
𝑚𝑚𝑟𝑟 = 17.75 mag                   𝑀𝑀𝑟𝑟 = −17.25 mag 

 exclude galaxies fainter than the limit from the simulation data

 Distance measurement error
 Distance (line-of-sight position) is measured from spectroscopic redshift

 affected by proper motion of a galaxy

Assuming d=100 Mpc



Classification for mock SDSS
Normalised confusion matrix (%)

Macro-averaged F1-score: 0.60

Macro-averaged F1-score: 0.68

Knot is merged with filament

Macro-averaged F1-score: 0.88

Knot and filament are merged with sheet



Applying to SDSS data

SDSS DR12



Summary
 We explore the ability of 3D-CNN based on galaxies for the cosmic-structure classification.
 The class labels are obtained from DM distribution.

 Our models using galaxy distribution are as accurate as that using DM density fields.
 Galaxy number density can be a substitution for DM density fields.

 For classifying spatial grid points, our model can achieve the accuracy ~0.74.

 For classifying galaxies, without observational restriction, the accuracy is ~0.64.

 For classifying galaxies in “mock” SDSS, the accuracy is ~0.60.

 It is the most difficult to distinguish sheet and filament.
 Our binary-classification model can classify void galaxies with an accuracy ~0.9.  

 Proper motion does not matter, but the limiting magnitude lowers the accuracy.



Discussion: to improve the performance 
 Limiting magnitude can be mitigated in future observations

 If we ignore the limiting magnitude, the performance is improved.

 The distance errors by proper motions are unavoidable in observations.
 However, the errors do not make the ML model inaccurate.

Macro-averaged F1-score: 0.64 Macro-averaged F1-score: 0.60Macro-averaged F1-score: 0.64

Without distance error
Without limiting magnitude

With distance error
Without limiting magnitude

With distance error
With limiting magnitude
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