

B05: Electron-Positron Accelerator

Shohei Nishida KEK Dark Matter Symposium Mar. 30, 2022

S. Nishida (KEK) Mar. 30, 2022

B05: Electron-positron accelerator

B05 Members

B05「電子陽電子加速器によるダークマター探索」 B05 "Dark Matter Search with Electron-Positron Collider"

西田昌平(Shohei Nishida)	KEK
原康二 (Koji Hara)	KEK
伊藤慎太郎 (Shintaro Ito)	KEK
Eiasha Waheed	KEK
角野秀一 (Hidekazu Kakuno)	都立大(TMU)
Thomas Czank	都立大(TMU)
Yun-tsung Lai	IPMU
松本重貴 (Shigeki Matsumoto)	IPMU
	西田昌平(Shohei Nishida) 原康二 (Koji Hara) 伊藤慎太郎 (Shintaro Ito) Eiasha Waheed 角野秀一 (Hidekazu Kakuno) Thomas Czank Yun-tsung Lai

S. Nishida (KEK) Mar. 30, 2022

B05: Electron-positron accelerator

Dark Matter Symposium

2

Belle and Belle II

Belle and Belle II experiment:

- KEK (High Energy Accelerator Research Organization) in Tsukuba, Japan.
- Accelerator: KEKB / SuperKEKB
 - ✓ Linac + 3km ring
 - ✓ Asymmetric e⁺-e[−] collider
- "B factory experiments" (produce large amount of B mesons).

Accelerator	KEKB	SuperKEKB
Experiment (Detector)	Belle	Belle II
Operation (Year)	1999-2010	2019-
Beam Energy	3.5 GeV e⁺ + 8 GeV e⁻	4 GeV e⁺ + 7 GeV e⁻
Luminosity [cm ⁻² s ⁻¹]	2.1 × 10 ³⁴	3.8×10^{34} / 6×10^{35} (target)

S. Nishida (KEK) Mar. 30, 2022

B05: Electron-positron accelerator

(due to trigger setting etc.), and may be searched with initial Belle II data.

Luminosity

- Luminosity $[cm^{-2} s^{-1}] = (event rate [s^{-1}]) / (cross-section [cm^{-2}])$
 - ✓ performance of accelerator (~ ability of collision). 10^{34} cm⁻² s⁻¹ = 10 nb⁻¹s⁻¹
- Integrated luminosity = Luminosity × (operation time) = Data Size
 - ✓ 1 $ab^{-1} = 1000 fb^{-1}$: total amount of Belle data in 10 year's operation.

Belle : 1999-2010 1040 fb⁻¹

Belle II near term plan

(delayed from the original plan...)

Belle II 2019-2022

S. Nishida (KEK) Mar. 30, 2022

B05: Electron-positron accelerator

Trigger

- "Trigger" initiates the data acquisition: only triggered events will be recorded.
- The main purpose of Belle II is the study of B meson decays.
 - ✓ $e^+e^- \rightarrow \Upsilon(4S) \rightarrow B\overline{B} \rightarrow many$ (~10) particles
- Hadronic events ($B\overline{B}$ or $q\overline{q}$) are triggered with highest property, high efficiency.
 - \checkmark e.g. events with many charged tracks, large energy deposit.
- Other events are triggered as far as the bandwidth is allowed.
 - ✓ Typical Dark Matter events are low multiplicity events.

Requirement of Belle II Trigger

- Maximum trigger rate 30 kHz
- ~100% efficiency for hadronic events.

Key Issue

 Suppress triggers from beam background, keeping efficiency for low-multiplicity (~dark) events.

	Process	C.S. (nb)	R@L=5.5x10 ³³ (Hz)	R@L=8x10 ³⁵ (Hz)	TRG logic	
	Upsilon(4S)	1.2	6.6	960	CDC 3trk(fff)	
'"	Continuum	2.8	15.4	2200	ECL 4 clusters(c4)	
	μμ	0.8	4.4	640	CDC 2trk(ffo)	
	ττ	0.8	4.4	640	etc	
	Bhabha	44	242	350 *	ECL Bhabha(bhabha,	
	Υ-Υ	2.4	13.2	19 *	3D bhabha)	
	Two photon	13	71.5	10000	CDC 2trk(ffo) etc	
	Total	67	357.5	~15000		

Phase2 Lum. Recor

B05: Electron-positron accelerator

Trigger

- Sub-trigger systems: CDC (tracking), ECL (calorimeter), TOP, KLM (muon).
- Global trigger systems: Global Reconstruction Logic (GRL), Global Decision Logic (GDL)

CDC trigger

- 2D: pt and ϕ (Hough transformation)
- 3D: cotθ and z0 (Fitting with Track Segment in stereo Super Layer).
- Neuro-3D: cotθ and z0 (with pretrained neuros)

ECL trigger

- Clustering output: to GRL. For matching purpose.
- Bhabha.
- Low-multiplicity (ImI).
- Energy sum: e_high, e_low (hie, lowe).

Dark Matter Symposium

S. Nishida (KEK) Mar. 30, 2022

Trigger (GRL)

- Compensation to the full tracking from CDCTRG.
- Extend the angular acceptance to endcap region.
- Matching:
 - CDC-ECL
 - CDC-KLM
 - ECL-EKLM

S. Nishida (KEK) Mar. 30, 2022

B05: Electron-positron accelerator

Dark Matter Symposium 8

[Slides by Y.T.Lai]

- ECLTRG Low-multilpicity (*ImI*):
 - *ImI0,12* for tau
 - Iml2 for ISR, ALP, (+..?) with wide θid
 - ImI6,7,13 for single photon (dark matter and dark photon etc.)
 - ImI8,9,10 for ALP and any back to back photon
- KLM bits, CDC-KLM (cdcklm), inner track - KLM (ieklm), ECL-EKLM matching (ecleklm): for muon related tau/dark e.g. Z' → μμ.
- Three-track (*fff*), two-track with opening angle > 90° (*ffo*), two-track with opening angle > 90° (*ff30*, prescaled) for Z'.
- Single-track-trigger (stt) with Neuro-3D requirement: Any charged track. For various tau/dark

[Slides by Y.T.Lai]

- Trigger logic is implemented in general-purpose Universal Trigger (UT) board.
- Upgrade from UT3 to UT4 to implement new tracking algorithm with more complicated logic (partially purchased with this budget).

~50% of UT3 boards in CDCTRG and global triggers have been upgraded.

	Board	#	Status of using UT4	note		
Track-Segment-Finder	TSF	9	Upgraded			
	2D	4	Upgraded		Used in	UT3 Xilinx Vir
	3D	4			present	
	NN	4	Preparing		TRG for Belle II run	
Event-Timing-Finder	ETF	1	Upgraded			
	GRL	1	Preparing			
	GDL	1	Installed. Preparing			BRA
	New 2D	4	Installed. Preparing			
	3D Hough	4	Installed. Preparing		plan: Not	
	Displaced vertex	2	Preparing.		used for data	UT4 Xiliny Ultr
					taking yet	

tex-6

aScale

S. Nishida (KEK) Mar. 30, 2022

B05: Electron-positron accelerator

Plan: Displaced Vertex Tracking

-A'

Xz

 χ_1

- For now, all the CDCTRG tracking is for IP-originated tracks.
- Inelastic dark matter models: pair of leptons from displaced vertices (+ photons)
- Sensitivity from L1 TRG:
 - Mainly from gamma trigger. Displaced vertex trigger can enhance higher mass region.

[Slides by Y.T.Lai]

 $e^-, \mu^-, hadron$

 e^+ , μ^+ , hadron

S. Nishida (KEK) Mar. 30, 2022

B05: Electron-positron accelerator

Invisible Mode

$e^+e^- \rightarrow \gamma$ + invisible

- Final state: a single photon only.
- Bump in a recoil mass or photon energy.
- Need special "single photon trigger" to collect such events.
 - ✓ Belle didn't have this trigger.
 - ✓ BaBar had it (for some period).
- Main background $e^+e^- \rightarrow \gamma\gamma(\gamma)$
 - $\checkmark\,$ Need understanding the detector.

On-going analysis at Belle II

Dark Photon A', SIMP (Strongly Interacting Massive Particle)...

Still need more time to study.

S. Nishida (KEK) Mar. 30, 2022

Dark Higgsstrahlung

New result from Belle II using 8.34 fb⁻¹

Next to minimal dark photon model

- Dark photon (A') couples to SM photon via kinetic mixing parameter ε
- A' mass can be generated via a spontaneous symmetry breaking mechanism, adding a dark Higgs boson (h') to the theory. <u>Phys. Rev. D 79, 115008 (2009)</u>
- No dark Higgs mixing with SM Higgs.
- Both particles can be produced via dark Higgsstrahlung process.

Mass hierarchy scenarios

- $m_{h'} > m_{A'}$: $h' \to A'A' \to 4\ell$, 4had, 2ℓ + 2had \Rightarrow 6 charged tracks Investigated by <u>BaBar (2012)</u> and <u>Belle (2015)</u>.
- $m_{h'} < m_{A'}$: h' is long-lived and thus invisible \Rightarrow 2 charged tracks Partially constrained by <u>KLOE (2015)</u>.

Exploring unconstrained territories at Bellell !

S. Nishida (KEK) Mar. 30, 2022

B05: Electron-positron accelerator

Dark Higgsstrahlung

S. Nishida (KEK) Mar. 30, 2022

B05: Electron-positron accelerator

Searches at Belle (II)

Backup

S. Nishida (KEK) Mar. 30, 2022

B05: Electron-positron accelerator

科研費 Dark Matter Search @Accelerator

e+e- collider

- KLOE, BaBar, Belle, Belle II
- ~ 10 GeV : sub GeV region
- Clean environment
 - \checkmark missing energy \rightarrow invisible channels.
- (ILC 250 GeV ... future)

hadron collider

- LHC (ATLAS, CMS, LHCb)
- ~ 10 TeV : WIMP search
- Also search to sub GeV region (competitive)
 - ✓ large cross section.

Belle II @ SuperKEKB

- Belle II experiment at KEK: flavor physics experiment, successor of Belle.
- SuperKEKB Asymmetric electron-positron collider: 4 GeV e⁺ + 7 GeV e⁻.
- Nano beam scheme to achieve high luminosity.
- Operation with full detector started in 2019.
- Luminosity 3.8×10^{34} cm⁻² s⁻¹ achieved so far (aiming one order higher).
- Plan to accumulate 50 ab^{-1} in ~10 years (50 times of Belle).

Invisible Mode

BaBar experiment (53 fb⁻¹) [PRL 119 131804 (2017)]

- ✓ Single photon trigger is available for 53 out of 550 fb⁻¹
- Belle didn't have a single photon trigger.
- Better limit is expected at Belle II with 20 fb⁻¹ (due to detector configuration).
- Need good understanding of the detector.

S. Nishida (KEK) Mar. 30, 2022

Leptonic Mode

If m(A') < 2m(χ), A' decays to SM particles. • e.g. $e^+e^- \rightarrow \gamma A'$, $A' \rightarrow l^+l^-$ ($l = e, \mu, \tau$)

- Best limit in 0.1 10 GeV by BaBar [PRL 113, 201801 (2014)]
- Some analyses are going on at Belle II, but need more data.
 - ✓ Best sensitivity by Belle II within a few years.
- Competition with LHCb.

S. Nishida (KEK) Mar. 30, 2022

斗研費 Dark Mat

Dark Matter Search at Belle II

Target	Process	Mass Range (GeV)
SIMP / Dark Photon (A')	$e^+e^- \to A'\gamma, A' \to \text{invisible}$	$m_{A'} < 10$
SIMP / Dark Photon (A')	$e^+e^- \rightarrow A'\gamma, A' \rightarrow \ell^+\ell^-, h^+h^-$	$0.1 < m_{A'} < 10$
Dark gauge boson (Z')	$e^+e^- \rightarrow Z'\mu^+\mu^-, Z' \rightarrow \mu^+\mu^-$	$0.2 < m_{Z'} < 10$
Dark gauge boson (Z')	$e^+e^- \rightarrow Z'\mu^+\mu^-, Z' \rightarrow \text{invisible}$	$m_{Z'} < 10$
Axion (a)	$e^+e^- \to \gamma a, a \to \gamma \gamma$	$m_a < 10$
A' and Dark Higgs (h')	$e^+e^- \to A'h', A' \to \ell\ell, h' \to \text{invisible}$	$m_{A'} + m_{h'} < 10$
Dark Scaler (S)	$B \to KS, S \to \gamma\gamma$	$m_a < 10$
Light WIMP (ϕ)	$B \to K \phi (\phi \ \text{it long-lived})$	$m_a < 3$
Dark Photon (A')	$D^{*0} \rightarrow D^0 A', A' \rightarrow e^+ e^-$	$0.01 < m_{A'} < 0.1$
Dark Photon (A')	$\Upsilon(2S,3S) \to \Upsilon(1S)\pi^+\pi^-,$	
	$\Upsilon(1S) \to A'\gamma, A' \to \text{invisible}$	$m_{A'} < 10$

- Production at e⁺e⁻ collision.
- Decay of B, D*, Υ mesons, which are largely produced at Belle II.
- Displaced vertex (long lived particles)

- Many search processes.
- Close discussion with theorists.

S. Nishida (KEK) Mar. 30, 2022

B05: Electron-positron accelerator

٠

CDC Trigger

- TSF in each SL: Basic element of tracking in L1.
 - 2D: Hough transformation. pt and ϕ .
 - 3D: Fitting with TS in stereo SL. $\cot\theta$ and z0.
 - Neuro-3D: with pre-trained neuros. $\cot\theta$ and z0.
- GRL: Master of CDCTRG, making summary to GDL.

[Slides by Y.T.Lai]

S. Nishida (KEK) Mar. 30, 2022

B05: Electron-positron accelerator

ECL Trigger

5 1 6 2 0 3 7 4 8

F1 + F2 + F3

F3

C1

C2

C1 + C2

C2

C2

C2 + C3

C2 + C3

C3 + C4

C3 + C4

C4 + C5

C5

C5 + C6

81

B2

Backward

- ECLTRG information: ٠
 - Clustering output: to GRL. For matching purpose.
 - Bhabha. _
 - Low-multiplicity (Iml).
 - Energy sum: e_high, e_low (hie, lowe).

(Iml# in GDL)	meaning
0	(NCL \geq 3, at least 1 CL \geq 300 MeV(Lab)) (with $\theta_{\rm al}$ = 1 \sim 17), not an ECL 3D Bhabha
1	one CL $\geq 2~{\rm GeV}({\rm CM})$ with $\theta_{\rm si}$ = 4 \sim 14
2	one CL \geq 2 GeV(CM) with $\theta_{\rm M}$ = 2, 3, 15 or 16 and not an ECL 3D Bhabha
3	one CL $\geq 2~{\rm GeV}({\rm CM})$ with $\theta_{\rm H}$ = 2, 3, 15 or 16 and an ECL 3D Bhabha
4	one CL \geq 2 GeV(CM) with $\theta_{\rm M}$ = 1 or 17 and not an ECL 3D Bhatha
5	one CL \geq 2 GeV(CM) with $\theta_{\rm K}$ = 1 or 17 and an ECL 3D Bhabha
5	only one CL \geq 1 GeV(CM) with θ_{13} = 4 \sim 15 and no other CL \geq 300 MeV(Lab) anywhere
7	only one CL \geq 1 GeV(CM) with $\theta_{\rm Pl}$ = 2, 3, or 16 and no other CL \geq 300 MeV(Lab) anywhere
a	$170^\circ < \Delta \phi_{CM} < 190^\circ,$ both CL > 250 MeV(Lab), no 2GeV(CM) CL in an event
g	$170^\circ < \Delta\phi_{\rm CM} < 190^\circ$, one CL < 250 MeV(Lab), the other CL > 250 MeV(Lab), no 2GeV(CM) CL in an event
10	$160^\circ < \Delta\phi_{\rm CM} < 200^\circ, 160^\circ < \Sigma\theta_{\rm CM} < 200^\circ,$ no 2GeV(CM) CL in an event
11	No 2GeV(CM) CL in an event
12	(NGL \geq 3, at least 1 GL \geq 500 MeV(Lab)) (with $\theta_{\rm sl}$ = 2 \sim 16), not an EOL 30 Bhabha
13	only one CL \geq 0.5 GeV(CM) with $\theta_{\rm td}$ = 6 \sim 11 and no other CL \geq 300 MeV(Lab) anywhere

S. Nishida (KEK) Mar. 30, 2022

B05: Electron-positron accelerator

Plan: Displaced Vertex Tracking

[Slides

by Y.T.Lai]

• Track Segment (TS) shape: wider \rightarrow larger memory in FPGA for LUT \rightarrow UT4

S. Nishida (KEK) Mar. 30, 2022

B05: Electron-positron accelerator

Trigger Performance

Trigger performance

- essential for dark-sector and tau physics
 - typical signatures include low-multiplicity of tracks, and ECL clusters...
 - large background from radiative Bhabha and $e^+e^- \rightarrow \gamma\gamma$
- some of the dedicated low-multiplicity triggers:
 - single muon
 - combine CDC and KLM information
 - single track:
 - neural-net based hardware trigger
 - single photon:
 - high efficiency for E(γ) > 1 GeV

S. Nishida (KEK) Mar. 30, 2022

B05: Electron-positron accelerator

Dark Higgsstrahlung

Analysis Strategy

Data sample: 2019 dataset \Rightarrow 8.34 fb-1

Detector signature

- Looking for invisible h' with $A' \rightarrow \mu^+ \mu^- \Rightarrow \mu\mu$ + missing energy
- 2D peak in in $M_{\mu\mu}$ vs M_{rec} M_{rec} = invariant mass of the system recoiled against $\mu\mu$.

Search strategy:

- $M_{\mu\mu} \& M_{rec}$ are correlated \Rightarrow search in tilted elliptical mass windows
- Spacing αM^2 resolution in the two directions
- ~9000 overlapping windows (large look-elsewhere effect)
- Bayesian counting technique (on average, 1 event in ~3 windows)

S. Nishida (KEK) Mar. 30, 2022

B05: Electron-positron accelerator

Dark Matter Symposium 26

A'

h'

Dark Higgsstrahlung

Event counts in a single window interpreted as:

$$N = \epsilon_{sig} \times L \times \sigma_{DH} + B$$

with systematic uncertainties taken into account.

S. Nishida (KEK) Mar. 30, 2022

Search for Z' at Belle II

First Belle II result: Search for $Z' \rightarrow invisible$

- New light neutral gauge Z' boson which couples to μ and τ lepton (L_{μ} L_{τ} model) [PRD 89, 113004]
- Can solve the deviation of $(g-2)_{\mu}$, and other anomalies seen in flavor physics $(B \rightarrow K^{(*)}\mu\mu)$.

S. Nishida (KEK) Mar. 30, 2022

B05: Electron-positron accelerator

$B^0 \rightarrow \Lambda \psi_{DS}$ at Belle

- B-Mesogenesis: explain Baryogenesis and DM with B decay [Elor,Escudero,Nelson PRD99,035031 (2019)]
- Robust prediction $B(B^0 \rightarrow \Lambda \psi_{DS} + meson) > 10^{-4}$
- Experimental limit
 - ✓ $B(B^0 \rightarrow \Lambda \psi_{DS}) < 2 \times 10^{-4}$ by ALEPH [EPJC19,213 (2001)]
 - m(ψ_{DS})<3.5 GeV from CMS [JHEP 1910, 244] and ATLAS [JHEP 2102, 143].
- Search $B^0 \to \Lambda \; \psi_{\text{DS}}$ at Belle with 711 fb^{-1} data.
 - ✓ Reconstruct one B with hadronic mode.
 - ✓ Reconstruct ∧ in the signal side and look at E_{ECL} (remaining energy in the event)

and B(B⁰ $\rightarrow \Lambda \psi_{DS}$) = 8×10⁻⁵

S. Nishida (KEK) Mar. 30, 2022

 $B^0 \rightarrow \Lambda \psi_{DS}$ at Belle

• No signal. Upper limit of $B(B^0 \rightarrow \Lambda \psi_{DS}) < (2-4) \sim 10^{-5}$ is set. [arXiV:2110.14086] \checkmark Prediction of B-Mesogenesis: $B(B^0 \rightarrow \Lambda + \psi_{DS} + meson) > 10^{-4}$

S. Nishida (KEK) Mar. 30, 2022

B05: Electron-positron accelerator