Introduction	Modeling	DM + astrophysical fluxes	Integral γ -ray flux	DM decay rate	Summary

Ultrahigh-energy constraints on decaying superheavy dark matter

Saikat Das in collaboration with: Kohta Murase and Toshihiro Fujii

YITP, Kyoto University

Introduction	Modeling O	DM + astrophysical fluxes O	Integral γ -ray flux O	DM decay rate	Summary O
Introduc	ction				

Cosmic rays from DM

UHECRs ($E \gtrsim 10^8$ GeV) are observed up to a few times 10¹¹ GeV. Dark matter candidates of heavier mass has been proposed (D.J.H. Chung et al., PRD 1998; Kuzmin et al., JETP Lett. 2000.; A. Ibarra et al., PRL 2007; A. Esmaili et al., JCAP 2012).

Indirect detection

SHDM decay (Galactic + extragalactic) can lead to non-negligible contribution at higher energies extending upto Planck energy scale ($\approx 10^{19}$ GeV). [Ishiwata et al., PRD 2008, K. Murase et al., JCAP 2012, K. Murase et al., PRL 2015; O. Kalashev et al., PRD 2016]

Goal (This work)

- We constrain the timescale of SHDM decay in the mass range $10^9 \text{ GeV} \lesssim m_\chi \lesssim 10^{15} \text{ GeV}$ from the observed cosmic ray and γ -ray fluxes.
- We use the latest PAO data which extends upto higher energies than earlier and hence an update to existing limits is required.

Introduction O	Modeling •	$p+\overline{p}$ o	DM + astrophysical fluxes O	Integral γ -ray flux O	DM decay rate	Summary O
Modelin	ng					

Galactic

• We consider the NFW model for density distribution in our Galaxy with $r_h = 100$ kpc, $r_{\odot} = 8.34$ kpc and $\rho_{\odot}c^2 = 0.43$ GeV/cm³

$$\Phi_{\rm G}(E, \le \theta) = \frac{n_{\odot} r_{\odot}}{4\pi m_{\chi} \tau_{\chi}} \frac{dN_s}{dE} \frac{2\pi}{\Omega} \int_0^{\theta} \sin \theta d\theta \int_0^{s_{\rm max}(\theta)} n_{\chi}(r) ds \tag{1}$$

where, dN_s/dE is the flux of particle S from prompt dark matter decay.

Extragalactic

For the extragalactic case, we consider a uniform density distribution between $d_c = 1-5000$ Mpc

$$\Phi_{\rm EG}(E) = \frac{c\Omega_{\chi}\rho_c}{4\pi m_{\chi}\tau_{\chi}} \int dz \left| \frac{dt}{dz} \right| \int dE' \frac{dN'_s}{dE'} \frac{d\eta}{dE}(E, E', z)$$
(2)

where, $d\eta/dE$ is the fraction of cosmic rays of energy E from parent particle of energy E'.

Introduction O	Modeling O	$p + \overline{p}$	DM + astrophysical fluxes O	Integral γ -ray flux O	DM decay rate	Summary O
$\overline{\rho}+\overline{\rho}$ flu	uxes					

Figura 1: $p + \bar{p}$ fluxes at Earth from Galactic and extragalactic dark matter for discrete values of dark matter mass $m_{\chi} = 10^{11}$ and 10^{13} GeV; decaying through $b\bar{b}$ channel.

The PAO upper limits at the highest energy can be extrapolated to constrain the fluxes from DM decay.

Introduction O	Modeling O	DM + astrophysical fluxes	Integral γ -ray flux O	DM decay rate	Summary O

DM + astrophysical fluxes

Figura 2: Simulated UHECR spectrum, X_{max} , and $\sigma(X_{max})$ for the best fit source parameters (left) and 2σ contribution from DM $m_{\chi} = 10^{12}$ GeV (right)

In some cases, addition of the DM component improves χ^2 value of the combined fit (cf. earlier suggestions in- M.S. Muzio et al., PRD 2019)

S. Das, K. Murase, T. Fujii

UHE constraints on DM decay

Introduction O	Modeling O	$p + \overline{p}$ O	DM + astrophysical fluxes O	Integral γ -ray flux	DM decay rate	Summary O
Integral	∼-rav flur	VAS				••••

Figura 3: Integrated γ -ray fluxes at Earth from the Galactic dark matter component

M.F.P. of γ -rays from the prompt dark matter decay is larger than the Galactic length scales and hence the cascades can be neglected.

Introduction	Modeling	DM + astrophysical fluxes	Integral γ -ray flux	DM decay rate	Summary
O	O	O	O	●O	O

Constraints on decay rate

Figura 4: Dark matter decay rate (Galactic + Extragalactic) constrained by the observed UHECR flux

Introduction O	Modeling O	DM + astrophysical fluxes O	Integral γ -ray flux O	DM decay rate O●	Summary O
					• • • •

Earlier works

Figura 5: K. Ishiwata et al (JCAP, 2020)

- The γ-ray constraints are a factor of few weaker than obtained in our work for the leptonic decay channels.
- u- constraints are important in the range 10⁶ GeV $\lesssim m_\chi \lesssim$ 10⁸ GeV, not considered in our work.

S. Das, K. Murase, T. Fujii

UHE constraints on DM decay

Introduction O	Modeling O		DM + astrophysical fluxes O	Integral γ -ray flux O	DM decay rate	Summary •
Summa	ıry & Futı	ire Pros	pects			

- I We place lower limits to the timescale of dark matter decay at energies larger than 1 EeV and extending up to $\approx 10^{15}$ GeV.
- I The constraints from the extragalactic components are weaker than the Galactic components.
- III The cosmic ray flux constrains τ_{χ} to \gtrsim 4 \times 10²⁹ s at 10¹³ GeV for the quark decay channel.
- IV For the leptonic decay channels, the γ -ray constraints limit the timescales to $\tau_\chi\gtrsim 2.25\times 10^{30}$ s at 10^{13} GeV (factor of few stronger than O. Kalashev et al., PRD 2016)
- V The systematics due to various DM density profiles can be calculated (NFW, Einasto, ...).