Search for QCD Axion at Belle II

Shintaro Ito (KEK) for B05 group

FY2021 学術変革領域「ダークマター」シンポジウム 2022/03/30

Physics Motivation

• There is a CP violation factor in Lagrangian in QCD in the SM.

 $\mathscr{L} = \theta \frac{g^2}{32\pi^2} G_{a\mu\nu} \tilde{G}^{a\mu\nu} \qquad (G_{a\mu\nu} : \text{tensor of gluon field})$

• This would introduce neutron electric dipole moment (nEDM, $|d_n|$).

- → $|d_n| < 1.8 \times 10^{-26} e \cdot cm$ (PRL 124, 081803 (2020))
- → Stringent limit on $\theta \leq 10^{-10}$ ⇒ Strong CP problem.
- To solve strong CP problem, PQ symmetry was introduced by Peccei & Quinn (PRL 38 (1977) 1440).
 - → Axion (or QCD axion): pNG boson in PQ violation.
 (Weinberg, PRL 40 (1978) 223 & Wilczek, PRL 40 (1978) 271)

Physics Motivation

- QCD axion mass m_a and decay constant f_a : $m_a f_a \simeq m_\pi f_\pi$
 - → If axion is dark matter, the mass range is $10^{-6} \leq m_a \leq 10^{-3} \text{ eV}_{\circ}$
 - → Axion quality problem due to large f_a .
- Heavy QCD axion (PRL 123 031803 (2019), PRD 104 055036 (2021))
 - $m_a \gg m_\pi f_\pi / f_a \ (m_a > 400 \text{ MeV}/c^2)$, interaction: $aG\tilde{G}$
 - Solve strong CP problem.
 - Axion quality problem can be avoided.
 - This may provide some hints of dark matter search (although this might not be DM)
 - $B^+ \rightarrow K^+ a$, $a \rightarrow$ hadrons \Rightarrow This can be searched for in Belle II

$B^+ \to K^+ a, a \to \text{hadrons}$

Chakraborty et al. (PRD 104 055036 (2021)) estimated sensitivity of heavy QCD axion using some (not DM search) experimental data.
 a → ηπ⁺π⁻: BABAR, PRL 101, 091801 (2008),

 $B^+ \to \eta_X K^+, \eta_X \to \eta \pi^+ \pi^-, \sim 400 \text{ fb}^{-1}.$

- $a \rightarrow \pi^0 \pi^+ \pi^-$: Belle, PRD 90, 012002 (2014),

 $f_a \, [{
m GeV}]$

$$B^+ \to \omega K^+, \omega \to \pi^0 \pi^+ \pi^-, \sim 700 \text{ fb}^{-1}$$

 $BF(B^+ \to K^+ a) \sim 10^{-5} (100 \text{ GeV}/f_a)^2$

$B^+ \rightarrow K^+ a, a \rightarrow \text{hadrons}$

Chakraborty et al. (PRD 104 055036 (2021)) estimated sensitivity of heavy QCD axion using some (not DM search) experimental data.
 a → ηπ⁺π⁻: BABAR, PRL 101, 091801 (2008),

 $B^+ \to \eta_X K^+, \eta_X \to \eta \pi^+ \pi^-, \sim 400 \text{ fb}^{-1}.$

- $a \rightarrow \pi^0 \pi^+ \pi^-$: Belle, PRD 90, 012002 (2014),

 $B^+ \to \omega K^+, \omega \to \pi^0 \pi^+ \pi^-, \sim 700 \text{ fb}^{-1}.$

Branching Fraction of Axion

- Branching fraction of heavy QCD axion: PRL 123 031803 (2019)
 - _ *a* → $\eta \pi \pi$ is dominant in 1.0 GeV/*c*² < *m_a* < 2.0 GeV/*c*².
 - Very short lifetime for this decay mode: $c\tau < 10^{-5}$ mm
- This is the first heavy QCD axion search!!
- I'll discuss the progress of analysis and expected sensitivity.

The Belle II Experiment

- e^+e^- collider experiment using Super-KEKB.
 - → $\sqrt{s} = 10.58 \text{ GeV}, e^+e^- \rightarrow \Upsilon(4S) \rightarrow B\overline{B}.$
 - ➡ Flavor physics, dark matter search, and so on.
- As of December 2021, $\mathscr{L}_{peak} = 3.8 \times 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$ (world record), $\mathscr{L}_{int} = 268 \text{ fb}^{-1}$ (target is 50 ab⁻¹, which corresponds to x50 larger statistics than the Belle experiment).

- Establish analysis method suing MC simulation (200/fb). Event reconstruction: $B^+ \rightarrow K^+ a \ a \rightarrow n\pi^+\pi^- \ n \rightarrow n\pi$
- Event reconstruction: $B^+ \to K^+ a, a \to \eta \pi^+ \pi^-, \eta \to \gamma \gamma$

- Establish analysis method suing MC simulation (200/fb).
- Event reconstruction: $B^+ \to K^+ a, a \to \eta \pi^+ \pi^-, \eta \to \gamma \gamma$

- Establish analysis method suing MC simulation (200/fb).
- Event reconstruction: $B^+ \to K^+ a, a \to \eta \pi^+ \pi^-, \eta \to \gamma \gamma$

- Establish analysis method suing MC simulation (200/fb).
- Event reconstruction: $B^+ \to K^+ a, a \to \eta \pi^+ \pi^-, \eta \to \gamma \gamma$

- Establish analysis method suing MC simulation (200/fb).
- Event reconstruction: $B^+ \to K^+ a, a \to \eta \pi^+ \pi^-, \eta \to \gamma \gamma$

qq Background Rejection

- The most dominant background is $q\bar{q}$ (u, d, c, s) event.
- The background can be rejected using the different distribution.
 - $B\bar{B}$: uniformly distribute.
 - $q\bar{q}$:strongly collimated due to the decay to light hadrons.
- Signal MC and $q\bar{q}$ MC samples were used for machine learning.
 - → ~10% signal efficiency, ~1/10⁵ background rejection.
- Optimization is ongoing.

$M_{bc}, \Delta E$ Spectra Fitting

• After event selection, M_{bc} and ΔE spectra were simultaneously

fitted including background to obtain the branching fraction.

. To estimate sensitivity, M_{bc} and ΔE spectra were generated using MC.

Expected Sensitivity in Belle II

- Background spectra were generated using MC, spectra were fitted, and BF was estimated including the correction of signal efficiency.
 - → Repeated with the mass range 1.0 GeV/ $c^2 < m_a < 2.0$ GeV/ c^2 .

Summary

- Heavy QCD axion to solve strong CP problem.
 - → This can be searched for in Belle II.
- Study of $B^+ \to K^+ a, a \to \eta \pi^+ \pi^-$ using MC.
 - Optimization of event selection cuts and background rejection is ongoing.
 - Expected sensitivity was estimated.
 - ➡ This is the first search of heavy QCD axion.
- Establish more accurate and effective cuts using MC, and analyze real data.

Back Up

Lifetime of Axion

= 0.01mm

- · Lifetime can be determined using the decay width.
- The decay constant, mass, and lifetime are seen.
 - Very short lifetime for $a \rightarrow \eta \pi \pi$.
 - Lifetime should be consider with $a \rightarrow 3\pi$.

Invariant Mass $m_{\eta\pi\pi}$ for Axion (Signal MC, isSignal==1)

- Axion mass $m_a = 1.0 \sim 2.0 \text{ GeV}/c^2$, after the black square cuts and isSignal==1.
- The number of simulated events is 60,000.
- Spectra were fitted to double gaussian.
- Std Dev value was used as σ

for the cut $|M_{\eta\pi\pi} - m_a| < 3\sigma \text{ GeV}/c^2$.

Axion mass [GeV/c2]	Std Dev [GeV/c2]	Signal efficiency
1	0.0074	14.5%
1.1	0.0097	12.7%
1.2	0.0116	10.7%
1.3	0.0136	9.6%
1.4	0.0156	9.1%
1.5	0.0168	9.0%
1.6	0.0177	8.6%
1.7	0.0203	8.1%
1.8	0.0203	8.0%
1.9	0.0209	8.1%
2	0.0222	7.8%

 $M_{\eta\pi\pi}$

Peaking Background Study

$\eta_X \rightarrow \eta \pi \pi$	$\eta(1295)$	$f_1(1285)$	$\eta(1405)$	$f_1(1420)$
m_0/Γ [4], MeV	1294(4)/55(5)	1281.8(0.6)/24.2(1.1)		
n _{sig}	$131^{+35}_{-33} \pm 10(3.5\sigma)$	$-30^{+21}_{-19} \pm 14$	$-14^{+36}_{-33}\pm 6$	$49^{+35}_{-34} \pm 11$
90% C.L.	<179	<30	<54	<99
$\mathcal{B}(B^+ \to \eta_X K^+) \mathcal{B}(\eta_X \to \eta \pi \pi)$	$(2.9^{+0.8}_{-0.7} \pm 0.2)10^{-6}$	$(-0.8^{+0.6}_{-0.5}\pm0.4)10^{-6}$	$(-0.3^{+0.9}_{-0.8} \pm 0.1)10^{-6}$	$(1.4 \pm 1.0 \pm 0.3)10^{-6}$
90% C.L.	$< 4.0 \times 10^{-6}$	$< 0.8 imes 10^{-6}$	$< 1.3 \times 10^{-6}$	$< 2.9 \times 10^{-6}$
$\mathcal{B}(B \to f_1(1285)K^+)$		$(-1.5^{+1.1}_{-1.0} \pm 1.2)10^{-6}$		
90% C.L.		$< 2.0 \times 10^{-6}$		
ϵ (%)	17.6 ± 0.3	14.1 ± 0.9	16.5 ± 1.2	13.5 ± 0.6

22

Belle Analysis ($B \rightarrow \omega K, \omega \rightarrow 3\pi$)

