

FY2021 学術変革領域研究「ダークマター」シンポジウム

Thomas Czank 2022, March 30th

1

Extra Leptophylic U(1) gauge boson, Z^\prime

KEKB and Belle

 Z^\prime search in B-factories

Extra Leptophylic U(1) gauge boson, Z^{\prime}

KEKB and Belle

Z' search in B-factories

$\left(g-2 ight)_{u}$ 2021 measurement PRL 126, 141801 - 2021

Proton size anomaly Science 365, 6457 - 2019

Disagreement between proton size of muonic and regular Hydrogen

Extra Leptophylic U(1) gauge boson, Z^\prime

KEKB and Belle

Z' search in B-factories

 $L_{e,\mu,\tau}$ are the lepton numbers $L_1=L_e-L_\mu\text{, }L_2=L_e-L_\tau\text{ and }L_3=L_\mu-L_\tau$

Three different new gauge groups

so that $G_{\rm SM} \otimes U(1)_{L_{1,2,3}}$

allows for an additional neutral gauge boson $(Z'_1, Z'_2, \text{ and } Z'_3)$

$$Z_1^\prime$$
 and Z_2^\prime mediate $L_1 = L_e - L_\mu$ and $L_2 = L_e - L_ au$

Neutrino Trident Z' PRL 113, 091801 - 2013

$$\begin{split} \mathcal{L}_{Z'} &= -\frac{1}{4} (Z')_{\alpha\beta} (Z')^{\alpha\beta} + \frac{1}{2} m_{Z'}^2 Z'^{\alpha} Z'^{\alpha} + \underbrace{g' Z'_{\alpha} (\bar{\ell}_2 \gamma^{\alpha} \ell_2 - \bar{\ell}_3 \gamma^{\alpha} \ell_3 + \bar{\mu}_R \gamma^{\alpha} \mu_R - \bar{\tau}_R \gamma^{\alpha} \tau_R)}_{\mathcal{L}_{\text{int}} = -g' \bar{\mu} \gamma^{\mu} Z'_{\mu} \mu + g' \bar{\tau} \gamma^{\mu} Z'_{\mu} \tau - g' \bar{\nu}_{\mu, L} \gamma^{\mu} Z'_{\mu} \nu_{\mu, L} + g' \bar{\nu}_{\tau, L} \gamma^{\mu} Z'_{\mu} \nu_{\tau, L}} \end{split}$$

where the g' is the U(1) gauge coupling, $(Z')_{\alpha\beta} = \partial_{\alpha} Z'_{\beta} - \partial_{\beta} Z'_{\alpha}$ is the field strength, $\ell_2 = (\nu_{\mu}, \mu_L)$ and $\ell_3 = (\nu_{\tau}, \tau_L)$ are the electroweak doublets. The g' coupling the new gauge boson Z' to the electroweak doublets and the that enhances the rate of neutrino trident production in the $\nu_{\mu} N \rightarrow N \nu \mu^+ \mu^-$ process.

Neutrino trident production has not been observed so far!

Assuming that a sterile neutrino $\nu_s,$ that mixes weakly with the active $\nu_{a(\mu,\tau)}$ states, is added to the SM.

$$\begin{pmatrix} \nu_a \\ \nu_s \end{pmatrix} \equiv \begin{pmatrix} \cos \theta_0 & \sin \theta_0 \\ -\sin \theta_0 & \cos \theta_0 \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \end{pmatrix}$$

$$\Gamma_{Z' \rightarrow \nu_S} = \tfrac{g'^2 M_{Z'}}{12\pi} \tfrac{\sin^2 2\theta_m}{4} (1 + \tan^2 \theta_m)$$

A massive Z' with MeV $< m_{Z'} < {\rm GeV}$ with coupling $10^{-2} < g' < 10^{-6}$ results in the correct relic abundance of sterile neutrinos DM

Sterile neutrino candidates PRD 89, 113004 - 2014

- + $M_{Z^\prime}-g^\prime$ plane
- magnetic moment of the muon anomaly favored region
- + $N_{\rm eff} \to M_{Z'}\gtrsim 2.0~{\rm MeV}$ from Planck measurement constraint 1303.5076
- sterile neutrino candidates

- $\begin{array}{l} \cdot \ m_s = 7.1 \ {\rm keV} \sin 2\theta_0 = 8 \times 10^{-6} \\ \cdot \ m_s = 30 \ {\rm keV} \sin 2\theta_0 = 2.2 \times 10^{-6} \end{array}$
- + $m_s=50~{\rm keV}\sin2\theta_0=3.5\times10^{-8}$
- + $m_s=100~{\rm keV}\sin2\theta_0=5\times10^{-9}$
- + ($Y_{\rm DM}=4.7\times 10^{-4}~{\rm keV}/m_s)$

Extra Leptophylic U(1) gauge boson, Z^\prime

KEKB and Belle

Z' search in B-factories

The **KEKB** Accelerator

The KEKB is a e^+e^- collider made up of two rings, a High Energy Ring, HER and a Low Energy Ring, LER.

It's located in Tsukuba and has achieved a record Luminosity of 1 ab⁻¹

KEKB together with the Belle detector were responsible for confirming the Charge Parity Violation (CPV), the 2008 Nobel Prize of Physics.

- SVD (Silicon Vertex Detector)
- EFC (Extreme Forward Calorimeter)
- ACC (Aerogel Cherenkov Counter)
- TOF (Time Of Flight)
- CDC (Central Drift Chamber)
- ECL (Electromagnetic Calorimeter)
- $\cdot ~ \operatorname{KLM}{(K^0_L-\mu)}$

Extra Leptophylic U(1) gauge boson, Z^\prime

KEKB and Belle

 Z^\prime search in B-factories

Z^\prime search in B-factories

- Motivated by:
 - the $(g-2)_{\mu}$
 - connection to **sterile neutrinos** as a dark matter candidate
 - a way to relax the Hubble tension (very light Z' (invisible))
 JHEP 2019, 71 - (2019)
- We looked for a Z^\prime signal using 643 ${\rm fb}^{-1}$ of the total Belle luminosity

Z^\prime decay width and branching ratio

$$\cdot \ \Gamma(Z' \to \ell^+ \ell^-) = \frac{(g')^2 m_{Z'}}{12\pi} \left(1 + \frac{2m_{\ell}^2}{m_{Z'}^2} \right) \sqrt{1 - \frac{4m_{\ell}^2}{m_{Z'}^2}} \theta(m_{Z'} - 2m_{\ell})$$

•
$$\Gamma(Z' \rightarrow \nu_\ell \bar{\nu}_\ell) = \frac{(g')^2 m_{Z'}}{24\pi}$$

Past Search PRD 94 011102 - 2016

- No Z^\prime signal was found
- limit set for 0.212(dimuon mass) $\sim 10~{\rm GeV}/c^2$
- + Z^\prime contribution for the $(g-2)_\mu$ almost excluded

Belle Search 2109.08596

- Z' defined as oppositely charged promptly decayed μ^\pm pair, while two other charged tracks are another μ^\pm pair generated from initial interaction
- 4 charged tracks requirement
- 2 positive muon or 2 negative muon ids requirement
- We also use a kinematic fitter that requires energy and momentum conservation
- using ECL we reject the sum of energies of electromagnetic clusters above 30 MeV not associated with charged tracks that are less than 200 MeV
- + $m_{\mu^+\mu^-}$ not in $m_{J/\psi}\pm 0.030~{
 m GeV}$ (J/ψ veto)
- + for the $\Upsilon(2S,3S)$ samples rejection of the $m_{\mu^+\mu^-}$ not in $m_{\Upsilon(1S)}\pm 100~{\rm MeV}$
- + $m_{4\mu}$ in $M_{\rm CMS}\pm 500~{\rm MeV}$

Results 2109.08596

- reduced mass, m_R , scan

$$\cdot m_R = \sqrt{m_{\mu\mu}^2 - 4m_{\mu}^{\rm PDG^2}}$$

- 1 surviving background
 - $e^+e^- \rightarrow \mu^+\mu^-\mu^+\mu^-$
 - non ISR MC

- 1. MC bkg and data ratio: 0.69
- 2. $\epsilon_{\rm ISR}/\epsilon_{\rm NonISR}$: 0.76
- 1 and 2 reconciled by the vacuum polarization factor: 0.92

Results 2109.08596

- Two CB single mean for Signal
- Third-order poly for bkg
- Highest local significance 3.72σ

$$m_{Z'} = 3.26 \, {
m GeV}/c^2$$

 $\cdot \ m_R = 3.23 \ {\rm GeV}/c^2$

Z^\prime coupling **2109.08596**

- ISR Signal MC analysis
- Some improvements on middle and high Z^\prime mass g^\prime limit
- Submitted to PRD

Extra Leptophylic U(1) gauge boson, Z^{\prime}

KEKB and Belle

Z' search in B-factories

Leptophylic Z' outlook

- improvement on invisible channel (Belle II)
- visible channel new measurement (Belle II)
- invisible channel new measurement (Belle)
- kinetic mixing factor reinterpretation
- combination with other dark sector models

Back up

$Z^{'}$ Number of Expected Events

number of expected events by Z' coupling strength and mass

$\boldsymbol{Z'}$ cross section

The visible cross section corresponds to: $\sigma_{\rm V} = \frac{N}{\mathcal{LB}\epsilon}$ and the Born cross section is given by: $\sigma_{\rm B} = \frac{N_{\rm ISR}}{\mathcal{LB}\epsilon_{\rm ISR}(1+\delta)|1-\Pi|^2}$

Signal shape based only on true events

52805

1.703

0.02419

512.4 / 466

 1532 ± 140.0

 1.699 ± 0.000

-0.7088 ± 0.0469

2 265 ± 0.068

2725 ± 145.0

 1.699 ± 0.000

1215 + 0.044

 2.217 ± 0.062

Non ISR sample pdf

$\boldsymbol{Z'}$ resolutions

Belle sample tauskimA not usable

tauskimA(B)