Symmetries and Anomalies on the Lattice

Nathan Seiberg

IAS

Happy Birthday, Hirosi Thanks for the wonderful friendship

Symmetries and Anomalies on the Lattice Nathan Seiberg IAS

Pranay Gorantla, Ho Tat Lam, NS, and Shu-Heng Shao, 2103.01257 Meng Cheng and NS, to appear

What are anomalies?

A global symmetry has an 't Hooft anomaly when it cannot be coupled to classical gauge fields.

In some (not all) textbooks:

- Anomalies are associated with fermions
- Anomalies are associated with divergences (need an infinite number of degrees of freedom)
- Anomalies signal an inconsistency of the theory. The theory makes sense only on the boundary of a bulk theory with a Symmetry Protected Topological Phase (SPT).

The simplest anomaly

Consider a two-level system – a qubit – with vanishing Hamiltonian.

- Operators are 2×2 matrices.
- The global symmetry acts by conjugation. It is SO(3).
- It is realized projectively on the Hilbert space, which is in an SU(2) doublet [Wigner (1931)].
- Therefore, we cannot couple it to classical SO(3) gauge fields.

No need for an infinite number of degrees of freedom – unrelated to divergences.

No need for a bulk.

More interesting example in a free 1+1d field theory

$$S = \frac{\beta}{2} \int dt dx \big(\partial_{\mu}\phi\big)^2$$

Global symmetries

$$- U(1)^m$$
 charge, momentum

$$- U(1)^w$$
 vorticity, winding

- Anomaly:
 - The charges commute, but $[j^w, j^m] \neq 0$.
 - Defects carry non-quantized charges (more below).
- Exact self-duality (T-duality) maps $\beta \leftrightarrow \frac{1}{(2\pi)^2 \beta}$ and exchanges momentum and winding.
 - In string theory it is common to use $R = \sqrt{2\pi\beta}$ $(R \leftrightarrow \frac{1}{R})_{8}$

$$J^{m}_{\mu} = \beta \partial_{\mu} \phi$$
$$J^{w}_{\mu} = \frac{1}{2\pi} \epsilon_{\mu\nu} \partial^{\nu} \phi$$

 $\partial^{\mu}J_{\mu}=0$

Lattice formulation

[...; Jose, Kadanoff, Kirkpatrick, Nelson (1977); ...]

Euclidean-time lattice, Lagrangian formulation (or equivalently, classical statistical mechanics):

$$S = -\beta \sum_{links} \cos(\Delta \phi)$$

Continuous Lorentzian time, Hamiltonian formulation:

$$H = \frac{1}{2\beta} \sum_{sites} p^2 - \frac{\beta}{2} \sum_{links} \cos(\Delta \phi)$$

Only the momentum symmetry $\phi(x,\tau) \rightarrow \phi(x,\tau) + \alpha$

No winding symmetry and hence, no anomaly.

For large β , it flows to the continuum theory.

For smaller β , vortices proliferate and the system is gapped [Berezinskii (1971); Kosterlitz, Thouless (1973)].

Euclidean lattice formulation – suppress the vortices [...; Gross, Klebanov; Sulejmanpasic, Gattringer; Gorantla, Lam, NS, Shao]

Use the Villain formulation

$$S_{Villain} = \frac{\beta}{2} \sum_{links} (\Delta_{\mu} \phi - 2\pi n_{\mu})^2$$

Here $\phi \in \mathbb{R}$, $n_{\mu} \in \mathbb{Z}$ with the \mathbb{Z} gauge symmetry (effectively making ϕ compact)

$$\phi \sim \phi + 2\pi m$$
$$n_{\mu} \sim n_{\mu} + \Delta_{\mu} m$$

Suppress the vortices by constraining $\Delta_{\tau} n_x - \Delta_x n_{\tau} = 0$.

Both momentum and winding symmetries. T-duality.

Can study the anomaly on the lattice.

We will not discuss it here.

Hamiltonian lattice formulation of the Villain model

Following [Kogut, Susskind (1975)], we represent the \mathbb{Z} gauge field of the Villain model using an integer spatial gauge field n and a circle-valued electric field E on the links.

$$H_{Villain} = \frac{1}{2\beta} \sum_{sites} p^2 + \frac{\beta}{2} \sum_{links} (\Delta \phi - 2\pi n)^2 - g^2 \sum_{links} \cos E$$
$$[\phi_j, p_{j'}] = i\delta_{j,j'} \qquad [n_j, E_{j'}] = i\delta_{j,j'}$$

Gauss law at every point

$$\exp(i\Delta E - 2\pi i p) = 1$$

Suppress the vortices by setting g = 0.

Hamiltonian lattice formulation without vortices

$$H_{modified Villain} = \frac{1}{2\beta} \sum_{sites} p^2 + \frac{\beta}{2} \sum_{links} (\Delta \phi - 2\pi n)^2$$
$$\exp(i\Delta E - 2\pi i p) = 1$$

- Global symmetries
 - $-U(1)^m$ momentum $Q^m = \sum_{sites} J^m$, $J^m = p$
 - $U(1)^w$ winding (\mathbb{Z} Wilson line) $Q^w = \sum_{links} J^w$,

$$J^w = \frac{1}{2\pi} (\Delta \phi - 2\pi n)$$

- The anomaly is captured by a lattice Schwinger term $[J^w, J^m] \neq 0$
- Exact T-duality: $\phi \leftrightarrow E$, momentum \leftrightarrow winding, $\beta \leftrightarrow \frac{1}{(2\pi)^2 \beta}$.

Hamiltonian lattice formulation – add defects

$$H_{modified Villain} = \frac{1}{2\beta} \sum_{sites} p^2 + \frac{\beta}{2} \sum_{links} (\Delta \phi - 2\pi n)^2$$
$$\exp(i\Delta E - 2\pi i p) = 1$$

Couple to background gauge fields for the global symmetry Flat background gauge fields = Twisted boundary conditions = Topological defects

- Momentum defect: at one link $\Delta \phi 2\pi n \rightarrow \Delta \phi 2\pi n + \eta_m$
- Winding defect: at one site $p \to p + \frac{\eta_w}{2\pi}$

The defects can be shifted by using unitary transformations – they are topological.

Hamiltonian lattice formulation – the anomaly

- $\frac{\eta_m}{2\pi}$ • A momentum defect with η_m has winding charge
- A winding defect with η_w has momentum charge $\frac{\eta_w}{2\pi}$
- Without defects, a \mathbb{Z}_L translation symmetry (L sites with • periodic boundary conditions)

$$T^{L} = 1$$

With defects, $[T, H] \neq 0$, but can combine T with the unitary transformation that shifts the defects, such that $[T(\eta_m,\eta_w),H]=0$

Now

$$T(\eta_m, \eta_w)^L = \exp(i\eta_m Q^m) \exp(i\eta_w Q^w) \exp(-i\eta_m \eta_w/2\pi)$$

Due to the twisted boundary conditions Anomaly

Due to the twisted boundary conditions

Summary

- Anomalies are not specific to fermions or an infinite number of degrees of freedom.
- Anomalies do not signal an inconsistency of the theory there is no need to add a bulk to the theory.
- Simple lattice models exhibit anomalies. This is true even for a finite lattice.
- Lattice translation plays a crucial role in identifying the anomaly.
- Many applications (did not discuss here):
 - Lieb-Schultz-Mattis type theorems
 - Luttinger theorem and filling constraints

Happy Birthday, Hirosi Thanks for the wonderful friendship

