

Dark matter search by astronomical observation in X-ray (B04 report)

Sterile neutrino search

XRiSM X-Ray Imaging and Snectroscopy Mis

- with cluster of galaxies
- Axion search with magnetars

Summary

Give me some advices from theoretical/observational side!

Basic Strategy

The cluster of galaxies has been mainly focused on as the DM target. \rightarrow Yamasaki-san's talk

Sterile neutrino × Cluster of Galaxies

In 2014, E. Bulbul reported an undefined line emission from the Perseus cluster around 3.5 keV. The undefined line was also found from the stacked galaxy spectra.

 \rightarrow DM?

However, the spectra observed by the Hitomi and Suzaku satellites did not confirm this emission line.

Sterile neutrino × Cluster of Galaxies

Detections

1- Perseus Cluster – too bright (Bulbul+2014a, Urban+2015, Franse+16)
2- Stacked clusters (Bulbul+14a)
3- Galactic Center (Boyarsky+2015, Jeltema & Profumo 15)
4- Coma, A2199, and A2319 (lakubovskyi & Bulbul+15)
5- M31 (Boyarsky+14)
6- NuSTAR Galactic Halo (Neronov+16)
7- NuSTAR Bullet Cluster (Wik+14)

8- Chandra Galactic Halo Observations (Cappelluti+17)

Non-Detection

Bulbul+14, Fukuichi+22

FY2022 !

- 1- Virgo Cluster (Bulbul+14a)
- 2- Coma, Ophiuchus (Suzaku) (Urban+15)
- 3- Stacked galaxies (Anderson+15)
- 4- Perseus Cluster (Suzaku Tamura+15)
- 5- Perseus Cluster
- (Hitomi Collaboration 17)
- (Tamura+19)
- 6- Milky Way (XMM Dessert+20)
- 7- Brank Sky (XMM Foster+21)
- 8- Galaxy clusters (XMM Bhargava+20)
- 9- Galactic Halo (Halosat Silich+21)

Still open question!

DM search

- \rightarrow Distinguishing a Dark Matter line from an astrophysical one.
- → This would require resolving the line, which only a calorimeter can do.
- → The XRISM calorimeter will be the first to resolve and identify or reject those signals.
- This work is executed with Aurora Simionescu(SRON) and Tamura Takayuki(ISAS/JAXA).

Strongest magnet Ω in the universe \rightarrow Magnetar (\in Neutron Star)

+ a few p/p, d/d

Anti-matter

Magnetars – Overview -

Magnetars – X-ray Spectrum

- Two component (SXC and HXC)
 1-10 keV → BB radiation from magnetar surface.
- Younger magnetars
 - \rightarrow Higher surface temperature.
- 10 keV ~ 100 keV: Unknown.
- Photon splitting? 5
- > Inner temperature $\rightarrow -10^9$ K (theoretically)
- Magnetars with no non-thermal emission (XDINS, CCO): Magnificent 7.
- → Good targets for detecting/limiting Axion associated continuum X-ray

1035

'v (erg s⁻¹)

Axion signal from Magnetars

DM(Milky way DM halo) originated

DM axion in the vicinity of the Milky Way can be probed. Monochromatic line in Radio band \leftarrow DM mass limit. Expected axion-induced photon flux $P_{a\gamma} \propto (B \times R)^2$ Strong B (10^15 G) \leftrightarrow Small typical R (~10 km) Cluster of galaxies > Magnetar \bigotimes J. W. Foster+20 Axion emission from the magnetar cooling process. (Not DM associated Axion) Thermal process \rightarrow Broad spectrum in X-ray. \rightarrow This method seems to be more advantageous. Need for assuming the EoS for inside.

Axion

(thermal)

Magnetar originated

ESO

 $g_{a\gamma\gamma}g_{ann}$

M. Buschmann+21

Axion × Magnetars – Previous Research –

Axion Mass limit from Magnetars (and White Dwarfs)

Original idea is advocated for white dwarfs (G. G. Raffelt+86) Applied to the observation by C. Dessert+19

☆Hard X-ray excess was found for Magnificent 7. (M. Buschmann+21) \rightarrow strong limit for $g_{ayy}g_{ann}$

The Hard X-ray spectrum of eight magnetars are analyzed as the axion source. (J. F. Fortin+21)

2

 $dF/dE ~[{
m erg/cm^2/s/keV}]$

 10^{-13}

 10^{-14}

 10^{-15}

 10^{-16} ,

RX J1856.6-3754

Joint

6

H PN

hermal NS surface

excess hard X-rays

 $E \,[\mathrm{keV}]$

H MOS

🕂 Chandra

Axion × Magnetars - Phase Resolving -

Axion originated X-ray should be modulated by the rotation of magnetars. \rightarrow Pulse phase-resolved spectrum may distinguish the Axion signal.

Axion × Magnetars - Phase Resolving -

Axion originated X-ray should be modulated by the rotation of magnetars. \rightarrow Pulse phase-resolved spectrum may distinguish the Axion signal.

Axion × Magnetars - Phase Resolving -

Axion originated X-ray should be modulated by the rotation of magnetars. \rightarrow Pulse phase-resolved spectrum may distinguish the Axion signal.

Axion × Magnetars – Our Research -

Requirements for the best target:

- Young \rightarrow High inner temperature.
- Strong \vec{B} field \rightarrow Large $P_{a\gamma\gamma}$.
- Well known object \rightarrow Huge observational data.
- NuSTAR observations \rightarrow Wide energy range.

Status:

We found that some magnetars are deformed into a lemon shape by its strong magnetic field(Makishima+14-21). → The hard X-ray component is phase modulated by the free precession. → In order to obtain a phase-resolved spectrum, a demodulation analysis must be performed.

→ Ongoing!

SGR 1806-20

("typical" magnetar)

Summary

- Strophysical X-ray observations are unique for various DM and Axion studies.
- Cosmic DM objects (galaxy clusters and dwarf galaxies) have been good targets for hunting DM decays.

 \rightarrow Ready for high resolution X-ray spectroscopy with the XRISM satellite to be launched in 2022FY.

Current focus is X-ray study of magnetars and Axion models.

We need helps from the person who familiar with...

- the axion emission model for magnetars (neutron stars),
- the EoS for inside of the neutron stars,
- axion-photon conversion process with magnetic field.

Thank you for listening!