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A Simple Model

Hirosi is a Quantum
Particle
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Leonardo da Vinci (1452-1519)



Turbulence

Turba is a Latin word for crowd. Turbulence originally refers to
the disorderly motion of a crowd. Scientifically it refers to a
complex and unpredictable motion of a fluid.



Turbulence

• Fluid turbulence: "You know it when you see it".
• Emergent complex structure from simple rules (Newton’s

Second Law).



Mathematical Framework

• The incompressible Navier-Stokes (NS) equations (1822)
provide a mathematical formulation of the fluid flow
evolution at low Mach number:

∂tv i + v j∂jv i = −∂ ip + ν∂jjv i + F i , ∂iv i = 0 (1)

• v i , i = 1, ...,d is the fluid velocity and p is the fluid
pressure, ν is the kinematic viscosity and F i is an external
random force.



Reynolds Number

• Reynolds number (1883):

Re =
lv
ν

(2)

where l is a characteristic length scale, v is the velocity
difference at that scale, and ν is the kinematic viscosity.

• When the Reynolds number is of order 103 or more, one
observes numerically and experimentally a turbulent
structure of the flow.



Transition to Turbulence

(Source: Wikipedia)



Turbulence in Nature

Most flows in nature are turbulent: the kinematic viscosity of
water is ν ' 10−6 m2

sec and that of air is ν ' 1.5× 10−5 m2

sec . A
medium size river has a Reynolds number Re ∼ 107



Statistical Turbulence

• One defines the inertial range to be the range of distance
scales l � r � L, where the scales l and L are determined
by the viscosity and forcing, respectively.

• Numerical and experimental data show that the statistical
average properties exhibit a universal structure shared by
all turbulent flows, independently of the details of the flow
excitations.



Fluid Observables

• Define the longitudinal velocity difference between points
separated by a fixed distance r = |~r |

δv(r) =
(
~v(~r , t)− ~v(0, t)

)
·
~r
r

(3)

• The structure functions exhibit in the inertial range a
scaling

Sn(r) = 〈(δv(r))n〉 ∼ r ξn (4)



K41 Theory

Sn(r) ≡ 〈
(

(v(x)− v(y)) · r
r

)n
〉 ∼ r

n
3 (5)

E(k) ∼ k−5/3 (6)



Anomalous Scaling
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Field Theory

• We derive under certain assumptions an exact formula for
the anomalous scalings ξn

ξn −
n
3

= G2(d)ξn(1− ξn) (7)

• G(d) is a numerical real parameter that depends on the
number of space dimensions.

C. Eling, Y.O. JHEP 1509 (2015) 150
Y.O. JHEP 1711 (2017) 040, Eur.Phys.J. C78 (2018) no.8,
655, arXiv:1809.10003 (Jacob Bekenstein: The
Conservative Revolutionary)



Experimental Data: Three Space Dimensions
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Figure: The dashed line represents Kolmogorov scaling. The best fit
value of the free parameter G2 is about 0.161. The error on the data
is about ±1 percent (Benzi et.al. 1995).



Numerical Data: Three Space Dimensions
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Figure: Fit to numerical data of numerical low moments (Chen et.al
2005). The dashed line represents Kolmogorov scaling. The best fit
value of the free parameter G2 is about 0.159.



Random Geometry

• Formula (??) is (Knizhnik-Polyakov-Zamolodchikov)-type
relation (KPZ) that arises when coupling a dynamical
system to a random geometry (1988):

dµγ(x) ∼ eγφ(x)dµ (8)

• The Gaussian random field φ(x) has covariance
φ(x)φ(y) ∼ − log |x − y | .



Scale Symmetry Breaking

• In the absence of a viscosity term, the (inviscid) NS
equations (??) exhibit two scale symmetries of space and
time:

x i → eσx i , t → ezσt (9)

• The local energy dissipation ε(x) = ν
2

(
∂iv j + ∂jv i)2

(alternatively the flux) breaks spontaneously the
symmetries of the inviscid NS equations to z = 2

3 :

∆K 41[v i ] =
1
3

(10)



Inertial Range Dilaton

• The dilaton τ(x) is the fluctuation:

ε(x) = ε̄eδτ(x) (11)

• The dilaton action reads:

SD(τ, ĝ) =
d

Ωd (d − 1)!

∫
M

ddx
√

ĝ
(
τPĝτ + 2QQĝτ

)
(12)

• T. Levy, Y.O. JHEP 1806 (2018) 119, I. Hason,
arXiv:1708.08294, T. Levy, Y.O., A. Raviv-Moshe JHEP
1812 (2018) 122, JHEP 1910 (2019) 006, A. Kislev, T.
Levy, Y.O. JHEP 7 (2022) 1.



Dilaton Field Theory

• Pĝ are the conformally covariant operators (GJMS 92):

Pĝ = (−∆)
d
2 + lower order (13)

• Qĝ is the Q-curvature scalar (Branson 91):

Qĝ =
1

2(d − 1)
(−�)

d
2−1R + ... (14)



Dilaton Dressing

• The operators in the theory are K41 operators OK 41
dressed by a dilaton factor:

O(x) = edατOK 41(x), α = γ(1−∆) (15)

where d∆K 41 is the undressed dimension of OK 41.
• We get the KPZ equation:

∆−∆K 41 =
γ2

2
∆(1−∆) (16)



Trace Anomaly

Requiring that the inertial range universal structure and in
particular the anomalous scalings should not depend on the
forcing scale L:

atotal = adilaton + aK 41 = 0 (17)

and
G2(d) ' 2

Ωd (d − 1)!|aK 41(d)| (18)



Black Hole Dynamics

Black hole horizon: fields can fall into the black hole but cannot
emerge, this breaks time reversal symmetry and allows
Einstein equations to describe dissipative effects.



The Fluid Variables

• The dynamics of the event horizon is described by the
Navier-Stokes equations (Damour (82), Bhattacharyya,
Hubeny, Minwalla and Rangamani (08), Eling, Fouxon,
Y.O. (09)).

• The fluid variables in the geometrical picture :

V(x)
�

P(x)



Local Energy Dissipation

• The local energy dissipation:

ε(x) =
ν

2

(
∂iv j + ∂jv i

)2
. (19)

• The ensemble average of

εr (x) =
1

Vol(Bd (r))

∫
|x ′−x |≤r

ddx ′ε(x ′) , (20)

is independent of x by isotropy and of r by K41 scaling.



Horizon Calculation
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With S. Waeber and A. Yarom (in peparation)



Machine Learning of Fluid Flows

• Consider a non-linear PDE:

∂t~v(~x , t) = L~v(~x , t) (21)

• A neural network evolves velocity fields, ~v(~x , t = 0) to a
fixed time T

ΦT~v
(
~x , t = 0

)
= ~v

(
~x ,T

)
(22)

by learning from a set of i = 1 . . .N initial conditions
sampled at t = 0, ~vi

(
~x , t = 0

)
, and their corresponding

time-evolved solutions of ~vi
(
~x , t = T

)
.

• We generalized ΦT , to propagate solutions at intermediate
times, 0 ≤ t ≤ T .

With R. Rotman, A. Dekel, R. Ber, L. Wolf (arXiv:2207.14366)



Machine Learning of Fluid Flows
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Machine Learning Complexity

• We train neural networks to distinguish turbulence fluid
configurations from chaotic ones, noise and real world
images.

• What is the relative complexity of the various classification
tasks involving turbulence?

• How does the pattern of complexity change with depth as
we go inside the neural network? How does it compare
with classifying real world images?

• Can we understand what features the neural network uses
to distinguish chaos from turbulence?

With R. Janik and T. Whittaker (in preparation)
R. Janik and P. Witaszczyk (effective dimension)
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Turbulence vs. Real World Images

Figure: Left panel shows effective dimensions for images of weakly
compressible turbulence vorticity vs. cats and dogs as well as for
classifying between cats and dogs. Right panel shows the
incompressible case.



Turbulence vs. Chaos

Figure: Effective dimensions for classifying weakly compressible
turbulence vorticity (left) and incompressible turbulence vorticity
(right).



Happy Birthday Hirosi


