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Black hole entropy as a phase space volume
A general BTZ black hole metric has a soft mode that visible from outside

ds2 = dr2 + (e2r + e−2r TuuTvv )dudv + Tuudu2 + Tvv dv2

Tuu = {U, u}, Tvv = {V , v}
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Figure 1: Schematic depiction of three ways of storing the soft hair degrees of freedom. The no hair coordinate

system that uniformizes the black hole geometry is incompatible with the coordinate system that uniformizes

the asymptotic geometry I. If one tries to describe the global space-time with a single coordinate patch,

either the asymptotic geometry (left) or the black hole geometry (middle) is not uniformized and carries

the soft hair. By using two coordinate patches, one can uniformize both the black hole and the asymptotic

region. The soft hair modes are encoded in the transition function between the two regions.

3. Soft hair labels code subspace

A common characteristic of known systems with maximal many body quantum chaos, such as the SYK

model [23–26,31–33], is that their collective dynamics gives rise to an emergent Goldstone mode in the form

of a di↵eomorphism f . In the holographic bulk dual, the di↵eomorphism f represents the soft hair degree

of freedom. In the following, we will assume that the four-dimensional black holes with HPS soft hair can

also be given a holographic dual description with similar characteristics. We will continue to refer to this

putative dual quantum system as ‘the holographic CFT’. It would be interesting to understand how these

statements fit into the emerging Celestial CFT dictionary [34–36].

Expectation values in the holographic CFT involve averaging over the full phase space of soft hair variables

f . Schematically

⌦
Of̂ ... Of̂

↵
 

=

Z
[df ] ⇢ (f)

⌦
Of ... Of

↵
f

(1.1)

with ⇢ (f) some probability distribution that depends on the CFT state  and
⌦
Of̂ ... Of̂

↵
f

denotes the

expectation value in an approximate f̂ eigenstate with given soft hair f . Note that these approximate

eigenstates themselves can still be mixed states with non-zero entropy.

We will distinguish two types of quantum states  :

• Soft focus states: these are superpositions of states with di↵erent soft hair quantum numbers. Such

states do not describe a fixed semi-classical global black hole space-time, but an incoherent superpo-

sition of global black hole space-times. The soft hair of soft focus states is in an undetermined state

and carries a large amount of entropy, denoted by Ssoft. In the notation of (1.1), we have

Ssoft = �
Z

[df ] ⇢ (f) log ⇢ (f). (1.2)

• Sharp focus states: these are approximate eigenstates with given soft hair quantum numbers f that

describe a given semi-classical global black hole space-time. Sharp focus states carry their soft hair in

well-determined state, and therefore have substantially less entropy than the soft focus states. We will

call the Hilbert subspace Hf spanned by all states with the same soft-hair quantum numbers a code

subspace. The microscopic entropy of the code subspace is denoted by Scode.

4

M + J =
∮

Tuudu =
∮
{U, u}du

M − J =
∮

Tvv dv =
∮
{V , v}dv
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Black hole entropy as a phase space volume
Consider the volume of a thin slice of phase space around (M, J)

Vol(M, J) δMδJ

Conjecture: in the c →∞, M ± J → 0 limit with SBH(M, J) finite

Vol(M, J) = e SBH (M,J)
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Figure 2: The spectrum of states in the Schwarzian theory arises from the CFT spectrum of states

with conformal dimension � = c�1
24 + b2E, in the limit b ! 0. The operators in the Schwarzian

are all light CFT operators with conformal dimension � = `.

The second formula has a clear physical significance. The large c limit sends q̃ ! 0, which

turns the operator q̃L0 into a projection operator on the lowest energy state in the given

channel. Combining (3.11), (3.16) and (3.19) we obtain that

Z(�) =

Z 1

0

dµ(k) e��E(k), dµ(k) = dk2 sinh(2⇡k), (3.20)

reproducing the result obtained in [23].

While the explicit formula (3.20) for the spectral density is not a new result, our deriva-

tion provides a new and useful perspective on the Schwarzian theory. Specifically, it indicates

that the 1D model arises as a special c ! 1 limit of 2D Virasoro CFT, in which we only

keep the states with conformal dimensions � close to the threshold �c = c
24

(Figure 2).

The above modular bootstrap argument identifies a natural spectral density on the space

of Virasoro representations, given by the modular S-matrix element SP
0 [32]. This spectral

density is not a specific property of a particular 2D CFT, but a universal measure analogous

to the Plancherel measure on the space of continuous series representations of SL(2, R). This

measure is defined for any value of the central charge c. We have shown that, after taking

the large c limit while zooming in close to �c = c�1
24

, it coincides with the exact spectral

density of the Schwarzian theory. In the following sections we will generalize this observation

with the aim of studying correlation functions.

17

The ‘proof’ makes use of the identities

∫
[dU][dV ]e−β+(M+J)−β−(M−J) = ZSchw (β+) ZSchw (β−)

ZSchw (β) = lim
c→∞

ZCFT(βc) with βc = 24π2

cβ
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Most ingredients of the story generalize to 4D
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Partition function of TT deformed CFT
Zamolodchikov and Smirnov showed that the energy spectrum of the
deformed CFT defined by turning on the TT coupling

STT = SCFT −
∫
λTT

is exactly given by

En(λ) = 1
λ

(−1 +
√

1 + 2Enλ+ j2
nλ

2).

The corresponding TT deformed CFT partition function

Z1(λ, σ) =
∑

n
exp(2πi(σ1jn + iσ2En(λ)))

with σ = σ1 + iσ2 = shape of the torus, is modular invariant

Z1(λ, σ) = 2ρ2

∫ d2τ

τ2
2

e−
πρ2
σ2τ2
|σ−τ |2 ZCFT(τ)
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Zamolodchikov and Smirnov showed that the energy spectrum of the
deformed CFT defined by turning on the TT coupling

STT = SCFT −
∫
λTT

is exactly given by

En(λ) = 1
λ

(−1 +
√

1 + 2Enλ+ j2
nλ

2).

The corresponding TT deformed CFT partition function

Z1(λ, σ) =
∑

n
exp(2πi(σ1jn + iσ2En(λ)))

with σ = σ1 + iσ2 = shape of the torus, is modular invariant

Z1(λ, σ) = 2ρ2

∫ d2τ

τ2
2

e−
πρ2
σ2τ2
|σ−τ |2 ZCFT(τ) ρ2 ≡ σ2

λ

Herman Verlinde Hirosi Fest Caltech, October 28, 2022 8 / 13



Partition function of TT deformed CFT
We can rewrite the deformed partition function as

Z1(λ, σ) =
∫
F

d2τ

τ2
2

K1(τ ; ρ2, σ) ZCFT(τ)

with:
K1(τ ; ρ2, σ) = 2ρ2

∑
γ∈PSL(2,Z)

e−
πρ2

σ2(γτ)2
|σ−γτ |2 =

∑
n,m

e iS[Xnm]

Xnm = 1
2iτ2

(n−mτ̄) z + c.c. ds2 = ρ2
σ2
|dx + σdy |2

K̂ 1(τ ; ρ, σ) = restricted Γ2,2 Narain sum with wrapping number 1
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Partition function of a Symmetric Product CFT

Z (ρ1, σ) =
∑
N

pNZN(σ), p ≡ e2πiρ1

ZDMVV(p, σ) =
∣∣∣∣∣∏
d>0

∏
n,m≥0
jn=md

1
1− pd e 2πi

d (σ1jn+iσ2En)

∣∣∣∣∣
2

.

Partition function of a TT deformed Symmetric Product CFT

Z (ρ, σ) =
∑
N

pNZN(λ, σ), e2πiρ ≡ pe−
2πσ2

λ

Z (ρ, σ) =
∣∣∣∣∣∏
d>0

∏
n,m∈Z
jn=md

1
1− p de

2πi
d (σ1jn + iσ2En(λ/d2))

∣∣∣∣∣
2

A.Hashimoto, D.Kutasov ; N.Benjamin, S.Collier, J.Kruthoff, HV, M.Zhang
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Partition function of a TT deformed Symmetric Product CFT

Now let us consider the partition function defined by:

Ẑ (ρ, σ) = e−F̂ (ρ,σ) F̂ (ρ, σ) =
∫
F

d2τ

τ2
2

K̂ (τ ; ρ, σ) ZCFT(τ)

with:

K̂ (τ ; ρ, σ) = ρ2
∑

~n, ~m∈Z2

e
iπ

2τ2σ2
(ρ |n2 + n1σ− τ(m1 + m2σ)|2) + c.c.

K̂ (τ ; ρ, σ) = Full Γ2,2 Narain partition sum
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S-duality invariant TT deformed partition function

Ẑ (ρ, σ) = e−F0(ρ2,σ)
∣∣∣∣∣∏
d>0

∏
n,m∈Z
jn=md

1
1− p de

2πi
d (σ1jn + iσ2En(λ/d2))

∣∣∣∣∣
2

F0(ρ2, σ) = Aρ2 +
∑
n∈S

log det(∆ + ρ2En)

Ẑ (ρ, σ) has many remarkable properties:

Mirror symmetry: Ẑ (ρ, σ) = Ẑ (σ, ρ)

S-duality symmetry: Ẑ (ρ, σ) = Ẑ (ρ̃, σ), ρ̃ = aρ+b
cρ+d ,

Spectral symmetry: ∆ρF̂ (ρ, σ) = ∆σF̂ (ρ, σ)

Hecke symmetry: T ρ
j F̂ (ρ, σ) = T σ

j F̂ (ρ, σ)

U-duality: O(2, 2; Z) ' PSL(2,Z)× PSL(2,Z) o Z2
2
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お誕⽣⽇おめでとう！

Hirosi !
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