Classification of cosmic structures for galaxies with machine learning

Shigeki Inoue (Hokkaido Univ.) Xiaotian Si Takashi Okamoto Moka Nishigaki

Large-scale structure / Cosmic structure / Cosmic web

• Spongy structures in large scales >~10 Mpc

- Galaxy formation/evolution
 - Environmental dependence of galaxies
 - cluster region v.s. field environment
 - Gas supply to filament galaxies
- Cosmology
 - Test for the current cosmology
 - Lengths of filaments
 - Sizes of voids

How can we define voids and filaments?

How to define the cosmic structures

- In theory (cosmological simulations),
 - Using DM velocity fields, compute a gradient tensor

$$\sum_{ij} \sum_{ij} = -\frac{1}{2H_0} \left(\frac{\partial v_i}{\partial r_j} + \frac{\partial v_j}{\partial r_i} \right)$$

- Compute the 3 eigenvalues of the tensor
- How many eigenvalues are larger than $\lambda_{th} = 0.44$
 - 3: knot
 - 2: filament
 - 1: sheet
 - 0: void

Dimension of contraction

Gradients of DM density and potential are also often used, but basically the same in the linear regime.

z [Mpc]

How to define the cosmic structures

- In observations, DM is not usable.
 - Using galaxy distribution instead, with various methods,
 - Knot (cluster)
 - Overdensity of galaxies with high velocity dispersion
 - Filament
 - Connecting saddle point of galaxy density (Sousbie 2008)
 - Concatenated cylinders with a constant width (Tempel et al. 2014)
 - Void
 - Watershed algorithm (e.g. Sutter et al. 2012)
 - Maximum sphere devoid of galaxy (Hoyle & Vogeley 2002)

In observations,

- The detecting methods are not consistent between the structures
- They assume that galaxy distribution traces DM density fields

From simulations to observations

• The cosmic structures are formed by gravity.

- Therefore, DM-based analysis in theory is thought to be plausible.
- It is ideal to classify observed galaxies with the DM-based analysis.

From simulations to observations

- Both DM and galaxies are accessible in cosmological simulations with baryons.
 We use IllustrisTNG (TNG100-1) @ z=0
- Build machine-learning models trained with
 - Classification (labelling) based on DM
 - Distribution of galaxies
 - · 3D-CNN
 - The models trained with simulation can be applied to observations such as SDSS

Create learning data

cosmic-structure classification galaxy distribution classification point

IllustrisTNG @ z=0

Create learning data

).2

- We create 10000 cubic data for each class
 - 6400, 1600 and 2000 are used as training, validation and test data
 - The data have only a single channel of number distribution of galaxies

Our 3D-CNN classifier

• Simple networks with only two convolution layers works enough

layer type	kernel size	N _{filter} / N _{out}	remarks	
Convolution 1	$3 \times 3 \times 3$	$N_{\rm filter} = 32$	ReLU / He uniform	
Maxpool 1	$2 \times 2 \times 2$	-	-	
Dropout 1	-	-	$R_{\rm drop} = 0.25$	
Convolution 2	$3 \times 3 \times 3$	$N_{\rm filter} = 64$	ReLU / He uniform	
Maxpool 2	$2 \times 2 \times 2$	-	-	
Dropout 2	-	-	$R_{\rm drop} = 0.25$	
Flatten	-	-	-	
Fully connected 1	-	$N_{\rm out} = 512$	ReLU / He uniform	
Fully connected 2	-	$N_{\rm out} = 512$	ReLU / He uniform	
Output	-	$N_{\rm out} = N_{\rm class}$	softmax	

Classification for spatial points

• We randomly select and classify a spatial point in the simulation

Consider haloes having stars to be "galaxies"

DM vs galaxies

- A similar previous study: Aragon-Calvo (2019)
 - U-Net
 - Using DM density fields for learning and labelling, rather than galaxies
 - Binary classification: filament and sheet
 - F1-score ~ 0.7-0.8

DM vs galaxies

• Our model learns galaxy distribution, rather than DM density fields.

• Our model is as accurate as Aragon-Calvo (2019)

True

Create learning data

).2

- We create 10000 cubic data for each class
 - 6400, 1600 and 2000 are used as training, validation and test data
 - The data have only a single channel of number distribution of galaxies

Observational restriction

Limiting magnitude

r-band magnitude for SDSS spectroscopy

• $m_r = 17.75 \text{ mag}$ Assuming d=100 Mpc

exclude galaxies fainter than the limit from the simulation data

Distance measurement error

- Distance (line-of-sight position) is measured from spectroscopic redshift
 - affected by proper motion of a galaxy

$$x_{\rm obs} = x_{\rm true} + \frac{v_{\rm los}}{H_0},$$

Classification for mock SDSS

	Normal	Normalised confusion matrix (%)						
knot	0.7	13.8	26.8	62.0 <mark>0.6</mark> 1		- 80		
filament	0.7	24.6	48.6 0.48	32.3		- 60		
Greet sheet	11.9	42.0 <mark>0.46</mark>	21.4	5.2		- 40		
void	86.6 0.83	19.5	3.2	0.5		- 20		
	void	sheet	filament	knot		<u> </u>		
Irue Macro-averaged F1-score: 0.60								

Knot is merged with filament

Summary

- We explore the ability of 3D-CNN based on galaxies for the cosmic-structure classification.
- The class labels are obtained from DM distribution.
- Our models using galaxy distribution are as accurate as that using DM density fields.
 Galaxy number density can be a substitution for DM density fields.
- For classifying spatial grid points, our model can achieve the accuracy ~0.74.
- For classifying galaxies, without observational restriction, the accuracy is ~0.64.
- For classifying galaxies in "mock" SDSS, the accuracy is ~0.60.
- It is the most difficult to distinguish sheet and filament.
- Our binary-classification model can classify void galaxies with an accuracy ~0.9.
- Proper motion does not matter, but the limiting magnitude lowers the accuracy.

Discussion: to improve the performance

- Limiting magnitude can be mitigated in future observations
 - If we ignore the limiting magnitude, the performance is improved.

Without distance error Without limiting magnitude

With distance error Without limiting magnitude

With distance error With limiting magnitude

• The distance errors by proper motions are unavoidable in observations.

However, the errors do not make the ML model inaccurate.