What is dark matter? Comprehensive study of the huge discovery space in dark matter PI: Hitoshi Murayama (Kavli IPMU, Berkeley) March 29, 2022

we challenge **discovery space** not studied so far due to theoretical prejudices **revolutionize dark matter research** in Japan **cross-field research** beyond traditional barriers **exploit existing facilities** in unanticipated fashion

ra Rubin

measured

distance from center (light years)

200

100

50000

В

gravitationa lensing

galaxy (🛊 📜

distorted light-rays

Bullet Cluster

4 billion light years away two clusters collided at the speed of 4500 km/s

modified gravity doesn't work dark matter exists for sure but is not atoms

pink is hot gas observed with X-ray Credit: J. Wise, M. Bradac (Stanford/KIPAC) ODSERVED with gravitational lensing

dark matter is our Mom

Jim Peebles 2019 Nobel Prize

without dark matter

with dark matter

indeed our Mom!

world's largest 3D map of dark matter

Subaru telescope

Current paradigm: WIMP Weakly Interacting Massive Particle colliders 0.01 0.001 0.0001 10-4 DM SM 10-Increasing $\langle \sigma_v \rangle$ 10-1 10-4 t detectio annihilation 10-1 10-14 10-15

SN indirect detection

energy scales

interaction strengths

right abundance with "weak interaction"

NEO

時間

10-16

10-17 10-18 10-19 10-2

theoretical appealing, predicts 10~1000GeV mass furthermore good mass range for LHC and UG expts

1000

WIMP: theoretically appealing predicts 10~1000 GeV mass searches exclusively in this range most stringent limits today reflection: need broader search

- world competitive experiments > \$100M
- use excellent existing facilities in Japan
 - exploitation for unforeseen purposes
 - B01 : KAGRA (UTokyo) black hole mergers
 - B02, B03 : Subaru (NAOJ) galaxy evolution
 - B04 : XRISM (JAXA) supernova remnants
 - B05 : Belle II (KEK) CP violation
 - B06 : Simons Array (intl team incl KEK, IPMU etc) verify inflation theory

[X00] 総括班 村山 (KIPMU)	[A01]軽いDM 高橋 (東北大)	[A02]重いDM 村瀬 (PSU)	[A03]マクロDM 柳(名古屋大)	
[B01] レーザー干渉計 道村 (東大)	axion, dilaton (円偏光)	背景重力波 (相転移など)	背景重力波 (inflationなど)	[C0)
[B02] すばる分光 高田 (KIPMU)	fuzzy DM, SIDM 3D DM 地図	矮小銀河内の対消滅 3D DM 地図	PBH, UCMH, DM subhalo, 3D DM 地図	2]宇宙構:
[B03] イメージング 宮崎 (NAOJ)	DM subhalo DM地図	DM subhalo DM 地図	PBH, UCMH (重カマイクロレンズ)	造形成理
[B04] X線 山崎(典) (ISAS)	sterile neutrino moduli (輝線、連続光)	ダークマター崩壊 (輝線、連続光)	PBH蒸発 (X線背景放射)	1論 安藤
[B05] <i>e⁺e⁻</i> 加速器 西田(KEK)	dark photon SIMP	高エネルギーの間接検証 (余剰次元、Higgs)	高エネルギーの間接検証 (余剰次元、Higgs)	(アムステリ
[B06] CMB 小松(MPA)	axion (CMB 偏光)	宇宙初期の対消滅 N _{eff}	$PBH\left(au ight)$	レダム大)
	[C01]툴	量子重力理論 山崎(雅)(KIPMU)	

we challenge **discovery space** not studied so far due to theoretical prejudices **revolutionize dark matter research** in Japan **cross-field research** beyond traditional barriers **exploit existing facilities** in unanticipated fashion

Nor With		C
	F.F.	
N 4		

we challenge **discovery space** not studied so far due to theoretical prejudices **revolutionize dark matter research** in Japan **cross-field research** beyond traditional barriers **exploit existing facilities** in unanticipated fashion

asymmetric dark matter

- Explains both baryon asymmetry and dark matter
- dark neutron, or multi-component dark p+π⁻
- amazingly wide array of experimental signatures
 - dark proton good target for direct detection
 - exotic Z-decay, h-decay (HL-LHC, ILC, CEPC, FCC-ee)
 - dark photon search at Belle II, LHC-b, beam dump
 - gravitational wave at LIGO, LISA, Einstein Telescope, etc
 - self-interacting composite dark matter
 - mass ~ 1GeV
- explain coincidence $\Omega_{DM} \sim \Omega_b$ if $N_{gen}=3$ and unification

Spectrum

- m_u and m_d free parameters
- If $m_d \ll m_u \ll \Lambda_{QCD}$, *n*' dominates
- If m_u «m_d«Λ_{QCD}, p' dominates, together with π'- for charge neutrality
 - possibly a resonant interaction $\pi'^- p' \rightarrow \Delta^0 \rightarrow \pi'^- p'$
 - may solve core/cusp problem

Robert McGehee, HM, Yu-Dai Tsai, in prep

Xiaoyong Chu, Camilo Carcia-Cely, HM, Phys.Rev.Lett. 122 (2019) no.7, 071103

Dark Neutron Dark Matter

Dark Proton & Pion Dark Matter

Yonit Hochberg, Eric Kuflik, HM, arXiv:1512.07917, 1706.05008

Dark Spectroscopy

Today & Tomorrow

- review progress since the launch
- solicited proposals
- · seek reinforcements, new directions
- · Looking forward to exciting two days!