Gravitational waves at Strong Coupling with Holography

Nicklas Ramberg nramberg@uni-mainz.de

Collaborators Enrico Morgante & Pedro Schwaller 2210.11821

What The Heck Happends When The Universe Boils? December 9, 2022

Outline

Motivation for Pure SU(N) Yang-Mills

- ► Confinement PT in Pure Yang-Mills
 - Holography
 - Lattice Thermodynamics

Gravitational wave signal

- How it is predicted
- The Predicted signal & Uncertainties

Confinement in Dark SU(N) & Strong Coupling

- Confinement PT first order for many choices of N_c, N_f .
- Focus on Dark SU(3)
 - "Simplest" Case
 - Lattice Data
 - Holographic Model
- Strong coupling?
 - Lattice. no Finite T real time simulations
 - EFT approach (NJL/PLM)

イロト イロト イヨト イヨト

Good choice of variables suitable for strong coupling!

JG U ≅ ೨९९ 5/23

$$e^{W_{CFT}[\phi_0]} = \left\langle e^{\left(\int d^4 x \phi_0(x) \mathcal{O}(x)\right)} \right\rangle = \mathcal{Z}_{string}[\phi(x,z)|_{z \to 0} = \phi_0(x)]$$

 Main interest in low energy physics in which the following limits are applicable

$$\mathcal{Z}_{CFT} \simeq \mathcal{Z}_{gravity} = e^{-S_{os}[\phi_0]}$$

Here we will employ AdS/CFT in a bottom up fashion
 AdS₅ Einstein Dilaton Gravity ↔ 4D SU(N) Yang-Mills

5D Einstein dilaton gravity in AdS \rightarrow Large N_c Yang-mills

$$S_5 = -M_p^3 N_c^2 \int d^5 x \sqrt{g} \left(R - \frac{4}{3} (\partial \Phi)^2 + V(\Phi)\right) + 2M_p^3 \int_{\partial \mathcal{M}} d^4 x \sqrt{h} \mathcal{K},$$

- V(Φ) dilaton potential
- 5-D coordinate r \iff RG scale
- Dilaton $\lambda = e^{\Phi} \iff$ t'Hooft coupling $\lambda_t = N_c g_{YM}^2$
- Scale Factor $b(r) \iff$ Energy scale $E = E_0 b(r)$
- AdS-BH/Thermal AdS \iff Phases of SU(N_c)
- $g_{\mu\nu}$ perturbations $\iff T_{\mu\nu}$, λ fluctuations \iff Scalar Glueballs

イロト イロト イヨト イヨト

Choice of $V(\lambda)$ Based on SU(N) Pure YM Theory

 $\mathsf{UV}\ \lambda\to \mathsf{0}$

Deconfined

Asymptotic freedom!

YM β Function at two loops

IR $\lambda \to \infty$

Confinement (Order Parameter), Polyakov loop VeV at Finite T

$V(\lambda)$ in the UV

Geometry asymptotes to pure AdS_5 for $r \rightarrow 0$

$$b(r) = \frac{l}{r} \left(1 + \frac{4}{9} \frac{1}{\log(\Lambda r)} - \frac{4b_1}{9b_0^2} \frac{\log(-\log(\Lambda r))}{\log^2(\Lambda r)} \right)$$
$$b_0 \lambda(r) = -\frac{1}{\log(\Lambda r)} + \frac{b_1}{b_0^2} \frac{\log(-\log(\Lambda r))}{\log^2(\Lambda r)}$$

Identify $b \iff E$, $\lambda \iff \lambda_t$ to write Holographic β Function

$$\beta = \frac{d\lambda}{d\log E} = -b_0\lambda^2 - b_1\lambda^3 + \ldots = \beta(\lambda_t) \to \begin{cases} \beta_0 = b_0, \\ \beta_1 = b_1. \end{cases}$$

$$V(\lambda) = \frac{12}{l^2} (1 + v_0 \lambda + v_1 \lambda^2 + ...),$$

 $b_0 = \frac{8}{9}v_0,$ $b_1 = \frac{9}{4}v_1 - \frac{207}{256}v_0^2.$

 $\exists \rightarrow \neg$

Glueballs:

$$\mathcal{S}[\xi] \sim \int dr d^4 x \ e^{2B(r)} \left((\partial_r \xi)^2 + (\partial_i \xi)^2 + M^2(r) \xi^2 \right)$$

B(r) M(r) depends on the background and type of fluctuation. Confinement: Area Law Wilson Loop

$$TE(L) = S_{NG}[X^{\mu}_{min}(\sigma, \tau)]$$
$$S_{NG} = \frac{1}{2\pi l_s^2} \int_C d\tau d\sigma det \left(\sqrt{-g_s}\right)$$
$$V(\lambda) \sim \lambda^{\frac{4}{3}} \left(\log(\lambda)\right)^{\frac{1}{2}}$$

The potential $V(\lambda)$ and It's Parameters

UV Asymptotics IR Asymptotics $V(\lambda) = \frac{12}{l^2} (1 + v_0 \lambda + v_1 \lambda^2 + ...) \qquad V(\lambda) \sim \lambda^{\frac{4}{3}} (\log(\lambda))^{\frac{1}{2}}$

Finite Temperature Solutions I

Thermal Gas $AdS \rightarrow Confined$ Phase

$$ds_{TH}^2 = b_0^2(r) \left(dr^2 - dt^2 + dx^m dx_m \right)$$

Schwarzchild-AdS Black Hole metric \rightarrow Deconfined phase

- b

$$ds_{BH}^2 = b^2(r) \left(\frac{dr^2}{f(r)} - f(r)dt^2 + dx^m dx_m \right).$$

UV Asymptotics for the TG_{AdS} and BH_{AdS} are equal

≡ ∽へで 12/23

Finite Temperature Solutions II

$$S_5 = -M_p^3 N_c^2 \int d^5 x \sqrt{g} \left(R - \frac{4}{3} (\partial \Phi)^2 + V(\Phi)\right) + 2M_p^3 \int_{\partial \mathcal{M}} d^4 x \sqrt{h} \mathcal{K},$$

Operator & Field Correspondence

$${\mathcal{Z}}_{CFT} \simeq {\mathcal{Z}}_{gravity} = e^{-S_{os}[\phi_0]}$$

4D

Finite T "QFT" YM Wick rotation of Time Direction QGP in Thermal Eq

Entropy S Free energy

$$T_h = \frac{|\dot{f}(r_h)|}{4\pi} = T_{AdS}$$

Regular BH Solution

5D

Area Law BH Horizon $S = 4\pi M_p^3 N_c^2 V_c b(r_h)^3$

$$\beta \mathcal{F} = (\mathcal{S}_{BH}^{\epsilon} - \mathcal{S}_{TG}^{\epsilon})/V_3$$

Thermodynamics

Confinement of Pure YM \iff Hawking Page PT in D+1 AdS

Figure: Thanks To Enrico!!

Effective Action for Tunneling

Thanks To Enrico!

Interpolate between the BBH and TG SBH acts as Instanton

Order parameter of choice (λ_h, r_h) .

Incorporate Non-Equilibrium Effect in Gluon Plasma by

Violating $T \neq T_h$

Conical Singularity

Regularize conical deformation and calculate its Free energy Contribution!

イロト イボト イヨト イヨト

Conical Singularity

Expand around the horizon position r_h

$$f(r) pprox \dot{f}_h(r-r_h), \qquad b(r) pprox b_h$$

Define the new variables

From Saharian 07

$$y = \frac{2b_h}{(\dot{f}_h)^{1/2}}\sqrt{r - r_h} \quad \text{with } y > 0,$$

The metric is
$$\varphi = 2\pi Tt \quad \text{with } 0 < \varphi < 2\pi, \qquad ds^2 = dy^2 + y^2 \left(\frac{\dot{f}_h}{4\pi T}\right)^2 d\varphi^2$$

Regularize action with Spherical Cap

$$\mathcal{S}^{BH}_{ ext{cone}} = -M_p^3 N_c^2 \int d^5 x \sqrt{g} [\mathcal{R} - rac{4}{3} (\partial \phi)^2 + V(\phi)]$$

Effective Potential & Kinetic Term

 $\begin{array}{l} \mathsf{Stationary} \ \mathsf{Points} \Longleftrightarrow \mathsf{Regular} \\ \mathsf{Solutions} \end{array}$

 $T > T_c$ (Big BH Stable)

 $T < T_{min}$ No BH Solution \rightarrow No Deconfined Phase

Kinetic Term Normalization

 $c\frac{N_c^2}{16\pi^2}$

 T_{\min}

0.10

 $T < T_{\min}$

We vary $c \rightarrow \frac{1}{3} - 3$, Moderate dependence on GW spectrum

$$V_{\text{eff}}(\lambda_h, T) = \mathcal{F}(\lambda_h) - 4\pi M_p^3 N_c^2 b(\lambda_h)^3 \left(1 - \frac{T_h}{T}\right)$$

JGU

0.6

Bubble Nucleation rate from effective Action

Thermal Tunneling effective action $\mathcal{O}(3)$ symmetric bounce

$$S_{eff} = \frac{4\pi}{T} \int d\rho \, \rho^2 \left[c \frac{N_c^2}{16\pi^2} (\partial_\rho \lambda_h(\rho))^2 + V_{\text{eff}}(\lambda_h(\rho), T) \right]$$

Nucleation Rate for Thermal Tunneling

$$\Gamma = T^4 \left(rac{\mathcal{S}_B}{2\pi}
ight)^{3/2} e^{-\mathcal{S}_B}$$

Compare the Bubble nucleation rate to the Hubble expansion

$$rac{\Gamma}{H^4}\sim 1$$

Percolation: $\mathcal{P}(true) \simeq \mathcal{P}(false)$ (End of PT! GW Emission) \overrightarrow{JG}

19/23

Gravitational waves Parameters & Source

 $v_w \sim ?$ (Free Parameter)

PT Strength (Energy Release)

 $\alpha = \frac{4}{3} \frac{\Delta \theta}{\Delta w} = \frac{1}{3} \frac{\Delta \rho - 3\Delta p}{\Delta w} = 0.34$

Inverse PT Rate (Source Duration)

$$\frac{\beta}{H} = T\left(\frac{d\mathcal{S}_B}{dT}\right) \bigg|_{T=T_p} \approx 10^5 \,,$$

 $T_p \approx T_{nuc} \sim 0.99 T_c$ Sound waves \rightarrow (Signal Suppression) $\tau_{SW} H \sim 10^{-4}$

Figure: Thanks to PTPlot

Gravitational Wave Spectra SU(3) "The Money Plot"

GW spectra for SU(3) at different critical temperatures

What to learn from this

GW spectra for SU(3) at different critical temperatures

- ► O(1) Agreement with previous works of Halversson 2012.04071, Sannino 2012.11614 and Russell 1505.07109
- Uncertainties
 - Wall velocity
 - Kinetic term
 - Lattice Fit
- ► Increase N_c
 - Lattice data SU(8), $\Omega_{GW}h^2 \simeq \mathcal{O}(10^{-16})$
 - $N_c \approx 10^3$ LISA Sensitivity, Bigazzi 2011.08757
 - ► $N_c >> 10^3$ Nucleation fully suppressed, Bea 2112.15478

GW Signal from Dark SU(3) Confinement

- Resemble "Real" QCD-Like theory (Using Holography)
- Robust Prediction's (Minimal Amount of Parameters, No Tuning!)
- Uncertainties
 - ► Wall velocity *v_w* (Started working)
 - Accurate normalization of the Kinetic Term (Ongoing Work)
- Outlook Wall Velocity, Large/Larger N_c (Ongoing Work), Include Flavor

