Topological symmetry in field theory

Dan Freed University of Texas at Austin

October 27, 2022

Joint work with Greg Moore and Constantin Teleman arXiv:2209.07471

Simons Collaboration (https://scgcs.berkeley.edu)

Global Categorical Symmetry

This is a big subject to which Hirosi has made many contributions

This is a big subject to which Hirosi has made many contributions

Today I will introduce a framework for internal topological symmetries in QFT

This is a big subject to which Hirosi has made many contributions

Today I will introduce a framework for internal topological symmetries in QFT

Leads to a <u>calculus of topological defects</u> which takes full advantage of well-developed theorems and techniques in topological field theory

This is a big subject to which Hirosi has made many contributions

Today I will introduce a framework for internal topological symmetries in QFT

Leads to a <u>calculus of topological defects</u> which takes full advantage of well-developed theorems and techniques in topological field theory

Let's begin with some motivation from representation theory of Lie groups and Lie algebras

Computations in... $\mathfrak{sl}_2(\mathbb{R})$

 Set

$$h = \left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right) \qquad e = \left(\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array}\right) \qquad f = \left(\begin{array}{cc} 0 & 0 \\ 1 & 0 \end{array}\right)$$

Computations in... $\mathfrak{sl}_2(\mathbb{R})$

 Set

$$h = \left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right) \qquad e = \left(\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array}\right) \qquad f = \left(\begin{array}{cc} 0 & 0 \\ 1 & 0 \end{array}\right)$$

Simple matrix manipulations verify the identity

$$\frac{1}{2}h^2 + ef + fe = \frac{1}{2}h^2 + h + 2fe$$

Namely, both sides equal

$$\left(\begin{array}{cc} \frac{3}{2} & 0\\ 0 & \frac{3}{2} \end{array}\right)$$

In the 3-dimensional representation of $\mathfrak{sl}_2(\mathbb{R})$ we have

$$h' = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -2 \end{pmatrix} \qquad e' = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{pmatrix} \qquad f' = \begin{pmatrix} 0 & 0 & 0 \\ 2 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$

In the 3-dimensional representation of $\mathfrak{sl}_2(\mathbb{R})$ we have

$$h' = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -2 \end{pmatrix} \qquad e' = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{pmatrix} \qquad f' = \begin{pmatrix} 0 & 0 & 0 \\ 2 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$

Now slightly less simple matrix manipulations verify the identity

$$\frac{1}{2}(h')^2 + e'f' + f'e' = \frac{1}{2}(h')^2 + h' + 2f'e'$$

Namely, both sides equal

$$\left(egin{array}{cccc} 4 & 0 & 0 \ 0 & 4 & 0 \ 0 & 0 & 4 \end{array}
ight)$$

The Lie group $SL_2(\mathbb{R})$ acts on the projective line \mathbb{RP}^1 as fractional linear transformations

The Lie group $\mathrm{SL}_2(\mathbb{R})$ acts on the projective line \mathbb{RP}^1 as fractional linear transformations There is an induced action on differentials $\phi(x)(dx)^{\lambda}$ for each $\lambda \in \mathbb{C}$ The Lie group $\mathrm{SL}_2(\mathbb{R})$ acts on the projective line \mathbb{RP}^1 as fractional linear transformations There is an induced action on differentials $\phi(x)(dx)^{\lambda}$ for each $\lambda \in \mathbb{C}$

The infinitesimal action of $\mathfrak{sl}_2(\mathbb{R})$ is:

$$\begin{split} \tilde{h} &: \phi \longmapsto -2x\phi' - 2\lambda\phi \\ \tilde{e} &: \phi \longmapsto -\phi' \\ \tilde{f} &: \phi \longmapsto x^2\phi' + 2\lambda x\phi \end{split}$$

The Lie group $SL_2(\mathbb{R})$ acts on the projective line \mathbb{RP}^1 as fractional linear transformations

There is an induced action on differentials $\phi(x)(dx)^{\lambda}$ for each $\lambda \in \mathbb{C}$

The infinitesimal action of $\mathfrak{sl}_2(\mathbb{R})$ is:

$$\begin{split} \tilde{h} &: \phi \longmapsto -2x\phi' - 2\lambda\phi \\ \tilde{e} &: \phi \longmapsto -\phi' \\ \tilde{f} &: \phi \longmapsto x^2\phi' + 2\lambda x\phi \end{split}$$

Some calculus manipulations verify the identity

$$\frac{1}{2}\tilde{h}^2+\tilde{e}\tilde{f}+\tilde{f}\tilde{e}=\frac{1}{2}\tilde{h}^2+\tilde{h}+2\tilde{f}\tilde{e}$$

Both sides act as multiplication by $4\lambda^2 - 2\lambda$

Instead of each separate computation, we compute *universally* in an abstract algebra

Instead of each separate computation, we compute *universally* in an abstract algebra

Each representation defines a module over the universal enveloping algebra $A = U(\mathfrak{sl}_2(\mathbb{R}))$

Instead of each separate computation, we compute *universally* in an abstract algebra Each representation defines a module over the *universal enveloping algebra* $A = U(\mathfrak{sl}_2(\mathbb{R}))$ The identity

$$\frac{1}{2}h^2 + ef + fe = \frac{1}{2}h^2 + h + 2fe$$

holds in A, since [e, f] = ef - fe = h, hence it holds in every A-module

Instead of each separate computation, we compute *universally* in an abstract algebra

Each representation defines a module over the universal enveloping algebra $A = U(\mathfrak{sl}_2(\mathbb{R}))$ The identity

$$\frac{1}{2}h^2 + ef + fe = \frac{1}{2}h^2 + h + 2fe$$

holds in A, since [e, f] = ef - fe = h, hence it holds in every A-module

Many recent results about extended notions of symmetry in QFT: Apruzzi, Bah, Benini, Bhardwaj, Bonetti, Bullimore, Córdova, Choi, Cvetič, Del Zotto, Dumitrescu, Frölich, Fuchs, Gaiotto, García Etxebarria, Gould, Gukov, Heckman, Heidenreich, Hopkins, Hosseini, Hsin, Hübner, Intriligator, Ji, Jian, Johnson-Freyd, Jordan, Kaidi, Kapustin, Komargodski, Lake, Lam, McNamara, Minasian, Montero, Ohmari, Pantev, Pei, Plavnik, Reece, Robbins, Roumpedakis, Rudelius, Runkel, Schäfer-Nameki, Scheimbauer, Schweigert, Seiberg, Seifnashri, Shao, Sharpe, Tachikawa, Thorngren, Torres, Vandermeulen, Wang, Wen, Willett, ..., ... Instead of each separate computation, we compute *universally* in an abstract algebra

Each representation defines a module over the universal enveloping algebra $A = U(\mathfrak{sl}_2(\mathbb{R}))$ The identity

$$\frac{1}{2}h^2 + ef + fe = \frac{1}{2}h^2 + h + 2fe$$

holds in A, since [e, f] = ef - fe = h, hence it holds in every A-module

Many recent results about extended notions of symmetry in QFT: Apruzzi, Bah, Benini, Bhardwaj, Bonetti, Bullimore, Córdova, Choi, Cvetič, Del Zotto, Dumitrescu, Frölich, Fuchs, Gaiotto, García Etxebarria, Gould, Gukov, Heckman, Heidenreich, Hopkins, Hosseini, Hsin, Hübner, Intriligator, Ji, Jian, Johnson-Freyd, Jordan, Kaidi, Kapustin, Komargodski, Lake, Lam, McNamara, Minasian, Montero, Ohmari, Pantev, Pei, Plavnik, Reece, Robbins, Roumpedakis, Rudelius, Runkel, Schäfer-Nameki, Scheimbauer, Schweigert, Seiberg, Seifnashri, Shao, Sharpe, Tachikawa, Thorngren, Torres, Vandermeulen, Wang, Wen, Willett, ..., ..., ...

Main idea: Make analogous universal computations with symmetries in QFT

Warning

The word 'symmetry' in mathematics usually refers to groups ("invertible symmetries") rather than algebras ("noninvertible symmetries"), but in modern QFT-speak the term 'symmetry' is also used for the latter. Algebras of operators, including those that commute with a Hamiltonian, date from the earliest days of quantum mechanics

Abstract symmetry data (for algebras) is a pair (A, R):

A algebra

R right regular module

Definition: Let V be a vector space. An (A, R)-action on V is a pair (L, θ) consisting of a left A-module L together with an isomorphism of vector spaces

 $\theta \colon R \otimes_A L \xrightarrow{\cong} V$

Abstract symmetry data (for algebras) is a pair (A, R):

A algebra

R right regular module

Definition: Let V be a vector space. An (A, R)-action on V is a pair (L, θ) consisting of a left A-module L together with an isomorphism of vector spaces

 $\theta \colon R \otimes_A L \xrightarrow{\cong} V$

R allows us to recover the vector space underlying L—a bit pedantic here; crucial later

Abstract symmetry data (for algebras) is a pair (A, R):

A algebra

R right regular module

Definition: Let V be a vector space. An (A, R)-action on V is a pair (L, θ) consisting of a left A-module L together with an isomorphism of vector spaces

 $\theta \colon R \otimes_A L \xrightarrow{\cong} V$

R allows us to recover the vector space underlying *L*—a bit pedantic here; crucial later Elements of *A* act on all modules; relations in *A* apply (e.g. Casimirs in $U(\mathfrak{sl}_2(\mathbb{R}))$)

Abstract symmetry data (for algebras) is a pair (A, R):

A algebra

R right regular module

Definition: Let V be a vector space. An (A, R)-action on V is a pair (L, θ) consisting of a left A-module L together with an isomorphism of vector spaces

 $\theta \colon R \otimes_A L \xrightarrow{\cong} V$

R allows us to recover the vector space underlying L—a bit pedantic here; crucial laterElements of A act on all modules; relations in A apply (e.g. Casimirs in $U(\mathfrak{sl}_2(\mathbb{R})))$ Analogy:algebra $\sim \sim \triangleright$ topological field theory
element of algebra $\sim \sim \triangleright$ defect in TFT

Analogy: field theory \sim module over an algebra OR \sim representation of a Lie group

Warning: This analogy is quite limited

Analogy: field theory \sim module over an algebra OR \sim representation of a Lie group

Warning: This analogy is quite limited

 \xrightarrow{F} F(Y)

 \mathcal{F}

Segal Axiom System: A (Wick-rotated) field theory F is a linear representation of a bordism (multi)category $\operatorname{Bord}_n(\mathcal{F})$

- *n* dimension of spacetime
 - background fields (orientation, Riemannian metric, \dots)

 $Y_{2} \qquad X^{n} \colon Y_{1} \sqcup Y_{2} \sqcup Y_{3} \to \phi^{n-1}$ $\xrightarrow{F} \left(F(X) : F(Y_{1}) \otimes F(Y_{2}) \otimes F(Y_{3}) \longrightarrow \mathcal{C} \right)$

Analogy: field theory \sim module over an algebra OR \sim representation of a Lie group

Warning: This analogy is quite limited

Segal Axiom System: A (Wick-rotated) field theory F is a linear representation of a bordism (multi)category $\operatorname{Bord}_n(\mathcal{F})$

- *n* dimension of spacetime
- \mathcal{F} background fields (orientation, Riemannian metric, ...)

Fully local theory for topological theories; full locality in principle for general theories

Analogy: field theory \sim module over an algebra OR \sim representation of a Lie group

Warning: This analogy is quite limited

Segal Axiom System: A (Wick-rotated) field theory F is a linear representation of a bordism (multi)category $\operatorname{Bord}_n(\mathcal{F})$

- *n* dimension of spacetime
- \mathcal{F} background fields (orientation, Riemannian metric, ...)

Fully local theory for *topological* theories; full locality in principle for general theories **Kontsevich-Segal:** Axioms for 2-tier nontopological theory $F: \operatorname{Bord}_{\langle n-1,n \rangle}(\mathcal{F}) \to t$ Vect

- $\sigma, \sigma_1, \sigma_2$ $\delta: \sigma_1 \to \sigma_2$ $\rho: \sigma \to \mathbb{1}$ $\widetilde{F}: \mathbb{1} \to \sigma$
- (n+1)-dimensional theories
- σ_2 domain wall
 - right boundary theory
 - left boundary theory

 $\sigma, \sigma_1, \sigma_2$ $\delta: \sigma_1 \to \sigma_2$ $\rho: \sigma \to \mathbb{1}$ $\widetilde{F}: \mathbb{1} \to \sigma$

(n + 1)-dimensional theories domain wall (σ_2, σ_1)

- right boundary theory
- left boundary theory

 (σ_2, σ_1) -bimodule right σ -module left σ -module

σ,σ_1,σ_2	(n+1)-dimensional theories	
$\delta: \sigma_1 \to \sigma_2$	domain wall	(σ_2, σ_1) -bimodule
$\rho: \sigma \to \mathbb{1}$	right boundary theory	right σ -module
$\widetilde{F} \colon \mathbb{1} \to \sigma$	left boundary theory	left σ -module

The "sandwich" $\rho \otimes_{\sigma} \widetilde{F}$ is an (absolute) *n*-dimensional theory

$\sigma, \sigma_1, \sigma_2$	(n+1)-dimensional theories
$\delta: \sigma_1 \to \sigma_2$	domain wall
$\rho: \sigma \to \mathbb{1}$	right boundary theory
$\widetilde{F} \colon \mathbb{1} \to \sigma$	left boundary theory

The "sandwich" $\rho \otimes_{\sigma} \widetilde{F}$ is an (absolute) *n*-dimensional theory

More generally, one can have *defects* supported on any (stratified) manifold $D \subset M$

Fix a dimension n and background fields \mathcal{F} (which we keep implicit)

Definition: A quicke is a pair (σ, ρ) in which $\sigma: \operatorname{Bord}_{n+1}(\mathcal{F}) \to \mathfrak{C}$ is an (n + 1)dimensional topological field theory and ρ is a right topological σ -module.

Fix a dimension n and background fields \mathcal{F} (which we keep implicit)

Definition: A quicke is a pair (σ, ρ) in which $\sigma: \operatorname{Bord}_{n+1}(\mathcal{F}) \to \mathfrak{C}$ is an (n + 1)dimensional topological field theory and ρ is a right topological σ -module.

Example: Let G be a finite group. Then for a G-symmetry we let σ be finite gauge theory in dimension n + 1. Note this is the *quantum* theory which sums over principal G-bundles

Fix a dimension n and background fields \mathcal{F} (which we keep implicit)

Definition: A quicke is a pair (σ, ρ) in which $\sigma: \operatorname{Bord}_{n+1}(\mathcal{F}) \to \mathfrak{C}$ is an (n+1)dimensional topological field theory and ρ is a right topological σ -module.

Example: Let G be a finite group. Then for a G-symmetry we let σ be finite gauge theory in dimension n + 1. Note this is the *quantum* theory which sums over principal G-bundles

Regular ρ : Suppose \mathcal{C}' is a symmetric monoidal *n*-category and σ is an (n + 1)dimensional topological field theory with codomain $\mathcal{C} = \operatorname{Alg}(\mathcal{C}')$. Let $A = \sigma(\operatorname{pt})$. Then A is an algebra in \mathcal{C}' which, as an object in \mathcal{C} , is (n+1)dualizable. Assume that the right regular module A_A is *n*-dualizable as a 1-morphism in \mathcal{C} . Then the boundary theory ρ determined by A_A is the right regular boundary theory of σ , or the right regular σ -module.

Fix a dimension n and background fields \mathcal{F} (which we keep implicit)

Definition: A quicke is a pair (σ, ρ) in which $\sigma: \operatorname{Bord}_{n+1}(\mathcal{F}) \to \mathfrak{C}$ is an (n+1)dimensional topological field theory and ρ is a right topological σ -module.

Example: Let G be a finite group. Then for a G-symmetry we let σ be finite gauge theory in dimension n + 1. Note this is the *quantum* theory which sums over principal G-bundles

Regular ρ : Suppose \mathcal{C}' is a symmetric monoidal *n*-category and σ is an (n + 1)dimensional topological field theory with codomain $\mathcal{C} = \operatorname{Alg}(\mathcal{C}')$. Let $A = \sigma(\operatorname{pt})$. Then A is an algebra in \mathcal{C}' which, as an object in \mathcal{C} , is (n+1)dualizable. Assume that the right regular module A_A is *n*-dualizable as a 1-morphism in \mathcal{C} . Then the boundary theory ρ determined by A_A is the right regular boundary theory of σ , or the right regular σ -module.

A regular boundary theory is also sometimes called *Dirichlet*
Definition: Let (σ, ρ) be an *n*-dimensional quiche. Let F be an *n*-dimensional field theory. A (σ, ρ) -module structure on F is a pair (\widetilde{F}, θ) in which \widetilde{F} is a left σ -module and θ is an isomorphism

$$\theta\colon\rho\otimes_{\sigma}\widetilde{F}\stackrel{\cong}{\longrightarrow} F$$

of absolute n-dimensional theories.

Definition: Let (σ, ρ) be an *n*-dimensional quiche. Let F be an *n*-dimensional field theory. A (σ, ρ) -module structure on F is a pair (\widetilde{F}, θ) in which \widetilde{F} is a left σ -module and θ is an isomorphism

$$\theta\colon\rho\otimes_{\sigma}\widetilde{F}\stackrel{\cong}{\longrightarrow} F$$

of absolute n-dimensional theories.

• The theory F and so the boundary theory \widetilde{F} may be topological or nontopological

Definition: Let (σ, ρ) be an *n*-dimensional quiche. Let F be an *n*-dimensional field theory. A (σ, ρ) -module structure on F is a pair (\widetilde{F}, θ) in which \widetilde{F} is a left σ -module and θ is an isomorphism

$$\theta\colon\rho\otimes_{\sigma}\widetilde{F}\stackrel{\cong}{\longrightarrow} F$$

of absolute *n*-dimensional theories.

- The theory F and so the boundary theory \widetilde{F} may be topological or nontopological
- The sandwich picture of F as $\rho \otimes_{\sigma} \widetilde{F}$ separates out the topological part (σ, ρ) of the theory from the potentially nontopological part \widetilde{F} of the theory.

Definition: Let (σ, ρ) be an *n*-dimensional quiche. Let F be an *n*-dimensional field theory. A (σ, ρ) -module structure on F is a pair (\widetilde{F}, θ) in which \widetilde{F} is a left σ -module and θ is an isomorphism

$$\theta\colon\rho\otimes_{\sigma}\widetilde{F}\stackrel{\cong}{\longrightarrow} F$$

of absolute n-dimensional theories.

- The theory F and so the boundary theory \widetilde{F} may be topological or nontopological
- The sandwich picture of F as $\rho \otimes_{\sigma} \widetilde{F}$ separates out the topological part (σ, ρ) of the theory from the potentially nontopological part \widetilde{F} of the theory.
- Symmetry persists under renormalization group flow, hence a low energy approximation to F should also be an (σ, ρ) -module. If F is gapped, then we can bring to bear powerful methods and theorems in topological field theory to investigate topological left σ -modules. This leads to dynamical predictions

Example: quantum mechanics with G-symmetry

 \mathcal{F} \mathcal{H} H $G \cap \mathcal{H}$ $S: G \to \operatorname{Aut}(\mathcal{H})$ $\sigma(\text{pt})$ F(pt) $\widetilde{F}(\mathrm{pt})$

n = 1

{orientation, Riemannian metric} for F and \widetilde{F} Hilbert space Hamiltonian 5 finite group action on \mathcal{H} $\mathbb{C}[G]$ \mathcal{H} $\mathbb{C}[G]$ \mathcal{H} (left module)

Example: gauge theory with *BA*-symmetry

n A BA H $\overline{H} = H/A$ F

any dimension finite abelian group $A = \mu_2$ a homotopical/shifted A ("1-form A-symmetry") Lie group with $A \subset Z(H)$ $H = SU_2$ $\overline{H} = SO_3$ H-gauge theory \overline{H} -gauge theory

Defects: quantum mechanics

n = 1 \mathcal{H} Hilbert space H Hamiltonian $G \subset \mathcal{H}$ finite group

Defects: quantum mechanics

Consider a point defect in F. The link of a point in a 1-manifold (imaginary time) is S^0 , a 0-sphere of radius ϵ , and the vector space of defects is

 $\lim_{\epsilon \to 0} \operatorname{Hom}(1, F(S^0_{\epsilon}))$

which is a space of singular operators on \mathcal{H} . To focus on formal aspects we write 'End(\mathcal{H})'

Defects: quantum mechanics

n = 1 \mathcal{H} Hilbert space H Hamiltonian $G \subseteq \mathcal{H}$ finite group

Consider a point defect in F. The link of a point in a 1-manifold (imaginary time) is S^0 , a 0-sphere of radius ϵ , and the vector space of defects is

 $\lim_{\epsilon \to 0} \operatorname{Hom}(1, F(S^0_{\epsilon}))$

which is a space of singular operators on \mathcal{H} . To focus on formal aspects we write 'End(\mathcal{H})'

We now consider defects in $(\rho, \sigma, \tilde{F})$ which transport to point defects in F

Point ρ -defects

The link is a closed interval with ρ -colored boundary. It evaluates under (σ, ρ) to the vector space $A = \mathbb{C}[G]$. The "label" of the defect is therefore an element of A. Note $G \subset A$ labels invertible defects.

 ρ -defects are topological

Point \tilde{F} -defects

The link is again a closed interval, but now with \widetilde{F} -colored boundary. The value under (σ, \widetilde{F}) is $\operatorname{End}_A(\mathcal{H})$, the space of observables that commute with the *G*-action

 \widetilde{F} -defects are typically not topological

Point σ -defects: central defects

The link is S^1 , and the value under σ is the vector space which is the center of the group algebra $A = \mathbb{C}[G]$.

 σ -defects are topological

The general point defect

A general point defect in F can be realized by a line defect in $(\rho, \sigma, \tilde{F})$.

Label the defect beginning with the highest dimensional strata and work down in dimension

- B (A, A)-bimodule
- $\boldsymbol{\xi}$ vector in B
- $T \qquad (A, A)\text{-bimodule map } B \longrightarrow \text{End}(\mathcal{H})$

Composition law on defects

Compute using the links of the defects—2 incoming and 1 outgoing σ -defects: pair of pants

 $\rho\text{-defects:}$ pair of chaps

Commutation relations among defects

The sandwich realization makes clear that

- ρ -defects (symmetries) commute with \widetilde{F} -defects
- σ -defects (central symmetries) commute with both ρ -defects and with \widetilde{F} -defects

Commutation relations among defects

The sandwich realization makes clear that

- ρ -defects (symmetries) commute with \widetilde{F} -defects
- σ -defects (central symmetries) commute with both ρ -defects and with \widetilde{F} -defects

However, ρ -defects do not necessarily commute with each other

Commutation relations among defects

The sandwich realization makes clear that

- ρ -defects (symmetries) commute with \widetilde{F} -defects
- σ -defects (central symmetries) commute with both ρ -defects and with \widetilde{F} -defects

However, ρ -defects do not necessarily commute with each other

Nor do they commute with the general defect

Quotients: augmentations

Definition: An augmentation of an algebra A is an algebra homomorphism $\epsilon \colon A \to \mathbb{C}$. Use ϵ to give a right A-module structure to \mathbb{C} : $\lambda \cdot a = \lambda \epsilon(a), \lambda \in \mathbb{C}$

Example: $A = \mathbb{C}[G]$:

The "quotient" of a left A-module L is the vector space

 $Q = \mathbb{C} \otimes_A L = \mathbb{C} \otimes_\epsilon L$

Quotients: augmentations

Definition: An *augmentation* of an algebra A is an algebra homomorphism $\epsilon \colon A \to \mathbb{C}$. Use ϵ to give a right A-module structure to \mathbb{C} : $\lambda \cdot a = \lambda \epsilon(a), \lambda \in \mathbb{C}$

Example: $A = \mathbb{C}[G]$: $\epsilon : \mathbb{C}[G] \longrightarrow \mathbb{C}$ $\sum_{g \in G} \lambda_g g \longmapsto \sum_{g \in G} \lambda_g$

The "quotient" of a left A-module L is the vector space

 $Q = \mathbb{C} \otimes_A L = \mathbb{C} \otimes_{\epsilon} L$

Example: $A = \mathbb{C}[G], S$ a finite G-set, $L = \mathbb{C}\langle S \rangle$: then $Q = \mathbb{C} \otimes_A \mathbb{C}\langle S \rangle \cong \mathbb{C}\langle S/G \rangle$

Quotients and quotient defects

We use the yoga of fully local topological field theory: let \mathcal{C}' be a symmetric monoidal *n*-category and set $\mathcal{C} = \operatorname{Alg}(\mathcal{C}')$, the (n + 1)-category whose objects are algebras in \mathcal{C}'

Definition: An augmentation $\epsilon_A \colon A \to 1$ of an algebra $A \in Alg(\mathcal{C}')$ is an algebra homomorphism from A to the tensor unit $1 \in \mathcal{C}$

Definition: Let \mathcal{F} be a collection of (n + 1)-dimensional fields, and suppose σ : Bord_{n+1}(\mathcal{F}) $\rightarrow \mathfrak{C}$ is a topological field theory. A right boundary theory ϵ for σ is an *augmentation* of σ if ϵ (pt) is an augmentation of σ (pt)

2

Augmentations are also called Neumann boundary theories

Quotients and quotient defects

We use the yoga of fully local topological field theory: let \mathcal{C}' be a symmetric monoidal *n*-category and set $\mathcal{C} = \operatorname{Alg}(\mathcal{C}')$, the (n + 1)-category whose objects are algebras in \mathcal{C}'

Definition: An augmentation $\epsilon_A \colon A \to 1$ of an algebra $A \in Alg(\mathcal{C}')$ is an algebra homomorphism from A to the tensor unit $1 \in \mathcal{C}$

Definition: Let \mathcal{F} be a collection of (n + 1)-dimensional fields, and suppose $\sigma: \operatorname{Bord}_{n+1}(\mathcal{F}) \to \mathfrak{C}$ is a topological field theory. A right boundary theory ϵ for σ is an *augmentation* of σ if $\epsilon(\operatorname{pt})$ is an augmentation of $\sigma(\operatorname{pt})$

Augmentations are also called Neumann boundary theories

Augmentations do not always exist

Definition: Suppose given finite symmetry data (σ, ρ) and a (σ, ρ) -module structure (\tilde{F}, θ) on a quantum field theory F. Suppose ϵ is an augmentation of σ . Then the *quotient* of F by the symmetry σ is

$$F_{\epsilon}/\sigma = \epsilon \otimes_{\sigma} \widetilde{F}$$

Dirichlet-to-Neumann and Neumann-to-Dirichlet domain walls

The categories of domain walls $\rho \to \epsilon$ and $\epsilon \to \rho$ are each free of rank one; let

 $\delta : \rho \longrightarrow \epsilon$ $\delta^* \colon \epsilon \longrightarrow \rho$

be generators. Transporting via θ we obtain domain walls

 $\delta : F \longrightarrow F/\sigma$ $\delta^* \colon F/\sigma \longrightarrow F$

Dirichlet-to-Neumann and Neumann-to-Dirichlet domain walls

 $\delta : \rho \longrightarrow \epsilon$ $\delta^* \colon \epsilon \longrightarrow \rho$

δ

The categories of domain walls $\rho \to \epsilon$ and $\epsilon \to \rho$ are each free of rank one; let

be generators. Transporting via θ we obtain domain walls

 $\begin{array}{ccc} \delta : & F & \longrightarrow F/\sigma \\ \delta^* \colon F/\sigma \longrightarrow F \end{array}$

We will soon compute the self-domain wall

 $\delta^* \circ \delta \colon F \longrightarrow F$

Quotient defects (after Roumpedakis-Seifnashri-Shao arXiv: 2204.02407)

Passing from F to \overline{F}/σ on a manifold M places the topological defect ϵ on all of M

There is also a quotient defect $\epsilon(Z)$ —it is a ρ -defect—supported on a submanifold $Z \subset M$, defined using a tubular neighborhood ν of $Z \subset M$. It is topological, as are all ρ -defects

Quotient defects (after Roumpedakis-Seifnashri-Shao arXiv: 2204.02407)

Passing from F to \overline{F}/σ on a manifold M places the topological defect ϵ on all of M

There is also a quotient defect $\epsilon(Z)$ —it is a ρ -defect—supported on a submanifold $Z \subset M$, defined using a tubular neighborhood ν of $Z \subset M$. It is topological, as are all ρ -defects

If $\operatorname{codim}_M(Z) = 1$, then

 $\epsilon(Z) = \delta^* \circ \delta$

Computation for finite homotopy theories

Finite homotopy theories are a special class of topological field theories, introduced in 1988 by Kontsevich, picked up a few years later by Quinn, developed by Turaev, ...

They are associated to a π -finite topological space \mathfrak{X} (possibly equipped with a "cocycle")

They occur often in this context as $\sigma = \sigma_{\chi}$, e.g., for $\chi = BG$ or $\chi = B^{p+1}A$ or extensions $B^2A \longrightarrow \chi \longrightarrow BG$

Defects—in particular quotient defects—can be made explicit and computations are easy. Here is the composition $\delta^* \circ \delta$, essentially a finite homotopy theory based on $\Omega \mathfrak{X}$:

Duality defects (after Córdova-Choi-Hsin-Lam-Shao arXiv:2111.01139)

I conclude with an application—symmetry used to constrain dynamics via:

If a gapped theory $F_{\rm UV}$ has a (σ, ρ) -module structure, then the low energy topological field theory approximation $F_{\rm IR}$ should also have a (σ, ρ) -module structure

$$(\sigma,
ho) \bigcirc F_{\mathrm{UV}}$$

 \downarrow RG flow

 $(\sigma,
ho) \bigcirc F_{\mathrm{IR}}$

We will prove in a particular example that there does not exist a *topological* left σ -module $\tilde{\lambda}$ such that $\lambda := \rho \otimes_{\sigma} \tilde{\lambda}$ is invertible. Therefore, $F_{\rm UV}$ cannot flow to an invertible field theory, i.e., is not "trivially gapped"

Duality defect

 $\begin{array}{ll} \sigma & n+1 \text{-dimensional topological field theory} \\ \rho & \text{right regular } \sigma \text{-module} \\ \epsilon & \text{augmentation of } \sigma \text{: "invertible" right } \sigma \text{-module} \\ \widetilde{F} & \text{left } \sigma \text{-module} \\ F & n \text{-dimensional QFT } \rho \otimes_{\sigma} \widetilde{F} \\ F / \sigma & n \text{-dimensional QFT } \epsilon \otimes_{\sigma} \widetilde{F} \\ \end{array}$

Suppose there is an isomorphism $\phi \colon F/\sigma \xrightarrow{\cong} F$. Recall $\delta \colon F \to F/\sigma$

Definition: The *duality defect* Δ is the self-domain wall

 $\Delta = \phi \circ \delta \colon F \longrightarrow F$

Computation: $\Delta^* \circ \Delta = (\phi \delta)^* (\phi \delta) = \delta^* \phi^* \phi \delta = \delta^* \circ \delta$ since $\phi^* = \phi^{-1}$ (ϕ is invertible)

Example

Let n = 4 and let σ be the 5-dimensional finite homotopy theory built from $\mathfrak{X} = B^2 / \mu_2$ This models B / μ_2 -symmetry ("1-form symmetry")

Recall that ρ , ϵ , δ , and δ^* and the composition $\delta^* \circ \delta$ fit into the diagram

In an invertible (σ, ρ) -module λ , the self-domain wall $\delta^* \circ \delta$ is multiplication by 3-dimensional μ_2 -gauge theory

Now suppose F is a 4d QFT with a left (σ, ρ) -structure, and assume given an isomorphism

$$\phi\colon F/\sigma \xrightarrow{\cong} F$$

Example: F is U₁ gauge theory with coupling constant τ F has B/μ_2 symmetry from $\mu_2 \subset U_1$ F/σ is U₁ gauge theory with coupling constant $\tau/4$ ϕ is S-duality which sends $\tau \mapsto -1/\tau$ Set $\tau = 2\sqrt{-1}$

We do not use details of the gauge theory beyond its $B\mu_{2}$ symmetry

Then the duality defect $\Delta \colon F \to F$ is a "square root" of 3d μ_{α} gauge theory

Theorem: No such square root exists

Conclusion: The gauge theory F is not trivially gapped

Happy Birthday, Hirosi!