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ABSTRACT: We calculate the spectrum of glueball masses in non-supersymmetric
Yang-Mills theory in three and four dimensions, based on a conjectured duality
between supergravity and large N gauge theories. The glueball masses are obtained
by solving supergravity wave equations in a black hole geometry. We find that the
mass ratios are in good numerical agreement with the available lattice data. We also
compute the leading (g%,,N)~! corrections to the glueball masses, by taking into
account stringy corrections to the supergravity action and to the black hole metric.
We find that the corrections to the masses are negative and of order (g%,,N)~3/2.
Thus for a fixed ultraviolet cutoff the masses decrease as we decrease the 't Hooft
coupling, in accordance with our expectation about the continuum limit of the gauge
theories.
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* Introduction - the weird properties of the e-g system

« Multi-particle representations of the Poincare group:
pairwise little group and pairwise helicity

 Pairwise spinor-helicity variable

« Constructing the magnetic S-matrix, 3-point
« 2—2 electric-magnetic scattering

» Scattering of GUT monopoles

* Dressed states and pairwise helicity, Dirac
quantization from Berry phase



Intr ion: the weird pr ] f the mon lo-

charge system
* J.J. Thompson (1904)

— 1 — —
J field :4—/d3xfx<ExB):—egff = —qr
s

* Another derivation of Dirac quantization
* For dyons: 7 field _ S gy

« Zwanziger-Schwinger quantization

9ij = €ig; — €j9i =

* Relativistic (Zwanziger): Mgjs. =



Angular momentum

* Note the £ sign - origin is t/|t| N asymptotic

expression. Non-rel. limit:

J field _

+ > qij Dij

« Expression for in/out states differs by sign...

» Consequences far reaching:

« Conserved angular momentum different from that of

free theory

« Asymptotic states do not factorize into one-particle

states

* No crossing symmetry for S-matrix



the Poincare group
* Need to understand the effect of the extra angular
momentum piece on the two-particle states

* Reminder: one particle states of Poincare Wigner
(1939)

- For every p? = m? choose a
reference momentum
or k= (m,0,0,0) for massive vs | ,
massless particles k£ = (F,0,0, F) | " Eugene Wigner
» Arbitrary momentum along p? = m* will be boost of
reference momentum p = L,k




Multi- icle respresentations of
the Poincare group

+ By definition W = Ly~ AL, leave k unchanged
-these form the LITTLE GROUP (LG) of the particle

e Then U~ (Lp,)U(A)U(L,) must be just a
representation of the LG on the reference states:
UW)|k;0) = Door (W)|k; 0”)

* Where D is a representation of the LG - for massive
particles SO(3) ~ SU(2) characterized by a spin s

* For massless particles strictly speaking it is
E->=ISO(2) 2d Euclidean group, but in practice just
SO(2) ~ U(1) rotations around the z-axis



Multi- icle respresentations of
the Poincare group

» General form of representation:
U(A)|p; 0) = Doro(W) |Ap; o)

 Very intuitive: find frame with biggest symmetry, that
symmetry is LG, and general case will be a
combination of boosting into special frame, do the
symmetry transformation in the special frame and
then boost back.

* What happens for multi-particle states”? Usual
assumption they are just direct products of 1-

particle states |py,po,...,pn;01,09,...,0,)



Multi-particl bat] i
the Poincare group

 However, Zwanziger in 1972 noticed: for 2 particles

there is another "special frame” - the center of

momentum frame! In that frame momenta back-to-
back

* There could be another symmetry transformation for
A PAIR of particles

Daniel Zwanziger




Multi- icle respresentations of
the Poincare group

« Repeat the Wigner story for 2 particles |p1, p2)

* Choose as reference pair the COM frame
(k1)p = (£1,0,0,+pc)
(k2)u — (Egaoaov_pc)

Do = \/(p1'p2)2—m%m§
. =

c __ 2 2
- , Eio= \/m1,2 + Pe

« Can get to arbitrary pair of momenta via boost from
reference pair

12 12
pl — Lp1p2k17 p2 — Lp1p2k2



Multi- icle respresentations of
the Poincare group

* |In the COM frame there is a remaining symmetry -
an SO(2) ~ U(1) rotation around the z axis

* This pairwise LG is independent from and Iin
addition to the single particle LG's

* Clear for spinless particles (Zwanziger’'s derivation)
* Definition |p1,02 5 qi2) =U(Lp) | k1, k2 5 qi2)

* Like for single particles
UA)[p1,p2 5 qi2) = U (Lap) U (LK;ALp> | k1, k2 5 q12)
— U(LAP) U(Wlﬂ,kz) | klakQ 3 Q12>



Multi- icle respresentations of
the Poincare group

 Get the usual LG rotation but now from the
pairwise LG

Wiy ko (D1, 02, A) = LK;ALp = R [¢(p1,p2, M)

* Overall effect will be a phase " pairwise helicity”

U(A) | p1,p2 ; qua) = e 420Prp2b) 1 Ap  Apo s grg)

 What is g12 ? Take spinless states in COM frame

J. | k1, k2 qu2) = qi2 | k1, k2 5 qi2)

* To reproduce effect of angular momentum from field

Qij = €igj — €59



Multi- icle respresentations of
the Poincare group

* The pairwise little group is really SO(2) ~ U(1) and
NOT E: - since the masses in general are not equal
and E#pc

* We get a true U(1) helicity-type phase even for
massive particles

* Any higher little group (triple, quadruple etc) is
trivial, so do not expect additional possible phases or
symmetries

* Provides a new derivation of Zwanziger-Schwinger

quantization _irq. _ ; _ fo = €1y — 201 — g ne7



Multi- icle respresentations of
the Poincare group

* How about general case for particles with spin”?

« A pairwise helicity for every pair of particles, in
addition for each spin and mass.

* For charge/monopole system
Qij = €95 — €;4i
« For G—-U(1)"will get n fundamental monopoles, and
the pairwise helicity will be

H Cartan generators, a simple roots

— —

qij:Hz--ozj—Hj-a,,;



* We use spinor-helicity variables |p;)  [pil,
to construct scattering amplitudes/S-matrices

* Their transformation

Aaﬁ D)y = e T50(pi,A) Ap) s, [pil; ]\5& — o 359@iA) [Apil,;
B B B

* Under U(1) massless LG. Abbreviation [i), = |pi),
- il = [pilg
* For massive particles use ‘i>fa lis SU(2) LG index

U); SU(2); U(1)y

Required weight hi S; ~Qij

N|—

|i>a7 Md T2 %

(e - o -



Pairwise momenta

* We need the analog of the spinor-helicity to
saturate the pairwise helicity

 Since it is a true U(1) transformation - expect
massless momentum made out of pair of momenta

 Pairwise reference null momenta (" flat momenta”)

iIn COM frame
(kbf) — . (1,0,0,4+1)
3

* In any other frame can boost it

1
pl;;_ — [(E]C +pc) Pi — (Ezc - pc) pj]

Ef +pe) pj — (Ef — pe) pil



 To find spinor-helicity variable that has the right
U(1) pairwise LG phase just consider the spinor-
helicity variable corresponding to the pairwise
momenta.

- Note: since linear combination Ly, kgjt — pf:]j-t
» Reference pairwise spinor-helicity
k), = vam (3) ), = v ()
o= venea o L Ky = V2R )
» Square root of momentum k5" - 0qq = kff> [kff |




* Definition of general pairwise spinor-helicity |
: ~\ B
variables pgﬂa — ()’ [k;;t B_ (ﬁp) ]
* By construction can easily go through another round
of ~"Wigner trick” to show

o'

; ]\Bd — oF5(pip;.A) {Apf:;.—L

b+
Aaﬁ 3 {pij

=+ _ ELi6(pips,A) b+
pij >ﬁ = emEmn )Apij >a a

 Pairwise spinors have right covariant transformation
under pairwise LG

* Note ij> and
helicities

vi;), have opposite pairwise




n ing the S-matrix

« The full set of rules: UM SU); Uy
Required weight hi Si ~Qij
[0 > Lils _%’ % a B
<1|I;a . ] _
: )
pi;'r>a’ pi;ra B N T
sl S A

* To satisfy the scaling of the S-matrix
S (w™ i), wli]) = WS (Ji), ]i]), for Vi

— b b b— —1(. b— —2q;4 b b b— b— . . -
S (W 1’pij>aw‘pij]7w|pij ), w 1|pij ]) — w25 g (\pz;r% ‘pi;'r]a |pz‘j )y |pz‘j ]) for V pair {Z,]}

* Will allow us to fix all angular dependence of
magnetic scattering. Everything non-perturbative



Simple example
Massive fermion decaying to massive fermion +
massless scalar, q=-1

(o) ) )

» Other allowed combinations [s{1] [pi12| , [shi1] (si52)
and (r:1)[ri42] equivalent by Dirac equation

padxdl = m)\é

U(1); SUQ2)i  U(1)y

Required weight hi Si -Qij
: 11

(D) lila 3:3 -

<l’I;a _ O _

b..+> [b+ _ S |

b.—> {b _ _ 11

’pj a pj & 272




for incoming massiv




Th neral 3-point S-matri
for incoming massiv ing massiv
* For the massive part need:

(mzsl) {or..00, )} (<2|232) {B1..-Bas, } (<3|233) {123 }

* [n total have s = s; +s2+s3 spinors - need same
number of pairwise spinors |u), =|pk) and|r), = )

 Pairwise helicity needs to add up to g3 so use
C
q _ A w 5—q r S+q
S{oq ..... azsl}{51 ..... ﬁzsz}{% ..... ’7253} - ; @i (’ > ’ > >{a1 ..... 04231}{51 ..... 5252}{71 ..... '7233}
» Selection rule: |gq| < &

* For =0 recover usual amplitudes expressions



General 2—2 scattering

 Just kinematics can not fully fix the S-matrix - some
dynamical input will be needed

 However we can always do partial wave decomp. as
iIn NRQM - fully Lorentz and LG invariant way

* Will see kinematics fixes everything up to phase shifts
like in QM

» Lowest partial wave will be completely fixed —
famous helicity flip of Kazama, Yang, Goldhaber

* Higher partial waves monopole spherical harmonics
appear naturally as expected from Wu & Yang



Partial wave expansion for magnetic case

« Expansion in the eigenbasis of Casimir operator

WH =

1

5 €uvpo PY MP°

» Pauli-Lubanski operator, eigenvalues of \W2 are

—P2J(J+1) Jis total angular momentum

* Representation Iin spinor-helicity space with

magnetic states:

(O-I’I’V)Oéﬁ MHY

(5-/“LV)CMB MHY

M,s = i
MdB:Z

Zl{a

. Z M{a

1

0

W i

B}

ij




Partial wave expansion for magnetic case

» Eigenfunctions of W2 symmetrized products of
ordinary and pairwise spinors

W2 (f 1L sk)) = —sJ(J +1) (f]sk))

{ag...a5} {ay...a5}

 Partial wave decomposition:

S1o_y34 = NZ(QJ—I—D ./\/l'](pc) BJ
J

» The B are basis amplitudes

wW*B) = —sJ(J+1)B/

» B”contain all angular dependence



Partial wave expansion for magnetic case

- M7/(p.) are reduced matrix elements - contain
information on dynamics w3 m7(p.) = W2 M (p.) = 0

« N = +/8rs normalization factor
Shuetal.’20: B/ = ¢l ¢iouts {on,az;}
{041,...,0423}

= —sJ(J+1)Chm

{a1,...,a25}

2 J;in
W2, C

{a1,...,a27}
W324 CJ;out; {ar,a5} 0 SJ(J—I— 1) OJ;Out; {ag,...,a0 5}

- The (7J3in/out 5re generalized Clebsch-Gordan
tensors, completely fixed by group theory.



+

* Apply our results to the most famous example:
scattering f+M—f+M, arbitrary g

fl IVII

N,

AN

f M

» CJ is extracted from 3 massive 3pt S-matrix

» Selection rule: |g| < 8



Fermion charge+scalar monopole scattering
1

» Apply selection rule:  s=_1o0t7>la » T>ld -

* Lowest partial wave amplitude depends on q - as
expected from NRQM

 Extract the J=|q|-1/2 lowest partial wave basis
spinors

* To see physics consider massless limit we expect
only helicity flip amplitudes (Kazama et al)

* In principle 4 allowed processes by quantum
numbers
Helicity non-flip : f+M — f+M , f1l4+4M—> fT+M
Helicity flip : f+M — fT+M , fT4 M= f +M



Fermion charge+scalar mon | rin
e fT+M = f + M helicity flip )
, 2|q|—1
Bld-3 — <fp5?j4> <f p?cj'EM’> (<pﬁ4p%”'>) for sgn(q) = £1
4]7% 2pe
» Vanishes for >0 since (spf) = (£ P ) =0

* Non-vanishing for q<0

* |ntuitive explanation: field contribution to angular
momentum q - has eigenvalues q,q+1,9+2,... For RH
iIncoming fermion minimal z-component of total
angular momentum g+1/2. But we are looking at
lowest J=|q|-1/2 - doesn’t have g+1/2 z-component...

« Similarly for g<0 we only get the helicity flip process
non-vanishing.



Fermion charge+scalar monopole scattering
- the massless limit
 For the helicity non-flip processes all amplitudes
vanish: either incoming or outgoing fermion can not

be part of J=|q|-1/2 multiplet

 Using the explicit expressions for the spinors we
find the helicity flipping amplitudes N = v8rs

M
-1 AN
Sf—>f’r N 2|gl M™ éé_Sm 5) for ¢ > 0 Yy
sin (5) for ¢ <0

M’ f

f 1

lq|— |-
SfT—>2f N 2|q| M 1

l\D'—‘l\J»—t

. MM_il are angle independent constants - will see
other channels do not contrlbute so unitarity fixes

= 1

l
272 20 2

« Exactly Kazama et al. result!



Higher partial waves

* For massive particles follow our rules

B~ D asty (E77) (F'PFar) B

4p2 _QU7_QJ’)

1
where o,0' =+, ¢4 :qi5 and
5 / 1 | J+A J—A\ tatsa27} RN J—A
80,89 = g (@ ] ) (7 ){a )

With DI A () = DIpai(8,60,—0) = 9232047, 1 (0) Wigner
matrix d), i (0) = (J,m|exp(—if.J,)|J,m’)

« Exactly the " "'monopole harmonics” of Wu & Yang:

47
I *
= 4/ Yy (—2




* |In massless limit get a compact result

S}{in_)hout — N (2J —I_ 1) Mihinahout qujhin,—Q‘Fhout (QC)

In out-out convention,
hin=1/2 (-1/2) for LH (RH) for incoming fermion
hout=-1/2 (1/2) for LH (RH) for outgoing fermion

* The Mihinyh
shifts

are dynamics dependent phase

out

 Take them from Kazama et al detailed NRQM

calculation .
M:I:

= U oE

N —=



Higher partial waves - massless limit
 Partial wave unitarity implies

2
=0

My

J
1 1 = 1—‘/\/1
:tﬁ’ 2

1 1
+5,£5

* All higher J partial waves have zero helicity flip -
only J=|q|-1/2 lowest non-zero. Justifies calculation of
the helicity flip amplitude



ring on T mon |

« GUT SU(5)—SU(3)xSU(2)xU(1)/Ze via adjoint Higgs
VEV

* 't Hooft-Polyakov monopole embedded into SU(5)

4 L)
SU@)
: Ty = Qem — \%As
R S u'gé)'M T
N )

* gu=-1 to match the notation of Rubakov



ring on T mon |

* Decomposition of SM fermions unusual under this

SU(2):
0 a3 —u? u' d!
~ S —a3 0 !l u? d?
5= (d',d?d? e, v.) 0= a2 —a' o W« &
—ul —u? —u? 0 e
—d' —d® —-d® —-e 0

* Will give 4 doublets - the rest are singlets

(o) (8 () () 4

|

qd = E€MIm

_|_

NN | =

* Will give SU(4) horizontal symmetry (exchange of 4
doublets - identical for interaction with monopole)



The Rubakov-Callan ampli

« Scattering amplitudes have to obey SM gauge
conservation + SU(4) symmetry + LG + pairwise LG

* The Rubakov-Callan amplitude:
u' +u® + M

* Focus on s-wave incoming states (that can reach
the core of the monopole) J,=),=0

* Incoming part of amplitude: {ul pZI,M [uQ pZZ,M}

 Pairwise helicity -1/2, ordinary helicity +1/2 in all
outgoing convention



The Rubakov-Callan ampli

* OQutgoing state? Could it be the same (forward
scattering)?

<u1 qu;lL,M> <u2 pi:;_,M>

* Would be the candidate amplitude - needed to flip
single particle helicity due to all outgoing convention.

« But (ipli) = |inif] =0 because for massless
fermions the pairwise momentum = ordinary mom.

* No forward scattering!



The Rubakov-Callan ampli
* Only possible final state:

L ph— b
[GT peT’M} [JBT pJST,M}

* Helicity flipping, but still J=0 states

 All quantum numbers conserved

ut + u? = el + 43
Az 1 -1 0 0
V3xs 1 1 0 2
T % % % %
Y % % % - %

p— p— Lt b —
ARubakov—Callan X [ul pul,M} [u2pu2,M} [eTpeT,M} [CZBTPJBT,M}



The Rubakov-Callan ampli

p— p— b o p—
ARubakov-Callan X {ul pul,M] [uzpu2,M} {eT peij} [CFT pJ?fr,M}

* Violates baryon number
« Saturates J=0 unitarity bound

* Incoming u',u? part of proton - B violating cross
section « Aaqcp

* An on-shell derivation of monopole catalysis of
proton decay



llan’s unitari zzl
 Instead consider the e + M channel

* The only allowed final state by gauge quantum
numbers:
gt o g2t o Bt

initial state final state

_ p— _ _
{epeM} [uﬁpb 1 M} { T M} {dgfpdSTM

|\ J

Jéz 0 Juﬂ: JUT2: 0 JdT3



llan’s unitari zz|
» Instead consider the ¢e™ + M channel
* The only allowed final state by gauge quantum

numbers:
a't + @t 4+ T

initial state final state
_ b= — 1% b— — 27 b— 73 +
|:€pé,Mj| |i’u, TpfalT’Mi| |: Tpra2T,Mi| {%M}

|\ J \\

Jé =0 Juﬂ: 0 JUT2: 0 JdT3: 0



llan’s unitari zzl

« No allowed final states????

 Callan '83: work in truncated 1+1D theory of J=0
states

- Suggests outgoing state 1/2(e +alt 4+ a7 + d3)

* "Fractional fermions” - semitons. Gauge quantum
number only statistically conserved?



A possible resolution

* The on-shell formalism suggests another possible
simple resolution

b

» Cannot have [a' 0 | [5% 02 o] [4 5 1] since [@° vai ] =0
« But CAN have {ﬂ”pfja,M} {EQTPE;L,M} {JBTPE—;,M} —(1+2)

* While individual fermions NOT in J=0 state the total
state is J=0 and can penetrate to the core

» Such a state would be missing in the 1+1D effective
description since that kept only the individual J=0
states



p b luti

» Our proposal:

Abuzze ~ [épbé,_M} [ﬂ”pf;}, M] [,L—sz b M] [JST pE-LET,M} — (1 ¢ 2)

» Respects all gauge symmetries and SU(4)
* No fractional fermions

B violating, saturates J=0 unitarity

* Monopole creates entangled fermions

* |s this the right dynamics? Open question




* What is the dynamical origin of pairwise helicity?

e Reason for unusual behavior: very soft photons can
be exchanged even at large distance, interaction
does not die out

* To capture effect of soft photons, can prepare
“dressed states” - Faddeev-Kulish dressing

* Main idea of FK: used to show IR divergences of
QED cancel

» Asymptotic interaction V.. gp(t)= lim Vggp(t)

[t|—=>Foo

 Since it doesn’t go to zero - modify interaction pic.



The FK dressing

* Include the asymptotic interaction into the states -
“dressed states”

Uoep = T exp [—i /000 dt (VQIS;QED)]
 The S-matrix for these dressed states will be IR

finite!

- B
S(ffﬁz.,zu ..... = (p1,-- -, pgl SqED |P1, - - -, ps)

Soep =T exp [—Z/ dt (VQED)]

o Vopp(t)=— / cz[j*4,)  need to subtract out Vas .



The FK dressin

* We repeated this for QEMD using Zwanziger’s
Lagrangian - two potentials, but unusual kinetic term
making sure only one physical photon

it

Lig = — [JEAL+ 7B

3 - o
Aul) = 2/ S [ BBt + (Bl (e ]

3 . L ) o
s AZJ oy 2 5 Frox®e + Ex(Ra) (Fre ]

* Relation between polarization vectors

GMV(na k)

>~ A VA .
10% ’ U ’I”L-k—l—ze

o




Dr f QEMD
* We calculated the FK dressing factors of QEMD

o

Uoevp = T exp [—z/ dt V2. oeMmp(t)| = cBri Si®rK
— OO0

Rpg = —1t / dt V. .QEMD(t)

t1
Crr = / dtl/ dtz (V. QEMD(tl)avas orMmD(t2)]

« We found:  UJ[A] |p1,...,ps) = € *LC |Apy,. .., Aps)

* Two steps:

1% 1 1% 1% 1%
{[M“ ,RFK]+§[[M“ ,RFK],RFK]—A(I’/}K}\pla--wpﬁ:(I)%G p1, .- Df)



Dr f QEMD
* Need both phase and real part of FK dressing!
o After heroic efforts: A¢rx(pi,p2,n) = 2arccos [€(p1,p2, A™'n) - €(p1, p2, )]

72 uv L jn% L jn%
ADLy = Z dim ASOFK;zm =2 Z Qim Prc:im = —297
I<m l<m

* Angular mom. commutator:

1 v
{[MW,RFK] +3 [MH*, Rpk] 7RFK]} p1, ..., 0p) = —®hrG P, - py)

« Sum exactly gives required pairwise LG
transformation

]. v 14
{[MW,RFK] +5 [M", Rrk|, Rrr| — A(I’A}K} p1,. . 0p) = P p1, - py)



The calculation of A®dek

e Opi = / dty / dty (Vs 0pnrp(tmaz)s Vas; Qe p (tmin)]

 Evaluating the commutators:

Todty [P di
(I)FK:47TZ Qim //sza, mpb/ / —Im L (Pa> Pps 1))

* Almost usual Feynman integral but unusual
propagator due to magnetic photon

d*k  ie(p1,p2,p3, k) —ik-A
; _ , D2, P3, ik-A12(pa,pp)
(P1,P2,p3) / (2ﬂ)4 (k2 + Z'e)(pg, -k 4+ z’e) c

v _ tia®*  tab#
A12(a7b) T Waq Wp



Dirac quantization from geometric phase

« Lagrangian depends on Dirac string. Rotate Dirac
string adiabatically = »#(r) = exp [rw]* n§

v

 Rotation of dressed states:

‘p]_, .« o e 7Z)f>>n(’7__|_67_) p— e_Twlﬂ/ LG ‘p]_’ . o . ,pf>>n(7_)

27 27
¢ Berry phase: YBerry = i/O dr {p1,..., pf‘%“?l ----- prh) = 5 /O dr &7

2m 5 v
_ Z i / dr Tim nog‘)/u/e [pl<7_)7pm<7_)an0] — 497 Z Qim
0 e [pi(7), P (7), n0] l<m

* Demanding overall phase either fermion or boson:
Dirac quantization g, = n/2 from purely QFT



§ummg[y

» Pairwise LG provides novel multi-particle states that
are not direct products

» Key ingredient to solving magnetic scattering
* Pairwise spinor-helicity new building block

e Can construct all 3pt S-matrix elements, fix angular
dependence of 2—2 scattering

 Obtain helicity flip, monopole harmonics, Rubakov-
Callan, novel resolution to semiton puzzle

* Dynamical origin as dressed states, gives novel
QFT derivation of Dirac quantization
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The NRQM lesson

N 1 /o . 2 1 -
e Hamiltonian: H:——(V—zeA> +V(r)=—==D*+V(r)

2m 2m

* Monopole background A, = =9 (1 F cos 0)

rsin 0

* Naive I, = —i7 x D does NOT satisfy [L;, L;] = i€ L
» Correct expression: L = —i x D — egf = m¥ X 7 — egf

 Contribution from angular momentum in field shows
up here as well



Multi- icle respresentations of
the Poincare group

* How about the general case with spin”?

» Can construct representation by first considering

Pl XPQXp]_Q

Three copies of the Poincare group, where the third

copy is itself already a diagonal subgroup of P, x P,
acting on a pair of momenta (p1,p2) for now distinct

from p1 and p2

* The states we will be considering are

p1, D02, (P1,P2); 0) = |p1; 01) ® |p2; 02) ®|(D1,DP2) ;5 ¢12)



Multi- icle respresentations of
the Poincare group

 Clearly we can now play the same game with each
of those copies of the Poincare group as for single
particle/spinless two particle states - define reference
momenta and Lorentz boosts:

pr =1L, ki, p2=L: ko,

~

(b 52) = (L3} 5o b L o)
* Definition of general state
p1, P2, (P1,P2) 5 0) = (U(Ly,) k15 01)) ®
(U(L2,) ko5 02)) @ (U(LE ;) |k, ka) 5 q1o) )

~



Multi-particle respresentations of
the Poincare group

 Action of general Lorentz transformation
A= (Al,AQ,]\u) € P, x Py x Py,

U(A) |p1ap27 (]517]52)v0-> — (Daial (Wl) ‘Al P1; 0J1>) ® (Daéag(W2) ’A2p2; 0_§>) %Y
(UL, Anapa) UWA2) (B, B2) 5 12 )

 With the usual LG transformations

ngEf/

e Full transformation:
U(/\> |p17p27 (ﬁl)ﬁZ) ; 0'> = eiQ12¢12 .

Dyt o, (W1) Dty (Wa) [A1 p1, Az p2, (A12 P1, A2 B2) 5 0)



Multi- icle respresentations of
the Poincare group

* This is clearly a proper unitary representation of
P1 X P2 X P12.

* Now we can project onto physical states
p1 = p1,p2 = p2and A; = A2 = A diagonal
subgroup (physical LT’s)

* Representation on physical states:
U(A) [p1,p2; 01,025 qi2) =

pld12¢12 D0101 (Wl) Do_éo.Q(WQ) ]Ap1, Apa; 0/17 0'; 5 Q12>

» Clearly projection allowed since p1;p2; (P1,p2) —
Ap1, Apz, (Ap1, Ap2) stays within the physical momenta



Multi- icle respresentations of
the Poincare group

* For g12=0 reproduces usual direct-product 2-particle
states

 For j1=j2=0 we get Zwanziger’s states

« Easy to generalize to n particles - start with 2n-1
Poincare groups Py x...X Py X Pig X ... X Ppy_1, X

Pros X ... X Pp_op—1n X ... X P23 n

* However all k23 LG's are trivial - so general state

~

|p17 c ey Pn s (ﬁlapQ)a c ey (ﬁn—Qaﬁn)a (ﬁn—lvﬁn) 3 0>



Asymptotic states
* One of the rare examples where free Hamiltonian Ho
has different conserved angular momentum from H

3] = i) =0 740

» Usually in/out states - eigenstates of H as t—+
approach free states. Here they don't

* In/out states will be represented differently

U(A) ’pl,..-,pn, HD ’Ap17...’Apn;:|:>6:l:iE

» +is in state - is out state, and £ = 37 . q;; ¢(pi, pj, A)

* Origin of +- sign J fleld — + %~ g5 Dy



Transformation of the S-matrix

* Overlap of asymptotic states - LT:

S, s D1y spn) = PP — Py +)
= <p’1,---,p§n; —|U(A)! U(A)Ip1,---,pn;+>

_ TS HD H Apl,...,Ap/m|Ap1,---,Apn)

i—1
E+—Zq;¢p piA) E——ZQJ¢P P A

* Transformation of S-matrix (crossmg sym. V|olat|on)
S(ApL, ..., AP, |Ap1,...., Ap,) =

1) TT D) [P S (Wt 1)
1=1 )=

* Need objects that saturate U(1) phase for S-matrix!



Pairwise momentum

* Properties: lcgjikff = 0 and kffkfj_ = 2p;

e Limits: m; — 0 pf:f — p; and pij_ parity conjug.



b . b .
B = lida P = Ll

b— A h— N
D; >a = v 2pc |777J>a 3 [pq;j =V 2pe [ni‘a

. |i>a7 Ma standard spinor-helicities,
the parity conjugates

777;>o¢ ) [ﬁ2|a

» These will imply selection rules in the m; — 0
since the following contractions vanish

[ bt . b b ] h— A
pi i = <zpz-j+> = |nipy; | = <pz-j m> = 0

[ p— ] L b . T b
il = (i) = || = () = 2p




nstructina the maanetic S-matrix

* We have seen: general transformation of S-matrix

e =20 TTp(Wy) [[PW)j)T S (- P |p1s- - pn)
i—1 =1

* Implies weird twist - forward scattering not allowed
- does not have right PLG property. So usual
construction in terms of scattering amplitude

Ses = 6(a—fB) — 2im6™ (po — pg) Aas

does not make sense. Rather than trying to adjust
this formula will just directly construct S-matrix
elements always



The out-out formalism

 So far we have made distinction of in and out states
- very reasonable for magnetic scattering since we

have no crossing symmetry

* However all of scattering amplitude literature
assumes all particles outgoing... Would like to not
have to rewrite all of those to compare to our new
results... So force ourselves to use out-out

* While no crossing symmetry, can still do a crossing
transformation and transform an in state to an out

state via particle <«
incoming <>

helicity h <«

—

pIJI

antiparticle
outgoing
—h

—ph



The out-out formalism

* This does NOT assume/imply crossing symmetry.
We will always stay in the kinematic regime where
some of the particles actually have negative
energies, implying those were really incoming
particles.

* Note gjj does not flip sign - it is quadratic in
momenta.

* Note g still only calculated for states that would be
both in states or both out states (ie. now according to
the sign of the energies)



Simple example 2.

Y] iv lar in m iv lar +
massl Vv r. a=-1
= s= 2 _ 2
° S (]_3—0 | 2 0, 3+1)q23:—1 ~ [p;—g 3} ~ <p53 |2|3}

» No way to write S (1570|2570 371)
more general selection rule”

s—_1 - Case of

U(l); SU(2);  U(1)y

Required weight h; S; ~qij
|Z>Oz ) [Z|oz _% ’ % - —
(il _ o

b+ b+ 1 1

‘pﬂ>a’[p@}a - - 3 3

'BT
=
~~—”"
Q
1
Q’b‘f
|
Q
I
I
N —
DO —



Simple example 3.
Massive v r in massl|
fermions, q=-2

e S (13:1 | 2—1/273+1/2) N <2p;§> [pgﬁg 3} <1pg§>2

+ Opposite helicity vanishes since (p};3) = [p3f2| = 0
Another implication of the selection rules

q23=—2

Required weight h S s
|Z>a7 [i|o'¢ % % — _
(il - 0 _

b+ b+ 11

‘pj >oz7 [pm ‘a N o 27 2

N —
1
DO —



Massive v r in massl
fermions, g=-1

. 5(18:1|2_1/2,?>_1/2)m:_1 ~ <2p55> <p5§3> <1PZ§>2

o h2=—hs=1/2 vanishes since [1%53} =

* Note in this example number of pairwise spinors is
NOT 2qg23 since we needed 4 spinors for the
particles

U(l); SU(2); U(1l)y

Required weight hi Si ~Qij

1
N —
D=

DN —
D[ —=



Th neral 3-point S-matri
2. Incoming massive, outgoing massive +
massless, unequal mass

 Massive part: (<1|281){“1"-“281}(<2‘232){51---6232}

» Massless part regular spinors (Jv),[v),) = (13),.]2]3],)
pairwise spinors (jw) ,|r).) = (|p5§> | b+>)

* Most general massless part:

h 1 i
(O TER N — Y g D (yymeiko

=1 3,k
s—h— Sthtk |, \S—q+ S +q—k
A (|U> 7 v)2 )2~ |pyzta- ){al ..... azsy H{B1,-sBasy }
eInsums -3+¢<j<i-n and —-5-h<k<5+¢g
- Selection rule: |h+¢q| <8
eg. s;1 = so =0 — h —q



Th neral 3-point S-matrix

] ] ] ive +
massless, equal mass

» Subtlety: in this case |u) o< |v)and |w)  |r)
* Method of Nima et al. ~“x-factor”
mx|u) = |v) (ur)? z|w) ~ |r)

C J
h)Qaeqlﬂ — h+q+j a [2 +_k70] a [_2 - +k70]
S o) = D22 D @I {ur) MBI TR () R

i=1 j k=—j

<|u>j+k )i~k 8-

) {041---01231 }{51""8252} ,

* Power of x can be negative - no selection rule



Th neral 3-point S-matrix
4. Incoming massive, two outgoing massless

» Massive part: (<1|28){a1"'a28}

* Massless part from regular spinors |u), = [2),, [v),
and pairwise Spinors fu), = [p}; ) and Ir), = |55 )

I
w
~—

* General expression:
Sq _ Z aij <|u>s/2—i—A |v>8/2—j—|—A |w>s/2+j—q |T>3/2—|—i+q)

{a1,...,a25}
5]
1

max[X+(s—i—j)/2,0] <uv>max[—2—(s—|—i+j)/2,0] (<uw> [UT])%maX[i—j,O] ([’U/LU] <vr>>§max[j—i,0]

{al ..... ags}

[uv]

e With X =hao+hs, A =hy—hs

—s/2—q<i<s/2—Aand —s/2+¢< j <s/24+A

» Selectionrule: |[A—gq| <s



Th neral 3-point S-matrix
4. Incoming massive, two outgoing massless

» Agrees with usual selection rule for g=0

s =0 — hy = h3 =0
s =1 — Jha —hg] <1 — |he]=|h3] <1/2 massless h >1/2 can’t couple to current

s =2 — |ho — h3] < 2 — |ho| = |h3| < Imassless h>1 can’t couple to stress tensor

* For magnetic case even more restrictive q=+1/2

s = 0 — forbidden
s =1 — ‘hg—thFl/Q‘Sl — |h2|:|h3|:0 or hgz—h3:i1/2

s = 2 — |h2—h3:|:1/2| < 2 — |h2| = |h3| < 1/2 or hgz—h3=:|:1.

* More restrictive because h; = -h3 = —¢s option not
allowed



Partial wave expansion for magnetic case

« Expansion in the eigenbasis of Casimir operator

1
WH = 2 eupo PY M7

» Pauli-Lubanski operator, eigenvalues of \W2 are
—P?J(J+1) Jis total angular momentum

« Representation in spinor-helicity space (Witten):
(Ou)as P! = FPoa = Z 1) [i]4
ey %
= 1 XZ: |7’>{a 8<Z|B}

- %
(o V)d' M Mz =t 2] & '
e o e G

(O-,ul/ ) of MHY

I
=




Partial wave expansion for magnetic case
» Expression of Casimir (Shu et al. 2020):

W2 = ];2 T (M) + T (012) ] - %Tr (a2 P a1 P

* Generalization to magnetic case:

(O-/“/)aﬂ M = Maﬁ =1 Z| {a Z |pb:|:> < b:l:‘ﬂ}
D;;

_ v o — AT . — g ; 9 &

Ou)ap M= Moy = zz: e a 1%t ’ i>j+ [pEjF e 3}1??[} B}_

e Can show w212 = w? <pz:2t2> = W?* <p12 > = W?* <pb1:2tp§> =0

W),y =m0 b,



Partial wave expansion for magnetic case

» Eigenfunctions of W2 symmetrized products of
ordinary and pairwise spinors

W2 (f 1L sk)) = —sJ(J +1) (f]sk))

{ag...a5} {ay...a5}

 Partial wave decomposition:

S1o_y34 = NZ(QJ—I—D ./\/l'](pc) BJ
J

» The B are basis amplitudes

wW*B) = —sJ(J+1)B/

» B”contain all angular dependence



Partial wave expansion for magnetic case

- M7/(p.) are reduced matrix elements - contain
information on dynamics w3 m7(p.) = W2 M (p.) = 0

« N = +/8rs normalization factor
Shuetal.’20: B/ = ¢l ¢iouts {on,az;}
{041,...,0423}

= —sJ(J+1)Chm

{a1,...,a25}

2 J;in
W2, C

{a1,...,a27}
W324 CJ;out; {ar,a5} 0 SJ(J—I— 1) OJ;Out; {ag,...,a0 5}

- The (7J3in/out 5re generalized Clebsch-Gordan
tensors, completely fixed by group theory.



Fermion charge+scalar mon | rin

* Apply selection rule:

.1 1
s=5+0+T210g = T =l -5

* Lowest partial wave amplitude depends on q - as
expected from NRQM

 Extract the J=|q|-1/2 lowest partial wave basis
spinors

* The form of the 3pt S-matrix for g>0:

- 2|q|-1
3- t7 J— b‘l‘ |7+
SE™ = o (£9h) (IP5)



Fermion charge+scalar mon | rin

* Apply selection rule:

.1 1
s=5+0+T210g = T =l -5

* Lowest partial wave amplitude depends on q - as
expected from NRQM

 Extract the J=|q|-1/2 lowest partial wave basis
spinors

* The form of the 3pt S-matrix for g>0:

- 2|q|-1
3- t7 J— b‘l‘ |7+
SE™ = o (£9h) (IP5)



Fermion charge+scalar mon | rin
- the massless limit

* To see physics contained consider massless limit

 This is the case when we expect only helicity flip
amplitudes (Kazama et al)

* |[n principle 4 allowed processes by quantum
numbers

Helicity non-flip : f+M—> f+M , fTl94M—> fl+M
Helicity flip : f+M —= fT+M , fT4+M—> f +M

e f.f LH fermions



Partial wave expansion for magnetic case

.+ The (/iin/out depend on the spinors of the in/out
states, saturate the LG and pairwise LG quantum
numbers of the S-matrix

* They can be read off from the 1+2—J and J—3+4
S-matrix constructions by peeling off the spinors
corresponding to intermediate J state

« Example: scalar charge+monopole — J, q=-1

J+1 J—1
S(1%2008)) | = a <3pr5> <3p'g>

* Only one contraction in this case:

. J+1 J—1
J; _ b— b
(Co,ol,n—l) = ‘pm > ‘p1"5>
{041 ..... OéQJ}



Fermion charge+scalar mon | rin

» Let's apply our results to the most famous
example: scattering f+M—f+M, arbitrary g

fl IVII

N,

AN

f M

» CJ is extracted from 3 massive 3pt S-matrix

» Selection rule: |g| < 8



Fermion charge+scalar mon | rin
 Stripping away the J spinors:

lg|=1/2;in b+ oy \ 2lal—1
Cao = (o) <‘pr>

« Similarly for the out state. Contracting get basis
spinors:

b+ RS b+ b+
vz EP) (F P (<p fMpf'M'>>
q>0 -

2|q|-1

4pg 2pc

 Similar for g<0:

2|q| -1

gla-1/2 _ (E75ar) (¥ Prar) <<p5“Mp5"’M/>)

q<0 4pc 2pe



Fermion charge+scalar mon | rin

* Going from massive to massless (“unbolding”)

h1='1/2 1

<1 |a ~ <ﬁ1 |a P-conjugate of ( 1 | @

 Start with /" + M — f + M helicity flip (in out-out
formalism both fermions -1/2 helicity)

2|q|—1

b+ b+ b+ b+

vy s o) ()

B2 = for sgn(q) = +1
4p; 2pc

* Vanishes for g>0 since <fp?i];4> = <f’p?,+M,> =0

* Non-vanishing for q<0



Fermion charge+scalar mon | rin
-1 | limit
* |ntuitive explanation: field contribution to angular
momentum q - has eigenvalues q,q9+1,q+2,...

* For RH incoming fermion minimal z-component of
total angular momentum qg+1/2

« But we are looking at lowest J=|qg|-1/2 - doesn’t have
g+1/2 z-component...

e Similarly for g<O we only getthe f+ M — f1 + M
helicity flip process non-vanishing.



Fermion charge+scalar mon | rin

* Going from massive to massless (“unbolding”)

h1='1/2 1

<1 |a ~ <ﬁ1 |a P-conjugate of ( 1 | @

 Start with /" + M — f + M helicity flip (in out-out
formalism both fermions -1/2 helicity)

2|q|—1

b+ b+ b+ b+

vy s o) ()

B2 = for sgn(q) = +1
4p; 2pc

* Vanishes for g>0 since <fp?i];4> = <f’p?,+M,> =0

* Non-vanishing for q<0



