
Anomalies and Symmetry Fractionalization

Jaume Gomis

Hirosifest, Caltech

w/ Delmastro, Hsin, Komargodski



Background

• Arrived to Pasadena in 1999, same as Hirosi and Edward

• amazing faculty, visitors, postdocs, students and staff

• Caltech provided a truly warm, open and stimulating place



• I was at Caltech from 1999-2004

• Hirosi and I wrote two papers in this period

• and we have coauthored a paper since
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• We gave a microscopic worldsheet definition of Nonrelativistic String Theory:

• unitary

• UV complete

• string spectrum and S-matrix is (string) Galilean invariant

• string amplitudes localize on the moduli space of Riemann surfaces

• . . .

• Renewed interest in Nonrelativistic String Theory:

• associated geometry and NLSM (string-Newton Cartan structure)

• nonrelativistic backgrounds

• D-branes and nonrelativistic Yang-Mills

• . . .
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• Hirosi has impeccable taste and aesthetics

• Hirosi is supportive and generous

Thank You Hirosi!
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Introduction

• Symmetries provide a powerful organizing principle

• 0-form symmetry G ⇐⇒ ∃ topological invertible operators

• local operators O(x) transform in (vector) representations of G

• line operators L transform in (projective) representations of G

• A ’t Hooft anomaly for G informs the dynamics

• couple to G connection ⇐⇒ lay down network of topological junctions

• ’t Hooft anomaly:

I non-invariance of Z under G cannot be cured by adding local counterterms

I failure of network of topological junctions to consistently recombine

I admit a topological classification =⇒ renormalization group invariants
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In this talk

Is the ’t Hooft anomaly for G determined given the action of G on O(x)?

no when system has a one-form symmetry Γ!

=⇒ need to characterize Γ of a physical system!

• need to fully specify the action of G on L

• distinct ways G is realized on L describe different “fractionalization classes”

• fractionalization classes can result in distinct ’t Hooft anomalies for G

• ’t Hooft anomaly matching must be reconsidered
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Symmetry Fractionalization

• one-form symmetry Γ ⇐⇒ ∃ topological codimension 2 invertible operators

GKSW

• topological networks for G can be enriched with such operators

• action of G on local operators O(x) unchanged, BUT

• action of G on line operators is modified by phases

I enriched G junction can change projective representation carried by L

I consistency implies that choices are labeled by a class in H2
ρ(G,Γ)

I fractionalization classes related by turning on B ∈ H2
ρ(G,Γ) for Γ



Symmetry Fractionalization

• one-form symmetry Γ ⇐⇒ ∃ topological codimension 2 invertible operators

GKSW

• topological networks for G can be enriched with such operators

• action of G on local operators O(x) unchanged, BUT

• action of G on line operators is modified by phases

I enriched G junction can change projective representation carried by L

I consistency implies that choices are labeled by a class in H2
ρ(G,Γ)

I fractionalization classes related by turning on B ∈ H2
ρ(G,Γ) for Γ



’t Hooft anomalies and fractionalization classes

• ’t Hooft anomaly for G can depend on choice of fractionalization class if:

• the system has a ’t Hooft anomaly for Γ, or

• there is a mixed G− Γ ’t Hooft anomaly

• ’t Hooft anomalies captured by an inflow anomaly polynomial

• let A,B be background fields for G and Γ, then ’t Hooft anomalies:∫
f(A) +

∫
g(B,A)

• change of fractionalization class B → B +A∗η, where η ∈ H2
ρ(G,Γ)

• this can change the ’t Hooft anomaly for G∫
f(A)→

∫
f(A) +

∫
g(A∗η,A)

• ’t Hooft anomaly matching across all fractionalization classes



’t Hooft anomalies and fractionalization classes

• ’t Hooft anomaly for G can depend on choice of fractionalization class if:

• the system has a ’t Hooft anomaly for Γ, or

• there is a mixed G− Γ ’t Hooft anomaly

• ’t Hooft anomalies captured by an inflow anomaly polynomial

• let A,B be background fields for G and Γ, then ’t Hooft anomalies:∫
f(A) +

∫
g(B,A)

• change of fractionalization class B → B +A∗η, where η ∈ H2
ρ(G,Γ)

• this can change the ’t Hooft anomaly for G∫
f(A)→

∫
f(A) +

∫
g(A∗η,A)

• ’t Hooft anomaly matching across all fractionalization classes



Fractionalization Class Engineering

• add massive particles such that:

1. break the Γ symmetry

2. transform in a projective representation of G

3. 0-form symmetry, acting on local operators O(x), remains G

• consequences of UV modification:

• massive particles do not modify the theory at low energies, BUT

• fixes the action of G on L in IR, thought as the worldline of heavy particle

L

• unambiguously determines the value of ’t Hooft anomalies for G

• consistent with UV decoupling since the massive particles change the

symmetry structure in a discontinuous fashion



Fractionalizing by twisting G with Ggauge

• induce change of fractionalization class:

• twist action of G with gauge transformations of Ggauge that do not

modify the G symmetry algebra on elementary fields

G = ZT
4 : consider U ∈ Ggauge such that (TU)2 = (−1)F

• Twisting G with a Ggauge gauge transformation

a→ a+ uw1 , U = eiu

implies that line operators charged under Γ transform precisely as if a

background B ∈ H2
ρ(G,Γ) had been turned on. That is, it implements a

change of fractionalization class

L → exp

(
2πiz

|Γ|

∫
Σ

dw1

2

)
L

and shifts B → B + dw1

2



’t Hooft anomaly matching across fractionalization classes

• 2 + 1d SU(2N)0 QCD with adjoint quark

J.G., Komargoski, Seiberg

SU(2N) adjoint QCD
IR

=⇒ U(N)N,2N Chern-Simons + λ

• G = ZT
4 , with T2 = (−1)F : ZT

4 anomaly classified by ν ∈ Z16 Kitaev, Witten, ...

ν = n+ − n− mod 16

where Tψ± = ±γ0ψ±

• Γ = Z2N : ∃ a Γ ’t Hooft anomaly, roughly ±π2
∫
B ∪B

• Fractionalization classes H2(ZT
4 ,Z2N ) = Z2. Induce ZT

4 anomaly jumps

δν =

{
−4 N even

+4 N odd



• We can calculate ν for the different fractionalization classes

1. Tψij = γ0ψij =⇒ νT = (2N)2 − 1 mod 16 =

{
−1 N even

+3 N odd

2. change fractionalization class with U ∝ diag(−1, 1, . . . , 1) ∈ SU(2N) such

that (TU)2 = (−1)F

νTU = 4N2 − 8N + 3 mod 16 =

{
+3 N even

−1 N odd

=⇒ δν =

{
−4 N even

+4 N odd

• Nontrivial ’t Hooft anomaly matching across all fractionalization classes

with IR theory U(N)N,2N Chern-Simons + λ

• All QCD theories for which nonperturbative dynamics has been put forward



Conclusions

• specifying the action of G requires giving additional data

• distinct choices can give rise to different ’t Hooft anomalies for G if there is

a Γ or G− Γ mixed anomaly

• Physical way to change fractionalization class

• informs the implementation of ’t Hooft anomaly matching



Happy Birthday Hirosi!


	Introduction
	Background
	Introduction
	Introduction

