THE VIABILITY OF ULTRALIGHT BOSONIC DARK MATTER IN DWARF GALAXIES

ISABELLE GOLDSTEIN ${ }^{[1]}$

SAVVAS KOUSHIAPPAS [1], MATTHEW WALKER ${ }^{[2]}$
[I] BROWNTHEORETICAL PHYSICS CENTER, BROWN UNIVERSITY
[2] MCWILLIAMS CENTER FOR COSMOLOGY, DEPARTMENT OF PHYSICS, CARNEGIE MELLON UNIVERSITY

PHYS. REV.D I06, 0630I0
2022 MITCHELL CONFERENCE ON COLLIDER, DARK MATTER, AND NEUTRINO PHYSICS

ULTRALIGHT DARK MATTER

- Ultralight bosonic dark matter is a boson of mass m~10-22 eV
- Often written as $m_{22}=\mathrm{m} / 10^{-22} \mathrm{eV}$
- Scalar field dark matter

ULTRALIGHT DARK MATTER

- Ultralight bosonic dark matter is a boson of mass m~10-22 eV
- Often written as $m_{22}=\mathrm{m} / 10^{-22} \mathrm{eV}$
- Scalar field dark matter
- Motivated by non QCD axions, GUT scale physics \& string theory
- Quantum effects become macroscopic: ~kpc scale
- Forms a Bose-Einstein condensate

ULTRALIGHT DARK MATTER

- Why is this interesting?
- Λ CDM is well tested at large scales, but not small scales
- Small scale problems: cores vs cusps, missing satellites, too big to fail
- Baryons could explain this, but because of the complexity of baryons it's hard to be sure
- Dwarf galaxies are perfect tests

ULTRALIGHT DARK MATTER

- Simulations have found an analytical form for the core (Schive et al. 2014, Mocz et al. 2018)
- Soliton core depends on particle mass and halo mass

ULTRALIGHT DARK MATTER

- Simulations have found an analytical form for the core (Schive et al. 2014, Mocz et al. 2018)
- Soliton core depends on particle mass and halo mass
- Connects to an outer NFW for the full density profile

ANALYSIS

- Focus on full density profile from Robles, Bullock, and Boylan-Kolchin MNRAS 483, 289 (2019), I807.060I8. (Model C)

ANALYSIS

- Focus on full density profile from Robles, Bullock, and Boylan-Kolchin MNRAS 483, 289 (2019), I807.060I8. (Model C)
- Reconstruct a stellar velocity dispersion with a Jeans kinematic analysis

3D gravitational potential \rightarrow Projected (2D) velocity dispersion

ANALYSIS

- Focus on full density profile from Robles, Bullock, and Boylan-Kolchin MNRAS 483, 289 (2019), I807.060I8. (Model C)
- Reconstruct a stellar velocity dispersion with a Jeans kinematic analysis

3D gravitational potential \rightarrow Projected (2D) velocity dispersion

- Past work has done this with CDM,WIMPs

ANALYSIS

- Focus on full density profile from Robles, Bullock, and Boylan-Kolchin MNRAS 483, 289 (2019), I807.060I8. (Model C)
- Reconstruct a stellar velocity dispersion with a Jeans kinematic analysis

3D gravitational potential \rightarrow Projected (2D) velocity dispersion

- Past work has done this with CDM,WIMPs
- Run with MultiNest Feroz, Hobson, and Bridges, MNRAS 398, I60I (2009), choosing a:
- Dark matter density profile
- Particle mass, halo mass, velocity anisotropy

ANALYSIS

Soliton core only	NFW is physically unconstrained	González-Morales, Marsh, Peñarrubia, and Ureña-López, MNRAS 472, I346 (20I7)		
A	NFW parameters chosen independent of soliton parameters	Most general, but mass is not necessarily conserved		Safarzadeh and Spergel, ApJ
:---				
$\mathbf{8 9 3 , 2 1}(2020)$.				

ANALYSIS

Soliton core only	NFW is physically unconstrained	González-Morales, Marsh, Peñarrubia, and Ureña-López, MNRAS 472, I346 (20I7)		
A	NFW parameters chosen independent of soliton parameters	Most general, but mass is not necessarily conserved		Safarzadeh and Spergel, ApJ
:---				
$\mathbf{8 9 3 , 2 1}(2020)$.				

DATA

Data from:

- Walker, Mateo, and Olszewski, ApJ I37, 3100 (2009).
- Walker, Mateo, Olszewski, Bernstein, Sen, and Woodroofe, ApJS I7I, 389 (2007).
- Spencer, Mateo, Olszewski,Walker, McConnachie, and Kirby, ApJ I56, 257 (2018).

DATA

RESULTS

RESULTS

- Degeneracy between particle mass and halo mass

ANISOTROPY

- Velocity anisotropy β_{a} is a measure of the difference between tangential and radial velocity dispersion

$$
\beta_{a}(r) \equiv 1-\frac{2 \overline{u_{\theta}^{2}}(r)}{\overline{u_{r}^{2}}(r)}
$$

Binney and Tremaine, Galactic Dynamics: Second Edition (2008).

ANISOTROPY

- Velocity anisotropy β_{a} is a measure of the difference between tangential and radial velocity dispersion

ANISOTROPY

Model C M_{200}, m_{22}
\square NFW M_{200}

- Velocity anisotropy β_{a} is a measure of the difference between tangential and radial velocity dispersion

Tangentially
0.75 biased

RESULTS

- Degeneracy between particle mass and halo mass

RESULTS

- Degeneracy between particle mass and halo mass
- Probability of 7 objects that size merging with a Milky Way sized halo is very small ($\mathrm{P} \sim 10^{-6}$), would need to be an atypical galaxy

RESULTS: CENTRAL BLACK HOLE

- Add a black hole (point mass) to the dwarf galaxy center

RESULTS: CENTRAL BLACK HOLE

- Add a black hole (point mass) to the dwarf galaxy center
- Allows for lower particle mass, lower halo mass posteriors

RESULTS: CENTRAL BLACK HOLE

- Add a black hole (point mass) to the dwarf galaxy center
- Allows for lower particle mass, lower halo mass posteriors
- Requires proportionally massive black holes
[S. M. Koushiappas, J. S. Bullock, and A. Dekel, MNRAS 354, 292 (2004), astroph/0311487.]

EVIDENCE

- Evidence is the sum of likelihood over the prior volume

EVIDENCE

- Evidence is the sum of likelihood over the prior volume
- Note that Ursa Minor has the smallest number of stars, and is the most irregular of the dwarfs analyzed

CONCLUSION

- Particle masses of $m<10^{-20} \mathrm{eV}$ are not kinematically viable in dwarfs unless:
- The Milky Way is an atypical halo.
- All dwarfs contain a central black hole of mass $\sim 0.1 \%$ their halo mass.

CONCLUSION

- Particle masses of $m<10^{-20} \mathrm{eV}$ are not kinematically viable in dwarfs unless:
- The Milky Way is an atypical halo.
- All dwarfs contain a central black hole of mass $\sim 0.1 \%$ their halo mass.
- Particle masses of $\mathrm{m}>10^{-20} \mathrm{eV}$ are allowed, but more CDM-like.

CONCLUSION

- Particle masses of $\mathrm{m}<10^{-20} \mathrm{eV}$ are not kinematically viable in dwarfs unless:
- The Milky Way is an atypical halo.
- All dwarfs contain a central black hole of mass $\sim 0.1 \%$ their halo mass.
- Particle masses of $\mathrm{m}>10^{-20} \mathrm{eV}$ are allowed, but more CDM-like.
- There is no strong preference for any of the models in most dwarfs

ADDITIONAL MATERIAL

- ULB simulations are done with the Schrodinger-Poisson equations
- Describes a self gravitating quantum superfluid

$$
\begin{array}{r}
{\left[i \frac{\partial}{\partial \tau}+\frac{\nabla^{2}}{2}-a V\right] \psi=0} \\
\nabla^{2} V=4 \pi\left(|\psi|^{2}-1\right)
\end{array}
$$

ADDITIONAL MATERIAL

- Start with the collisionless Boltzmann equation, then integrate over [velocity moments] to get the Spherical Jeans Equation:

$$
\frac{d\left(\nu \overline{u_{r}^{2}}\right)}{d r}+2 \frac{\beta}{r} \nu \overline{u_{r}^{2}}=-\nu \frac{d \phi}{d r}
$$

- Assume anisotropy is constant over the system, and you get the solution:

$$
\sigma^{2}(R) \Sigma(R)=2 \int_{R}^{\infty}\left(1-\beta_{a}(r) \frac{R^{2}}{r^{2}}\right) \frac{\nu(r) \overline{u_{r}^{2}}(r) r}{\sqrt{r^{2}-R^{2}}} d r
$$

with $\Sigma(R)$ the projected stellar density, $\overline{u_{r}^{2}}(r)$ the radial stellar velocity dispersion profile, R is the projected radial distance from the center

ADDITIONAL MATERIAL: UNBINNED

- Unbinned Gaussian likelihood function:

$$
L=\prod_{i=1}^{N} \frac{1}{\sqrt{2 \pi} \sqrt{\delta_{u, i}^{2}+\sigma^{2}\left(R_{i}\right)}} \exp \left[-\frac{1}{2} \frac{\left(u_{i}-\langle u\rangle\right)^{2}}{\delta_{u, i}^{2}+\sigma^{2}\left(R_{i}\right)}\right]
$$

Here, u_{i} is the projected velocity, R_{i} is the projected position, and $\delta_{u, i}$ is the observational error in velocity of the i th star in the data set. $\langle u\rangle$ is the bulk velocity, which is marginalized over with a flat prior.

For more details, see:
A. Geringer-Sameth, S. M. Koushiappas, and M. Walker, The Astrophysical Journal 801, 74 (2015).

ADDITIONAL MATERIAL: PRIORS

Generalized NFW:

Model C ULB:

$$
\begin{array}{r}
-1 \leq-\log _{10}\left(1-\beta_{a}\right) \leq+1, \\
\log _{10}\left(5 \times 10^{7}\right) \leq \log _{10}\left(M_{200} / M_{\odot}\right) \leq \log _{10}\left(5 \times 10^{9}\right), \\
\log _{10}(2) \leq \log _{10}\left(c_{200}\right) \leq \log _{10}(30), \\
0.5 \leq \alpha \leq 3, \\
3 \leq \beta \leq 10 \\
0 \leq \gamma \leq 1.2
\end{array}
$$

ADDITIONAL MATERIAL: MULTINEST

- PyMultiNest interface for the MultiNest Bayesian inference tool
- N points sampled
- Lowest likelihood L_{0} point discarded
- Replaced by a point if likelihood is $L>L_{0}$
- Reduce prior volume

Feroz, Hobson, and Bridges, MNRAS, 398, 160 I (2009).
Buchner et al., AA 564, AI 25 (2014), arXiv: I 402.0004 [astro-ph.HE].

ADDITIONAL MATERIAL

ADDITIONAL MATERIAL: FORNAX

JEANS ANALYSIS

Observables?

Stellar distribution function: P (star at location x per unit volume)

$$
\nu(\mathbf{x}) \equiv \int d^{3} v f(\mathbf{x}, \mathbf{v})
$$

Velocity dispersion tensor:

$$
\begin{gathered}
\sigma_{i j}^{2}(\mathbf{x}) \equiv \int d^{3} v\left(v_{i}-\bar{v}_{i}\right)\left(v_{j}-\bar{v}_{j}\right) \frac{f(\mathbf{x}, \mathbf{v})}{\nu(\mathbf{x})} \\
=\overline{v_{i} v_{j}}-\bar{v}_{i} \bar{v}_{j}
\end{gathered}
$$

JEANS ANALYSIS

Assuming a spherical and time-independent system,

Anisotropy parameter:

$$
\beta_{a} \equiv 1-\frac{\overline{v_{\theta}^{2}}+\overline{v_{\phi}^{2}}}{2 \overline{v_{r}^{2}}}
$$

