BO3 Development for high speed CMOS to probe the nature of dark matter

Satoshi Miyazaki, Yukiko Kamata (ATC) Yutaka Komiyama, Satoshi Kawanomoto (Subaru) Masamune Oguri (Chiba/IPMU)

Targets of CMOS observations

- mapping dark matter w/ higher source density weak lensing
 - clusters of galaxies (core, sub-halos, outskirts)
 - dwarf galaxies
- micro-lensing observations w/ high cadence
 M31
- micro-lensing and transient search at centers of clusters
 - caustic crossings \rightarrow Oguri's talk
 - gravitationally lensed supernovae

Specifications:

- 2,560 x 10,000 pixels
- 7.5 µm square pixel
- Full well ~ 30,000 e
- R.N. ~ 2 e
- Dark: 90 e/s/pix @ 300 K
- 10 Frame/sec

First prototype front illuminated CMOS

<u>Structure</u>

2560 Column ADC LVDS Digital output from a device

Item	Unit	Back Illuminated	Front Illuminated		
Image Size	mm	19.20 x 75.00			
Pixel Size	μm	7.5			
Format	pixel	2560 x 10000			
Fastest Frame Rate	fps	6	10		
Quantum Efficiency	%	>= 48 (400 nm) >= 60 (800 nm)	>= 5 (400 nm) >= 11 (800 nm)		
Ratio of defect pixels	%	<= 5			
Resolution (*1)	μm	<= 5	<= 5		
Dark Current	e / pixel / sec	<= 1000 (Room Temperature)	<= 200 (Room Temperature)		
Read Noise (High Gain) (Low Gain)	e rms	<= 5 <= 30	<= 3 <= 25		
Full Well (High Gain) (Low Gain)	e	>= 2000 >= 20000	>= 2000 >= 30000		
Responsivity (High Gain) (Low Gain)	µV/e	640 40			
ADC Resolution	bit	10 (*2)			

Current status:

ZDAQ: developed jointly by JAXA (KIPMU)Takahashi's Lab

Assembly of the focal Plane 2019/08

Test Observation at 1.5 m telescope

September 2, 2019 @ Hiroshima

							HSCIma								
													Location:	hiroshima	2020022 ≎
													Data Type:	object	\$ 21
													Object:	NONAME	
													Exposure Tir	ne: 1	ms
													Number of F	rames: 10	00
													Filter:	Ν	/A
													Comment:	CF=3.9e/	ADU @ g=2.4
													Param		Play
													hiroshima20: read. Image 10000.0) [16:31:31]/U hiroshima20: read. Image 10000.0) [16:31:31]/U hiroshima20: read. Image 10000.0) [16:31:43] st 16:31:50]/U hiroshima20: read. Image 10000.0) [16:31:50]/U hiroshima20: read. Image 10000.0) [16:31:50]/U hiroshima20: read. Image 10000.0) [16:31:50]/U hiroshima20: read. Image 10000.0) [16:31:50]/U hiroshima20: read. Image 10000.0) [16:31:50]/U hiroshima20: read. Image 10000.0) [16:31:50]/U	200227Fk/obj extent:(0.0, (sers/hsc/sha 200227Fk/obj extent:(0.0, (sers/hsc/sha 200227Fk/obj extent:(0.0, (art sers/hsc/sha 200227Fk/obj extent:(0.0, (sers/hsc/sha 200227Fk/obj extent:(0.0, (sers/hsc/sha 200227Fk/obj extent:(0.0, (sers/hsc/sha 200227Fk/obj extent:(0.0, (sers/hsc/sha	ect002_099.fits 0.0, 2560.0, are/data// ect002_101.fits 0.0, 2560.0, are/data// ect002_095.fits 0.0, 2560.0, are/data// ect021_087.fits 0.0, 2560.0, are/data// ect021_097.fits 0.0, 2560.0, are/data// ect021_088.fits 0.0, 2560.0, are/data// ect021_098.fits 0.0, 2560.0, are/data// ect021_098.fits 0.0, 2560.0, are/data// ect021_098.fits 0.0, 2560.0, are/data// ect021_098.fits 0.0, 2560.0, are/data// ect021_098.fits 0.0, 2560.0, are/data// ect021_090.fits 0.0, 2560.0, are/data//
dataType	dataNumber	objectName	exposureTi	numberOfFr	filter	comment	cmosType	gain	offset	mode	cmosSerial	dateTime			
object object object object object object	3 4 5 11 12 13	MOON MOON VENUS M42 M42 M42 M42	1 5 1 200 200 200	100 100 50 10 10 10	V B B B V R	CF=3.9e/A CF=3.9e/A CF=3.9e/A CF=3.9e/A CF=3.9e/A CF=3.9e/A	Back Illum Back Illum Back Illum Back Illum Back Illum Back Illum	2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4	256 256 256 256 256 256 256	2fps,12bit 2fps,12bit 2fps,12bit 2fps,12bit 2fps,12bit 2fps,12bit 2fps,12bit	N/A N/A L09-W3-4 L09-W3-4 L09-W3-4 L09-W3-4	2020/02/06 10: 2020/02/06 10: 2020/02/27 09: 2020/02/27 10: 2020/02/27 10: 2020/02/27 10:	10: 10: 39 55: 56: 56:		

X-ray test result:

Mn Kalpha FWHM: 160 eV

Readout noise: 2.5 e

Demonstration of low noise and sufficiently low dark current as designed. CMOS Test Camera on Hiroshima 1.5 m telescope

A series data of alpha-Gem was taken. Number of frames: 1000 Exposure time of each frame: 1 ms

Lucky Imaging (LI) and Lucky Fourier (LF) techniques are applied on the data.

LI:select"good"images from the data set and sum selected images.

LF:same kind of idea of LI, but selection is performed in frequency space.

Reference : High-efficiency lucky imaging C. Mackay MNRAS, 432, 702 (2013)

<u>Crop, up-convert, and rotation of images</u>

- 1. Crop 256x256 area around the stars
- 2.Up-convert (resample) 4x4 and rotate cropped images
 - Cancel field rotation
 - Adjust pixel scale to angular resolution of the telescope

x1000 images

256x256

Not

1024x1024

Alignment

Find peak pixel of each image and shift the pixel to the image center

Lucky imaging

Select "good" images from data series and sum up selected images

There are several selection criteria. Now we use images that have "High peak".(if the intensity of object is constant, higher peak mostly means smaller image size.)

Top 10% selected mean

Image improvement

alpha-Gem.: Binary stars with 5 arc sec separation

- -Selection options: 1000/1000, 100/1000, 50/1000, 20/1000, 10/1000
- FWHM changes 3.84 ->3.24-> 2.88->2.64-> 2.28 arc-sec
- -Improvement confirmed

Lucky Fourier

Select "good" data in 2D-Fourier transformed data cube --- top 10% of each spacial frequency are used to reconstruct LF image

(2d Fourier transform of all mages)

Reconstructed image

This method is more effective as anisotropy of PFS is larger. eg High resolution direction can be incorporated in the Fourier space

Lucky Fourier: the improvement

Development plan under this funding phase

Improvement of QE

<u>Mass production</u> to pave the Subaru Suprime-Cam Focal Plane

while maintaining pixel resolution by adopting high resistivity silicon Twelve Devices necessary

New teatures implemented on our CMOS in FY2021

1. Higher speed (up to 1 k fps) realized by partial readout

100 continuous rows forms a group. Any group can be selected for readout.

2. Higher resistivity silicon is employed to realize thicker depletion layer

Copyright C Hamamatsu Photonics K.K. All Rights Reserved.

Recycling:

Original Suprime-Cam was retired in 2017. The prime focus bonnette with the wide field corrector (~US\$3M) is re-used for this CMOS camera.

8 m aperture 30 arcmin FOV 10 Hz frame rate will explore unprecedented parameter space as previous Subaru cameras did before.

CMOS Camera

- The mechanical design of CMOS Camera for Subaru Telescope is almost completed.
- Mechanical parts were manufactured. The production model is being assembled.

CMOS Camera

- One CMOS sensor is installed on the cold plate of CMOS Camera and the performance test is being carried out.
- The CMOS Camera will install 12 CMOS sensors to cover the entire FoV of Suprime-Cam (30 arcmin diameter)

<u>Readout Electronics Design</u>

- The implementation of readout electronics, which aims to use at Subaru ٠ Telescope, has been discussed with vendor and the design of readout electronics is finalized.
- ZYNQ based IO board drives CMOS and transfers the data via 10GB Ethernet. ٠

1 CMOS - 1 DAQ system ٠

CMOS Camera on Suprime-Cam

- Now, we have a solution to install CMOS camera to Suprime-Cam.
- · To Do
 - Design of Vacuum I/F board to handle 12 CMOS sensors
 - Detailed design of entrance window
 - Mechanical design to support readout electronics
 - Implementation of peripheral devices

<u>Comparison with other CMOS Cameras</u>

	Tomo-e Gozen	TAOS II	Subaru CMOS
Tel. Aperture	1.05 m	1.3 m	8.2 m
Field of View	20 deg ²	2.3 deg ²	0.25 deg ²
Frame Rate	2 sec ⁻¹ (20 for part)	20 sec ⁻¹	10 sec-1
Limiting Mag.	~17 mag	~18 mag	~21 mag
Sensor Format	2000x1128 (19um/pix)	1920x4608 (16um/ pix)	2560x10000 (7.5um/pix)
# of Sensors	84	10	12
Vendor	Canon	e2v	Hamamatsu
Site	Kiso	Mexico	Maunakea

Tomo-e Gozen

TAOSII Focal Plane

Subaru CMOS Camera

<u>UH 88 inch Telescope ?</u>

- D = 2.2 m F/10 delivers similar plate scale as Subaru Prime focus
 - · Wide Field
 - Mana Kea seeing

- Necessity of a field flattener but it can be implemented as the dewar window.
- · Other possible telescope: VLT Survey Telescope at Paranal

<u>Rival !</u>

Thank you very much