
Group Invariant States as 
Quantum Many-Body Scars

Igor R. Klebanov

HirosiFest@Caltech
October 28, 2022



Hirosi and I
• I first met Hirosi in the late 1980s. I remember 

him well at the August 1990 Aspen workshop on 
Matrix Models and 2D Quantum Gravity.

• There I started collaborating with Bershadsky;
this reduced my “Ooguri number” to 2. 

• Since then Hirosi and I have intersected 
frequently and had similar research interests.

• Hirosi was a great host during my various visits to 
Japan, including Strings 2003, Tohru Eguchi’s
retirement symposium in 2017, Strings 2018, etc.



• This memorable photo was taken at the Tohru
Eguchi 60th Birthday Symposium in Kyoto in 
March 2008



• Back in Kyoto in June 2016



• Group photo of the conference AdS/CFT@20
at Princeton University in November 2017



• Among Hirosi’s many seminal contributions, 
let me highlight his work with N. Sasakura on 
generalizing successes of the matrix models in 
describing discretized random surfaces to 3D 
random geometries obtained by gluing 
tetrahedra



Group Field Theory
• Ooguri and Sasakura revisited the Ponzano-Regge

model of 3D simplicial gravity. The 6j symbol of 
the SU(2) group labels a tetrahedron with the 
corresponding 6 edges.

• The wave functions on the SU(2) group manifold 
then serve as a “generalized index.” This, along 
with work by Boulatov, and Ambjorn et al., was a 
major step towards Group Field Theory and 
Tensor Models.



O(N) x O(N) Matrix Model

• Theory of real matrices φab with distinguishable 
indices, i.e. in the bi-fundamental 
representation of O(N)axO(N)b symmetry. 

• The interaction is at least quartic: g tr φφTφφT

• Propagators are represented by colored double 
lines, and the interaction vertex is

• In d=0 or 1 special limits describe two-
dimensional quantum gravity.



• In the large N limit 
where gN is held fixed 
we find planar Feynman 
graphs, and each index 
loop may be red or 
green.

• The dual graphs shown 
in black may be thought 
of as random surfaces 
tiled with squares whose 
vertices have alternating  
colors (red, green, red, 
green).



• For a 3-tensor with distinguishable indices the 
propagator has index structure

• It may be represented graphically by 3 colored 
wires 

• Tetrahedral interaction with 
O(N)axO(N)bxO(N)c symmetry                        
Carrozza, Tanasa; IK, Tarnopolsky

From Bi- to Tri-Fundamentals

The picture can't be displayed.



• Leading correction to the propagator has 3 
index loops

• Requiring that this “melon” insertion is of 
order 1 means that                         must be held 
fixed in the large N limit.  

• Melonic graphs obtained by iterating   



• Quantum Mechanics of N3 Majorana fermions 
IRK, Tarnopolsky

• Has O(N)axO(N)bxO(N)c symmetry under

• The SO(N) symmetry charges are

Melonic O(N)3 Tensor Model 



• The 3-tensors may be 
associated with 
indistinguishable vertices 
of a tetrahedron. 

• This is equivalent to

• The triple-line Feynman 
graphs are produced 
using the propagator



O(N)3 vs. SYK Model
• Using composite indices

The couplings take values 

• The number of distinct terms is

• Much smaller than in SYK model with 



• No SO(N)3 invariant states for odd N.
• Their number grows very rapidly for even N IRK, 

Milekhin, Popov, Tarnopolsky

• Large N dynamics in the singlet sector is similar 
to SYK. Same melonic Schwinger-Dyson eqns.



Qubit Hamiltonian
• Convenient to introduce operator basis which 

breaks the third O(N) to U(N/2)

• Operators                      correspond to qubit 
number

• The Hamiltonian couples N/2 sets of N2 qubits



• The Cartan generators of U(N/2) are

• For the oscillator vaccuum

• The SO(N)3 invariant states appear in the sector 
where all these charges vanish: each set of N2 

qubits is at half filling. 
• This reduces the number of states but it still 

grows rapidly. For N=4 there are 165636900, 
while for N=6 over 7.47 * 10^29



Singlet Energies for N=4

• For N=6, over 595 million states packed into 
energy interval <1932. The singlet gaps should be 
tiny. Pakrouski, IRK, Popov, Tarnopolsky 

• Finding the spectrum seems like a good problem 
for a 108 qubit quantum computer.



Singlet Sector Simplification
• Appears in many group invariant quantum 

many-body systems.
• For example, the SU(N) invariant sector of 

Hermitian matrix quantum mechanics is 
described by wave functions of N eigenvalues 
which act as the free fermions. Brezin et al.

• The Vandermonde determinant                    
appears in 



Compact c=1 

• The contribution of the SU(N) singlet sector to 
the finite temperature free energy exhibits the   
R->1/R duality in the double scaling limit. Gross, IRK

• Match with the continuum calculation. Bershadsky, IRK

• The singlet sector describes the modified XY 
model on random surfaces, where the BKT 
vortices are excluded. Gross, IRK

• Such modified Villain models are being used to 
construct a variety of lattice models that have 
additional symmetries. Sulejmanpasic, Gattringer; Gorantla, Lam, 
Shao, Seiberg; …



Quantum Many-Body Scars

• Over the past few years have been an active 
area in Condensed Matter Physics. Several 
reviews Serbyn, Abanin, Papic; Moudgalya, Bernevig, Regnault; 
Chandran, Iadecola, Khemani, Moessner

• Scars do not thermalize with the rest of the 
states and constitute a violation of the 
Eigenstate Thermalization Hypothesis.

• The Hilbert space “fractures”



• Schematic equidistant scar spectrum for a 
special scarred Hamiltonian: Serbyn et al.; Schecter and 
Iadecola

• The scars are characterized by lower 
entanglement entropy than the typical states.

• In some cases, the scar sector is invariant 
under a “large” group whose rank is 
proportional to the number of lattice sites. 



From Tensor Models to Scars
• Generalize the Majorana tensor model to have

symmetry
• The traceless Hamiltonian is

• The Hilbert space has dimension
• The eigenstates of H form irreducible 

representations of the symmetry. 



A Fermionic Matrix Model

• For N3=2 this is a fermionic matrix model with 
symmetry

• Describes qubits on a N1 x N2 lattice with non-local 
couplings. IRK, Milekhin, Popov, Tarnopolsky

• A useful example for studying bounds on 
eigenvalues of fermionic Hamiltonians. Hastings, 
O’Donnell



Complete Spectrum
• The SO(N)2 singlets “scar” the histogram.



Towards Hubbard Model
• Can also think of the first index as labeling the 

lattice site, and the second as labeling spin. 
When N2=2, there are two spin states, up and 
down. The model is beginning to resemble a 
non-local Hubbard model, but need to add 
quadratic hopping terms. Pakrouski, Pallegar, Popov, IRK

• Imaginary hopping terms are SO(N) generators

• Adding them to H keeps SO(N) singlets as 
eigenstates but mixes up the non-singlets.



• A simple transformation leads to a model with 
a real nearest neighbor hopping parameter:

• This transformation is possible on a bi-partite 
lattice



Scars without Pain

• There are Hamiltonians that are not symmetric 
under a large group G, yet some of their 
eigenstates are invariant. These are the scars!

• Examples include (deformations of) the 
Hubbard model



• The SO(4) symmetry of the Hubbard model is 
made manifest by introducing 4 Majorana
fermions on each lattice site

• For special values 

• Add symmetry breaking terms which 
annihilate the SO(N) singlets, e.g.



Pseudospin
• The scars are states of maximum pseudospin or 

spin.
• After transforming to imaginary hopping,  the 

pseudospin            is generated by C.N. Yang, S.C. Zhang

• It commutes with the rotation group            and 
with the SO(N) that acts on the lattice index.



Eta-pairing states

• There are N+1 states that are SU(2) invariant and form 
a multiplet of pseudospin N/2 Yang, Zhang

• The fact that they are also O(N) invariant was pointed 
out recently. Pakrouski et al. 

• In fact, they are invariant under a bigger group 
• They are highly excited, equally spaced states that play 

the role of scars in the (deformed) Hubbard model. 
Mark, Motrunich; Moudgalya, Regnault, Bernevig



Low Entanglement
• The scar states are distinguished by their low 

entanglement entropy when the system is 
divided into two parts. For the 6 site chain: 



Majorana Scars
• Consider a lattice system with an even 

number M of Majorana fermions on each 
lattice site IRK, K. Pakrouski, F. Popov, Z. Sun (paper in preparation)

• The generators of SO(N) and SO(M) are

• Complex fermions



Scars as SO(N) singlets

• Constructed by acting with

• For M=6 the generalizations of eta-pairing 
states are explicitly written as Nakagawa, Katsura, Ueda

• There are             such eta-states.



• There are also            zeta-states: 

• They are generalizations of the spin N/2 states 
for M=4 (the usual Hubbard model).

• It is not hard to do the counting of SO(N) 
invariants for M>6, but the wave functions 
cannot be written as explicitly.



Spectrum of M=6 with 4 sites 



Non-Hermitian Hamiltonians
• The group theoretic approach to scars 

continues to work when non-Hermitian terms 
are added to the Hamiltonians, e.g. the tJU
model.

• The energies of scars continue to be real



Comments
• The scar states, which are invariant under the large Lie 

group acting on the lattice sites, are decoupled from all 
the non-singlet states. Only the latter thermalize. 

• This decoupling is preserved by the TOT perturbations 
and may approximately survive some other 
perturbations.

• The Group theoretic approach to scars applies to non-
Hermitian Hamiltonians.

• Recently the idea “group singlets are scars” was 
generalized by Moudgalya and Motrunich who connected 
it with the Shiraishi-Mori embedding formalism.

• Scar states in QFT? In AdS/CFT?



Happy Birthday, Hirosi!
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