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Symmetry in quantum field theory and quantum gravity

This is a big subject to which Hirosi has made many contributions

Today I will introduce a framework for internal topological symmetries in QFT

Leads to a calculus of topological defects which takes full advantage of well-developed

theorems and techniques in topological field theory

Let’s begin with some motivation from representation theory of Lie groups and Lie algebras
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Computations in. . . sl2pRq

Set

h “
ˆ

1 0
0 ´1

˙
e “

ˆ
0 1
0 0

˙
f “

ˆ
0 0
1 0

˙

Simple matrix manipulations verify the identity

1

2
h2 ` ef ` fe “ 1

2
h2 ` h ` 2fe

Namely, both sides equal ˜
3
2 0

0 3
2

¸
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In the 3-dimensional representation of sl2pRq we have

h1 “
¨

˝
2 0 0
0 0 0
0 0 ´2

˛

‚ e1 “
¨

˝
0 1 0
0 0 2
0 0 0

˛

‚ f 1 “
¨

˝
0 0 0
2 0 0
0 1 0

˛

‚

Now slightly less simple matrix manipulations verify the identity

1

2
ph1q2 ` e1f 1 ` f 1e1 “ 1

2
ph1q2 ` h1 ` 2f 1e1

Namely, both sides equal ¨

˚̋
4 0 0

0 4 0

0 0 4

˛

‹‚
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The Lie group SL2pRq acts on the projective line RP1 as fractional linear transformations

There is an induced action on di↵erentials �pxqpdxq� for each � P C

The infinitesimal action of sl2pRq is:

h̃ : � fi›Ñ ´2x�1 ´ 2��

ẽ : � fi›Ñ ´�1

f̃ : � fi›Ñ x2�1 ` 2�x�

Some calculus manipulations verify the identity

1

2
h̃2 ` ẽf̃ ` f̃ ẽ “ 1

2
h̃2 ` h̃ ` 2f̃ ẽ

Both sides act as multiplication by 4�2 ´ 2�
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Both sides act as multiplication by 4�2 ´ 2�



Instead of each separate computation, we compute universally in an abstract algebra

Each representation defines a module over the universal enveloping algebra A “ U
`
sl2pRq

˘

The identity
1

2
h2 ` ef ` fe “ 1

2
h2 ` h ` 2fe

holds in A, since re, f s “ ef ´ fe “ h, hence it holds in every A-module

Many recent results about extended notions of symmetry in QFT: Apruzzi, Bah, Benini,
Bhardwaj, Bonetti, Bullimore, Córdova, Choi, Cvetič, Del Zotto, Dumitrescu, Frölich,
Fuchs, Gaiotto, Garćıa Etxebarria, Gould, Gukov, Heckman, Heidenreich, Hopkins,
Hosseini, Hsin, Hübner, Intriligator, Ji, Jian, Johnson-Freyd, Jordan, Kaidi, Kapustin,
Komargodski, Lake, Lam, McNamara, Minasian, Montero, Ohmari, Pantev, Pei, Plavnik,
Reece, Robbins, Roumpedakis, Rudelius, Runkel, Schäfer-Nameki, Scheimbauer,
Schweigert, Seiberg, Seifnashri, Shao, Sharpe, Tachikawa, Thorngren, Torres,
Vandermeulen, Wang, Wen, Willett, . . . , . . . , . . .

Main idea: Make analogous universal computations with symmetries in QFT
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Hosseini, Hsin, Hübner, Intriligator, Ji, Jian, Johnson-Freyd, Jordan, Kaidi, Kapustin,
Komargodski, Lake, Lam, McNamara, Minasian, Montero, Ohmari, Pantev, Pei, Plavnik,
Reece, Robbins, Roumpedakis, Rudelius, Runkel, Schäfer-Nameki, Scheimbauer,
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Warning

The word ‘symmetry’ in mathematics usually refers to groups (”invertible symmetries”)

rather than algebras (“noninvertible symmetries”), but in modern QFT-speak the term

‘symmetry’ is also used for the latter. Algebras of operators, including those that commute

with a Hamiltonian, date from the earliest days of quantum mechanics



Motivation: algebras

Abstract symmetry data (for algebras) is a pair pA,Rq:

A algebra

R right regular module

Definition: Let V be a vector space. An pA,Rq-action on V is a pair pL, ✓q consisting of a
left A-module L together with an isomorphism of vector spaces

✓ : R bA L
–››Ñ V

R allows us to recover the vector space underlying L—a bit pedantic here; crucial later

Elements of A act on all modules; relations in A apply (e.g. Casimirs in Upsl2pRqq)

Analogy:
algebra „„„B topological field theory

element of algebra „„„B defect in TFT

A
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Field theory

Analogy: field theory „ module over an algebra OR „ representation of a Lie group

Warning: This analogy is quite limited

Segal Axiom System: A (Wick-rotated) field theory F is a linear representation of a

bordism (multi)category BordnpFq

n dimension of spacetime

F background fields (orientation, Riemannian metric, . . . )

Fully local theory for topological theories; full locality in principle for general theories

Kontsevich-Segal: Axioms for 2-tier nontopological theory F : Bordxn´1,nypFq Ñ tVect
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Domain walls, boundary theories, defects

�,�1,�2 pn ` 1q-dimensional theories

� : �1 Ñ �2 domain wall

⇢ : � Ñ right boundary theory

rF : Ñ � left boundary theory

The “sandwich” ⇢ b�
rF is an (absolute) n-dimensional theory

More generally, one can put defects on any (stratified) manifold D Ä M

← ← ←

q
r

.
I r r I

s P E
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Domain walls, boundary theories, defects

�,�1,�2 pn ` 1q-dimensional theories

� : �1 Ñ �2 domain wall

⇢ : � Ñ right boundary theory

rF : Ñ � left boundary theory

The “sandwich” ⇢ b�
rF is an (absolute) n-dimensional theory

More generally, one can have defects supported on any (stratified) manifold D Ä M

⑧
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Main definition: abstract symmetry data

Fix a dimension n and background fields F (which we keep implicit)

Definition: A quiche is a pair p�, ⇢q in which � : Bordn`1pFq Ñ C is an pn ` 1q-
dimensional topological field theory and ⇢ is a right topological �-module.

Example: Let G be a finite group. Then for a G-symmetry we let � be finite gauge
theory in dimension n`1. Note this is the quantum theory which sums over
principal G-bundles

Regular ⇢: Suppose C1 is a symmetric monoidal n-category and � is an pn ` 1q-
dimensional topological field theory with codomain C “ AlgpC1q. Let
A “ �pptq. Then A is an algebra in C1 which, as an object in C, is pn`1q-
dualizable. Assume that the right regular module AA is n-dualizable as a

1-morphism in C. Then the boundary theory ⇢ determined by AA is the
right regular boundary theory of �, or the right regular �-module.

A regular boundary theory is also sometimes called Dirichlet

8

B
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Main definition: concrete realization of symmetry

Definition: Let p�, ⇢q be an n-dimensional quiche. Let F be an n-dimensional field
theory. A p�, ⇢q-module structure on F is a pair p rF , ✓q in which rF is a left
�-module and ✓ is an isomorphism

✓ : ⇢ b�
rF –››Ñ F

of absolute n-dimensional theories.

‚ The theory F and so the boundary theory rF may be topological or nontopological

‚ The sandwich picture of F as ⇢ b�
rF separates out the topological part p�, ⇢q of the

theory from the potentially nontopological part rF of the theory.

‚ Symmetry persists under renormalization group flow, hence a low energy
approximation to F should also be an p�, ⇢q-module. If F is gapped, then we can bring
to bear powerful methods and theorems in topological field theory to investigate
topological left �-modules. This leads to dynamical predictions

I 8 E #
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Example: quantum mechanics with G-symmetry

n “ 1

F {orientation, Riemannian metric} for F and rF
H Hilbert space

H Hamiltonian

G

ö

H finite group

S : G Ñ AutpHq action on H

�pptq CrGs
F pptq H

rF pptq CrGsH (left module)

Evaluation of some bordisms: (a) the left module CrGsH

(b) e
´⌧H{~

: CrGsH ›Ñ CrGsH

(c) the central function g fi›Ñ Tr
H

`
Spgqe´⌧H{~˘

on G

P r E F

O
>

≈



Example: gauge theory with BA-symmetry

n any dimension

A finite abelian group A “ /µ
2

BA a homotopical/shifted A (“1-form A-symmetry”)

H Lie group with A Ä ZpHq H “ SU2

H “ H{A H “ SO3

F H-gauge theory

rF H-gauge theory

A quotient construction allows to recover absolute H-gauge theory as a sandwich (later)

P r E F

O
>

≈



Defects: quantum mechanics

n “ 1

H Hilbert space

H Hamiltonian

G

ö

H finite group

Consider a point defect in F . The link of a point in a 1-manifold (imaginary time) is S
0
, a

0-sphere of radius ✏, and the vector space of defects is

lim–›
✏Ñ0

Hom
`
1, F pS0

✏ q
˘

which is a space of singular operators on H. To focus on formal aspects we write ‘EndpHq’

We now consider defects in p⇢,�, rF q which transport to point defects in F

A

(a) a GCDA, H) C6, H)
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0-sphere of radius ✏, and the vector space of defects is

lim–›
✏Ñ0

Hom
`
1, F pS0

✏ q
˘

which is a space of singular operators on H. To focus on formal aspects we write ‘EndpHq’

We now consider defects in p⇢,�, rF q which transport to point defects in F

⑤"

Lid, H)



Defects: quantum mechanics

n “ 1

H Hilbert space

H Hamiltonian

G

ö

H finite group

Consider a point defect in F . The link of a point in a 1-manifold (imaginary time) is S
0
, a

0-sphere of radius ✏, and the vector space of defects is

lim–›
✏Ñ0

Hom
`
1, F pS0

✏ q
˘

which is a space of singular operators on H. To focus on formal aspects we write ‘EndpHq’

We now consider defects in p⇢,�, rF q which transport to point defects in F

⑧ ⑧ o
A

(a) a GGD, H) Lid, H)



Point ⇢-defects

The link is a closed interval with ⇢-colored boundary. It evaluates under p�, ⇢q to the vector
space A “ CrGs. The “label” of the defect is therefore an element of A. Note G Ä A labels
invertible defects.

⇢-defects are topological

§ •

≈

616] 5 GGIH
,
H) (H

,
H)

• • ≈ A



Point rF -defects

The link is again a closed interval, but now with rF -colored boundary. The value
under p�, rF q is EndApHq, the space of observables that commute with the G-action

rF -defects are typically not topological

§
*•(•

•
≈ _

(H
,
H)

ECG] 5 GGCH
,
H)

"

A
0

• •-→
→

•

AH H*F- a É
A

Enda #



Point �-defects: central defects

The link is S1, and the value under � is the vector space which is the center of the group
algebra A “ CrGs.

�-defects are topological

⑨
≈

•

ECG] 5 GGIH
,
H) (H

,
H)



The general point defect

A general point defect in F can be realized by a line defect in p⇢,�, rF q.

Label the defect beginning with the highest dimensional strata and work down in dimension

B pA,Aq-bimodule

⇠ vector in B

T pA,Aq-bimodule map B ›Ñ EndpHq

A

☒ •Tos)
A

% ≈

ECG] 5 GGIH
,
H) (H

,
H)



Composition law on defects

Compute using the links of the defects—2 incoming and 1 outgoing

�-defects: pair of pants

⇢-defects: pair of chaps

;D ;
• • → • - → • → .

;) :} :} • t>
→

→



Commutation relations among defects

The sandwich realization makes clear that

‚ ⇢-defects (symmetries) commute with rF -defects

‚ �-defects (central symmetries) commute with both ⇢-defects and with rF -defects

However, ⇢-defects do not necessarily commute with each other

Nor do they commute with the general defect

• • •

e r F-
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Commutation relations among defects

The sandwich realization makes clear that

‚ ⇢-defects (symmetries) commute with rF -defects

‚ �-defects (central symmetries) commute with both ⇢-defects and with rF -defects

However, ⇢-defects do not necessarily commute with each other

Nor do they commute with the general defect

g.
{ •

B
•

t-gg.gg)g•
•Fg }g"• • T

B B

g•

I

• g
• Tfs) • Tlg}) .at/g?g-' )

•

g



Quotients: augmentations

Definition: An augmentation of an algebra A is an algebra homomorphism ✏ : A Ñ C.

Use ✏ to give a right A-module structure to C: � ¨ a “ �✏paq, � P C

Example: A “ CrGs: ✏ : CrGs ›Ñ C
ÿ

gPG
�gg fi›Ñ

ÿ

gPG
�g

The “quotient” of a left A-module L is the vector space

Q “ C bA L “ C b✏ L

Example: A “ CrGs, S a finite G-set, L “ CxSy: then Q “ C bA CxSy – CxS{Gy

Augmentations for higher algebras: � tensor category ✏ : � Ñ Vect fiber functor

• > V
R A {
• •

% A <

= Q



Quotients: augmentations

Definition: An augmentation of an algebra A is an algebra homomorphism ✏ : A Ñ C.

Use ✏ to give a right A-module structure to C: � ¨ a “ �✏paq, � P C

Example: A “ CrGs: ✏ : CrGs ›Ñ C
ÿ

gPG
�gg fi›Ñ

ÿ

gPG
�g

The “quotient” of a left A-module L is the vector space

Q “ C bA L “ C b✏ L

Example: A “ CrGs, S a finite G-set, L “ CxSy: then Q “ C bA CxSy – CxS{Gy

Augmentations for higher algebras: � tensor category ✏ : � Ñ Vect fiber functor



Quotients and quotient defects

We use the yoga of fully local topological field theory: let C1 be a symmetric monoidal
n-category and set C “ AlgpC1q, the pn ` 1q-category whose objects are algebras in C1

Definition: An augmentation ✏A : A Ñ 1 of an algebra A P AlgpC1q is an algebra homo-
morphism from A to the tensor unit 1 P C

Definition: Let F be a collection of pn ` 1q-dimensional fields, and suppose
� : Bordn`1pFq Ñ C is a topological field theory. A right boundary the-
ory ✏ for � is an augmentation of � if ✏pptq is an augmentation of �pptq

Augmentations are also called Neumann boundary theories

Augmentations do not always exist

I
r

E
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morphism from A to the tensor unit 1 P C

Definition: Let F be a collection of pn ` 1q-dimensional fields, and suppose
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Definition: Suppose given finite symmetry data p�, ⇢q and a p�, ⇢q-module structure
p rF , ✓q on a quantum field theory F . Suppose ✏ is an augmentation of �.
Then the quotient of F by the symmetry � is

F
✏

L
� “ ✏ b�

rF

II.⇒ I 11 .

g-

=
°

•

⇐
/

E.

Flo



Dirichlet-to-Neumann and Neumann-to-Dirichlet domain walls

The categories of domain walls ⇢ Ñ ✏ and ✏ Ñ ⇢ are each free of rank one; let

� : ⇢ ›Ñ ✏

�˚ : ✏ ›Ñ ⇢

be generators. Transporting via ✓ we obtain domain walls

� : F ›Ñ F
L
�

�˚ : F
L
� ›Ñ F

We will soon compute the self-domain wall

�˚ ˝ � : F ›Ñ F

-

y: p: :*1 I :-.



Dirichlet-to-Neumann and Neumann-to-Dirichlet domain walls

The categories of domain walls ⇢ Ñ ✏ and ✏ Ñ ⇢ are each free of rank one; let

� : ⇢ ›Ñ ✏

�˚ : ✏ ›Ñ ⇢

be generators. Transporting via ✓ we obtain domain walls

� : F ›Ñ F
L
�

�˚ : F
L
� ›Ñ F

We will soon compute the self-domain wall

�˚ ˝ � : F ›Ñ F

:|:D
E.§



Quotient defects (after Roumpedakis–Seifnashri–Shao arXiv:2204.02407)

Passing from F to F
L
� on a manifold M places the topological defect ✏ on all of M

There is also a quotient defect ✏pZq—it is a ⇢-defect—supported on a submanifold Z Ä M ,
defined using a tubular neighborhood ⌫ of Z Ä M . It is topological, as are all ⇢-defects

If codimM pZq “ 1, then
✏pZq “ �˚ ˝ �

p

g

¥.

•
Z

r

Codimpft = 1 codimmz = 2



Quotient defects (after Roumpedakis–Seifnashri–Shao arXiv:2204.02407)

Passing from F to F
L
� on a manifold M places the topological defect ✏ on all of M

There is also a quotient defect ✏pZq—it is a ⇢-defect—supported on a submanifold Z Ä M ,
defined using a tubular neighborhood ⌫ of Z Ä M . It is topological, as are all ⇢-defects

If codimM pZq “ 1, then
✏pZq “ �˚ ˝ �

Efe:



Computation for finite homotopy theories

Finite homotopy theories are a special class of topological field theories, introduced in 1988

by Kontsevich, picked up a few years later by Quinn, developed by Turaev, . . .

They are associated to a ⇡-finite topological space X (possibly equipped with a “cocycle”)

They occur often in this context as � “ �X, e.g., for X “ BG or X “ Bp`1A or extensions

B2A ›Ñ X ›Ñ BG

Defects—in particular quotient defects—can be made explicit and computations are easy.

Here is the composition �˚ ˝ �, essentially a finite homotopy theory based on ⌦X:

⌦X

}} !!˚
�� !!

˚
}} ��˚

⇢

!!

X

✏

✏✏

˚
⇢

}}
X

⌦X

�� ��˚
⇢

��

˚
⇢

��
X



Duality defects (after Córdova–Choi–Hsin–Lam–Shao arXiv:2111.01139)

I conclude with an application—symmetry used to constrain dynamics via:

If a gapped theory FUV has a p�, ⇢q-module structure, then the low energy topological
field theory approximation FIR should also have a p�, ⇢q-module structure

p�, ⇢q ö

FUV

p�, ⇢q ö

FIR

RG flow

We will prove in a particular example that there does not exist a topological left
�-module �̃ such that � :“ ⇢ b� �̃ is invertible. Therefore, FUV cannot flow to an invertible

field theory, i.e., is not “trivially gapped”

It follows that A :“ �pptq does not admit an augmentation (’t Hooft anomaly)

Warning: To apply to the following example, � here includes the duality defect �



Duality defect

� n ` 1-dimensional topological field theory

⇢ right regular �-module

✏ augmentation of �: “invertible” right �-module

rF left �-module

F n-dimensional QFT ⇢ b�
rF

F
L
� n-dimensional QFT ✏ b�

rF

Suppose there is an isomorphism � : F
L
�

–››Ñ F . Recall � : F Ñ F
L
�

Definition: The duality defect � is the self-domain wall

� “ � ˝ � : F ›Ñ F

Computation: �˚ ˝ � “ p��q˚p��q “ �˚�˚�� “ �˚ ˝ � since �˚ “ �´1 (� is invertible)



Example

Let n “ 4 and let � be the 5-dimensional finite homotopy theory built from X “ B2
/µ

2

This models B/µ
2
-symmetry (“1-form symmetry”)

Recall that ⇢, ✏, �, and �˚ and the composition �˚ ˝ � fit into the diagram

⌦X
|| ""˚

�� ""
˚

|| ��˚
⇢

""

X
✏

✏✏

˚
⇢

||
X

�˚ ˝ � is roughly 3-dimensional /µ
2
-gauge theory

In an invertible p�, ⇢q-module �, the self-domain wall �˚ ˝ �
is multiplication by 3-dimensional /µ

2
-gauge theory

• or:S

a



Now suppose F is a 4d QFT with a left p�, ⇢q-structure, and assume given an isomorphism

� : F
L
�

–››Ñ F

Example: F is U1 gauge theory with coupling constant ⌧
F has B/µ

2
symmetry from /µ

2
Ä U1

F
L
� is U1 gauge theory with coupling constant ⌧{4

� is S-duality which sends ⌧ fiÑ ´1{⌧
Set ⌧ “ 2

?´1

We do not use details of the gauge theory beyond its B/µ
2
symmetry

Then the duality defect � : F Ñ F is a “square root” of 3d /µ
2
gauge theory

Theorem: No such square root exists

Conclusion: The gauge theory F is not trivially gapped



Happy Birthday, Hirosi!


