Dark Matter Symposium 29-30 March 2022 14:45-

B04-report

Development status of TES micro-calorimeters with 57Fe for solar axion search

Yuta Yagi (Doctoral course)

The University of Tokyo, Institute of Space and Astronautical Science/JAXA, JAPAN

Collaborators

北里大学

Ryohei Konno^{1,3}, Tasuku Hayashi¹, Keita Tanaka^{1,2}, Rikuta Miyagawa^{1,2} Noriko Y. Yamasaki ^{1,2,3}, Kazuhisa Mitsuda⁴, Rumi Sato⁵, Nao Yoshida⁵ Mikiko Saito⁵, Takayuki Homma⁵, Yoshiki Nishida⁶, Shohei Mori⁶, and Naoko Iyomoto⁶

1. ISAS/JAXA.

Exploration Agency

2. The Univ. of Tokyo, 3. Kitasato Univ.,

東京大学

KITA SATO

4. NAOJ.

5. Waseda Univ.,

WASEDA University

早稲田大学

Expected Solar Axion Spectra

2

Mass Constraints Using Axion-Nucleon Coupling³

- The branching ratio of 14.4-keV γ-rays 10.5%
 That of conversion electrons and lower energy X-rays 89.5%
- ✦ Self absorption by 35-um Iron foil about 80%
- ✦ Solid angle of te detector 86.6%
- ✦ Overall efficiency ~ 1%

Solar axion mass constraints using axion-nucleon coupling

	Nucleon	Size	Mass	Time	Constraint
Namba 2007 Si PIN photodiode	⁵⁷ Fe foil	35 um × 32 mm × 32 mm	211 mg	13.92 day	<i>m</i> _a ≤ 216 eV (95% C.L.)
Derbin+ 2011 Si(Li) detector	⁵⁷ Fe foil	70 mm diameter, 30 mg/cm ²	1.26 g	44.8 day	<i>m</i> a ≤ 145 eV (95% C.L.)
Gavrilyuk+ 2015 Proportional gas chamber	⁸³ Kr gas	8.77 L	101 g	188.3 day	<i>m</i> a ≤ 100 eV (95% C.L.)
Gavrilyuk+ 2018 Proportional gas chamber	⁸³ Kr gas	8.77 L	58 g	613.25 day	<i>m</i> a ≦ 12.7 eV (95% C.L.)

Using 57Fe as absorbers on transition edge sensor (TES) microcalorimeters Much higher energy resolution dramatically improves the detection sensitivity

Detection Sensitivity

- TES calorimeters can detect self-absorbed thermal energy from axions
- ✦ Therefore, more than 70% of efficiency is expected
- Increase the converter mass by using an array device

Low-noise microwave SQUID multiplexed readout

Requirements for Special Structure of TES Calorimeter 5

Axion energy transfer in the calorimeter

Important points

- ◆ Special structure to keep high energy resolution (p.6)
- ✦ Iron absorber (p.7);
 - \cdot ~ 10 um thickness
 - · good thermal conductivity
- ✦ Gold thermal strap (p.10);
 - · good thermal conductivity
- ✦ Reproducibility of TES (pp.11-13);
 - New evaporative deposition inst. by Henkaku funding

Optimization of Microcalorimeter's Structure 6

The spectroscopic performance of a TES could degrade under a magnetic field made by ferromagnetic iron absorbers

Electrodeposition for Iron Absorbers 7

- Thick iron absorber with good thermal conductivity is required
- Electrodeposition is suitable to make thick structure, but electroplating of pure iron is not established
- Collaboration with experts in Waseda Univ.

Achieved more than ten times higher thermal conductivity than expected value even in low concentration

Still on the way

- ✦Aimed improving yield rate
- ♦ 10 um of target thickness
- Still setting conditions close to production environment

Fabrication of Dedicated TES with Iron Absorber 8

X-Ray Irradiation Test on Single Pixel TES 9

R-T curve by the four terminal method

We successfully operated the TES microcalorimeter with a distance between TES and absorber under iron magnetization for the first time

- ◆ ⁵⁵Fe radiation source; 5.9 keV, 6.4 keV lines
- Obtained 698 pulses by SQUID readout

To decide each event position, we have worked on more detailed and accurate simulations with Kyushu Univ.

Improved Thermal Conductivity of Thermal Straps10

Introduced Evaporative Deposition Instrument for TES11

Sputtering (-2020)

- ✤ Non-reproducibility of Tc
- Only one substrate of 2 inch in one deposition

Evaporative (2021-, by Henkaku funding)

- ✦ Introduced evaporative deposition instrument in 2021 spring
- ✦ Automatic control of thickness and time
- Three substrates of 3 inch in one deposition

Thickness Distribution and Tc Control 12

Summary and Next Steps

Summary

- ★ Develop high-efficiency TES microcalorimeters for 14.4-keV solar axion search
- ★ Special structure to avoid the degradation of transition sharpness under iron magnetization
- ★ Successfully operated the TES with a distance between TES and absorber for the first time
- \bigstar Try setting conditions for Iron absorbers
- ★Achieved electro-deposition of high thermal conductivities for gold thermal straps
- ★Be possible to fabricate TES efficiently having high reproducibility

Next steps

- \star To measure in details the effect of transition sharpness under iron magnetization
- ★ To perform evaluation a few pixels of 64 pixels under 14.4-keV radiation source