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Lossy horizons

Black hole horizons appear to display irreversible, dissipative behavior.

Ping the black hole, look at the response:

Oscillates and decays – quasinormal modes. Classical gravity, signal
decays forever.
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Black holes are ordinary quantum systems

Central dogma: black holes, at least when viewed from the outside,
are ordinary quantum systems.

Gauge/gravity duality, AdS/CFT, holographic duality

In certain large N quantum systems, strongly coupled quantum
behavior on the “boundary” is “dual” to weakly coupled quantum
gravitational behavior in the “bulk” spacetime [Maldacena].

High energy thermal states of the boundary are dual to black holes.
Don’t evaporate.

[Maldacena, Sci. Am.]
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Long time behavior of correlation functions

Boundary version of pinging the black hole: Thermal correlator
〈O(t)O(0)〉. Thermal relaxation ↔ quasinormal modes
[Horowitz-Hubeny].

Boundary calculation:

〈O(t)O(0)〉 =
∑
m,n

e−βEm |〈m|O|n〉|2e i(Em−En)t/Z

We expect that black hole energy levels are discrete (finite
(Bekenstein-Hawking) entropy S) and nondegenerate (chaos).

Then at long times 〈O(t)O(0)〉 stops decreasing. It oscillates in an
erratic way and is exponentially small (in S).

What is the bulk explanation for this? Maldacena’s version of the
black hole information problem.
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What are the rules?

We know the rules for the boundary.

We know a lot about the bulk, but we don’t know all the rules
describing it.

We don’t know enough to calculate the spectrum En from the bulk
point of view.

Turn to a simple model where we can do more.
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Sachdev-Ye-Kitaev model

In recent years a simple model of black holes in 1 space and 1 time
dimension has been introduced: the Sachdev-Ye-Kitaev (SYK) model.

0 space, 1 time boundary system – an ordinary quantum mechanical
system.

HSYK =
∑
abcd

Jabcdψaψbψcψd

ψa are N Majorana fermions. Jabcd are independent, random,
Gaussian distributed couplings. An ensemble of boundary QM
systems.
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Spectral form factor

Correlation function

〈O(t)O(0)〉 =
∑
m,n

e−βEm |〈m|O|n〉|2e i(Em−En)t/Z

The oscillating phases are the main actors here. Use a simpler, related
diagnostic, the “spectral form factor” (SFF) [Papadodimas-Raju]:

SFF(t) =
∑
m,n

e−β(Em+En)e i(Em−En)t = ZL(β + it)ZR(β − it)

The Fourier transform of the energy differences

Study in SYK model:
First, do computer “experiments” ...
[You-Ludwig-Xu,Garcia-Garcia-Verbaaschot,

Cotler-Gur-Ari-Hanada-Polchinski-Saad-SS-Stanford-Streicher-Tezuka ...]
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Ramp and plateau
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Slope is analog of quasinormal mode decay.

Does not continue forever. Exponentially small ramp and plateau
(erratic behavior smoothed out by ensemble averaging).

What does this pattern mean?

A signature of random matrix statistics.
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Abundant evidence that black holes are highly chaotic quantum
systems.

The energy levels of quantum chaotic systems are widely believed to
have the same statistical properties as those of random matrices.
[Wigner; Bohigas-Giannoni-Schmit...]

Each entry of the “Hamiltonian” is independently drawn from a
Gaussian distribution.

A remarkable example of universality. Independent of dimension,
locality. Only weakly dependent on symmetry.
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Density-density correlations

Random matrix formula for density-density correlations, the Sine
kernel formula. [Dyson; Gaudin; Mehta]

〈ρ(E )ρ(E ′)〉 ∼ e2S(Ē) − 1

2(π(E − E ′))2
(1− cos(2πeS(Ē)(E − E ′)))
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(Here eS(Ē) is the local density of states.)

Long-range spectral rigidity, short-range level repulsion
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Ramp and plateau from Sine kernel
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Fourier transform of Sine kernel formula gives ramp and plateau.

Ramp is signature of long-range spectral rigidity.

Sharp transition to plateau is signature of short-range level repulsion.

Not only does the SFF signal stop decreasing, but it displays a
distinctive, universal pattern late-time pattern.

What is the bulk, gravitational explanation for this pattern?
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Collective fields in SYK

SYK gives us a tool.

Rewrite the dynamics using collective (Hubbard-Stratonovich) fields,
G ,Σ (e.g., Landau-Ginzburg description of superconducting pairs).

G (t, t ′) =
1

N

N∑
a=1

ψa(t)ψa(t ′).

Schematically,∫
dψa exp(−Ifermion(ψ))→

∫
dGdΣ exp(−N Icoll(G ,Σ))

Icoll especially simple after averaging over J’s.

An exact rewrite.

Collective fields connect to a gravitational description.
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SYK and JT gravity

At low energies the collective field description is related to a certain
kind of 2D gravity called Jackiw-Teitelboim gravity [Jensen,

Maldacena-Stanford-Yang, Engelsoy-Mertens-Verlinde].

Concretely, G (t, t ′) is given by the correlator of a quantum field on a
2D geometry:

SYK with fixed couplings

Can formulate a collective field (G ,⌃) description of SYK with fixed
couplings [Saad-SS-Stanford-Yao].

Only a toy model of gravity, But we have an explicit representation for
the entire “gravitational” (G ,⌃) path integral.

Z =

Z
dG(t, t0)d⌃(t, t0) exp(Ifixed(N, G ,⌃))

In principle we can explore its nooks and crannies. (Detailed analysis only
in a toy2 model with one time point.)

Where does the noise come from?

The collective field integral∫
dGdΣ exp(−N Icoll(G ,Σ))

is a proxy for a complete bulk description. In this simple model we
know all the rules.
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SFF in JT

The SFF:

SFF(t) =
∑
m,n

e−β(Em+En)e i(Em−En)t = ZL(β + it)ZR(β − it)

L and R “replicas” of SYK. Collective fields

GLL = ψLψL, GRR = ψRψR , GLR = ψLψR

.The ramp comes from a nonzero saddle point for GLR , linking the L
and R replicas.

Ramp

Look for connected SYK saddle point with nonvanishing collective field

GLR(t, t0) =
1

N

NX

a=1

 L
a (t) 

R
a (t0).

At low energies collective field saddles are given by bulk correlators on
JT gravity geometries [Jensen, Maldacena-Stanford-Yang, Engelsoy-Mertens-Verlinde].

So we can think of G ,⌃ as proxies for bulk degrees of freedom.A spacetime “wormhole” connecting the L and R boundary systems
[Saad-SS-Stanford].
(The plateau is more subtle, involving more complicated topologies.
See [Saad-Stanford-Yang-Yao]).
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The double cone

time

identify

The double cone [Saad-SS-Stanford].

Represents a one dimensional universe (a line) evolving in time.

A spacetime wormhole.

Spatial wormholes, like Einstein-Rosen bridges, correspond to the one
dimensional slice.
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Wormholes

Candidate wormhole configurations have been found in higher
dimensions [Cotler-Jensen]. This is consistent with the universal
character of random matrix statistics.

Closely related wormhole configurations have recently been used to
explain a host of subtle quantum phenomena in black holes, at least
in simple models:

Long-time behavior of correlation functions [Saad].
ETH and OPE statistics [Belin-de Boer, Pollack-Rozali-Sully-Wakeham]

The Page curve for radiation from evaporating black holes
[Almheiri-Hartman-Maldacena-Shaghoulian-Tajdini; Penington-SS-Stanford-Yang].
Firewall formation [Stanford-Yang].
...

But their existence raises a number of puzzling questions.
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Gauge/gravity duality without averaging

Standard gauge/gravity duals, like AdS5 ↔ Super-Yang-Mills4, are
not averaged. One specific boundary quantum system. We don’t
know the rules here.

A toy model for non-averaged behavior: a single member of an
ensemble.

SYK with one choice of J’s.
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Single sample noise
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The ramp and plateau are noisy . Noise is of order the signal.
Expected from RMT universality. This is what a regular AdS/CFT
should produce.

Can recover the wormhole signal – the smooth ramp – without an
ensemble, by averaging over time.

But the bulk description must contain something else to account for
the noise.
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Factorization puzzle

A sharp puzzle if the boundary Hamiltonian is not averaged over.

From the boundary point of view ZLR is exactly equal to ZL · ZR ,
since the L and R systems are decoupled. ZLR factorizes.

But from the bulk point of view ZLR contains a LR wormhole. But ZL

and ZR do not. So superficially ZLR does not factorize.

If wormholes are actually then the bulk description must contain
something else to restore factorization.

It seems very plausible that this “something else” is also the source of
the noise.

If we average over an ensemble of Hamiltonians then
〈ZLR〉 6= 〈ZL〉〈ZR〉 in general.

And in fact the connection between wormholes and fluctuating
couplings was pointed out long ago [Coleman; Giddings-Strominger].
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SYK with fixed couplings

How to study this?

Examine the collective field description of SYK with fixed couplings
(J’s) [Saad-SS-Stanford-Yao].∫

dGdΣ exp(−N Icoll(G ,Σ, J))

Same kind of collective field description, with a much more
complicated weighting factor that depends explicitly on the random
couplings J.

Can only do a precise analysis in a toy model of the toy model – SYK
with one time point (!)
ψ(t)→ ψ. An ordinary integral over N Grassman variables.

Can analyze the collective field integral with precision, and make a
plausible guess for how full SYK works.
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Half-wormholes

With fixed couplings there is another saddle point of the collective
field integral, in addition to the wormhole.

This saddle point has GLL(t, t ′) and GRR(t, t ′) set to their values in
the wormhole saddle, but GLR(t, t ′) set to zero.The noisy ramp

The wormhole plus the half-wormholes combine to restore factorization.

A multiplicity of bulk descriptions...

EE'D

Gerto Giro N R

The contribution of the wormhole saddle is essentially independent of
the choice of J’s.

But the half-wormhole contribution is very sensitive. It is the source
of the noise.

On averaging, over J’s, or over a time window, the half-wormhole
contribution vanishes, leaving the wormhole signal.

Geometrical picture in JT [Blommaert-Mertens-Verscheide; Saad-SS-Yao;

Blommaert-Iliesiu-Kruthoff]
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Factorization

There are multiple possible collective field (bulk) descriptions. With
fixed J’s there is no clear preference between them.
For example, we can introduce GLR and look for saddle points when
integrating over it.
Or we could just integrate it out first, eliminating it. This leaves a
“bulk” description without wormholes. They’ve been integrated out.
In this description ZLR manifestly factorizes.
The noisy ramp is described by half-wormholes in the L and R
systems separately.

The noisy ramp

The wormhole plus the half-wormholes combine to restore factorization.

A multiplicity of bulk descriptions...

EE'D

Gerto Giro N R
The wormhole and half-wormhole contributions on the LHS combine
to restore factorization. Their contributions are of the same
magnitude.
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Questions

Do these structures have parallels in higher dimensional “less toylike”
models of quantum gravity, like standard AdS/CFT systems?

The idea of multiple bulk descriptions and of extra ingredients needed
for factorization echo some ideas that have emerged in other simple
model gravitational systems [cf. Marolf-Maxfield, Jafferis-Schneider, Eberhardt,

Mukhametzhanov, Benini-Copetti-De Pietra...].

We haven’t yet made contact with with the bulk degrees of freedom
that we think are important in such systems – strings, branes etc. –
especially when they are interacting in a complicated, chaotic, way.
(cf. the “fuzzball” program [Mathur, ....])

We need another simple, tractable model, in the spirit of SYK, to
help us move closer to understanding the rules of quantum gravity.
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Happy Birthday Hirosi!
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