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ULTRALIGHT DARK MATTER

¡ Ultralight bosonic dark matter is a boson of mass m~10-22 eV

¡ Often written as m22 = m / 10-22 eV

¡ Scalar field dark matter
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ULTRALIGHT DARK MATTER

¡ Ultralight bosonic dark matter is a boson of mass m~10-22 eV

¡ Often written as m22 = m / 10-22 eV

¡ Scalar field dark matter

¡ Motivated by non QCD axions, GUT scale physics & string theory 

¡ Quantum effects become macroscopic: ~kpc scale

¡ Forms a Bose-Einstein condensate 
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ULTRALIGHT DARK MATTER

¡ Why is this interesting?

¡ ΛCDM is well tested at large scales, but not small scales 

¡ Small scale problems: cores vs cusps, missing satellites, too big to fail 

¡ Baryons could explain this, but because of the complexity of baryons it’s hard to be sure 

¡ Dwarf galaxies are perfect tests
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ULTRALIGHT DARK MATTER

2
Schive et al., Phys. Rev. Lett. 113, 261302 (2014).

¡ Simulations have found an 
analytical form for the core 
(Schive et al. 2014, Mocz et 
al. 2018)

¡ Soliton core depends on 
particle mass and halo 
mass



ULTRALIGHT DARK MATTER
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¡ Simulations have found an 
analytical form for the core 
(Schive et al. 2014, Mocz et 
al. 2018)

¡ Soliton core depends on 
particle mass and halo 
mass

¡ Connects to an outer 
NFW for the full density 
profile

Schive et al., Phys. Rev. Lett. 113, 261302 (2014).



ANALYSIS 

¡ Focus on full density profile from Robles, Bullock, and Boylan-Kolchin MNRAS 483, 
289 (2019), 1807.06018.  (Model C)
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ANALYSIS 

¡ Focus on full density profile from Robles, Bullock, and Boylan-Kolchin MNRAS 483, 
289 (2019), 1807.06018. (Model C)

¡ Reconstruct a stellar velocity dispersion with a Jeans kinematic analysis

¡ Past work has done this with CDM, WIMPs

¡ Run with MultiNest Feroz, Hobson, and Bridges, MNRAS 398, 1601 (2009), 
choosing a:

¡ Dark matter density profile

¡ Particle mass, halo mass, velocity anisotropy 
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ANALYSIS 

Soliton core only NFW is physically unconstrained González-Morales, Marsh, 
Peñarrubia, and Ureña-López, 
MNRAS 472, 1346 (2017) 

NFW parameters chosen 
independent of soliton parameters

Most general, but mass is not necessarily 
conserved  

Safarzadeh and Spergel, ApJ
893, 21 (2020).

Parameterized transition with 
density continuity 

Transition radius is allowed to vary Marsh Pop, 2015, MNRAS, 451, 
2479

Density continuity, 
Mass conservation 
Mhalo = Mcore + MNFW

Total mass = core defining mass
Enforces a minimum halo mass for a 
given particle mass

Robles, Bullock, and 
Boylan-Kolchin MNRAS 
483, 289 (2019), 1807.06018. 
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ANALYSIS 

Soliton core only NFW is physically unconstrained González-Morales, Marsh, 
Peñarrubia, and Ureña-López, 
MNRAS 472, 1346 (2017) 

NFW parameters chosen 
independent of soliton parameters

Most general, but mass is not necessarily 
conserved  

Safarzadeh and Spergel, ApJ
893, 21 (2020).

Parameterized transition with 
density continuity 

Transition radius is allowed to vary Marsh Pop, 2015, MNRAS, 451, 
2479

Density continuity, 
Mass conservation 
Mhalo = Mcore + MNFW

Total mass = core defining mass
Enforces a minimum halo mass for a 
given particle mass
Very light halos can’t form 

Robles, Bullock, and 
Boylan-Kolchin MNRAS 
483, 289 (2019), 1807.06018. 
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DATA 

Data from:
¡ Walker,  Mateo, and Olszewski, ApJ 137, 3100 (2009).

¡ Walker, Mateo, Olszewski, Bernstein, Sen, and Woodroofe, ApJS 171, 389 (2007).

¡ Spencer, Mateo, Olszewski, Walker,  McConnachie, and Kirby, ApJ 156, 257 (2018).

9



DATA 
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RESULTS
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RESULTS

¡ Degeneracy between 
particle mass and halo mass 
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ANISOTROPY 

¡ Velocity anisotropy      is a 
measure of the difference 
between tangential and radial 
velocity dispersion 
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Figure 4.4 Line-of-sight velocity dispersion as a function of projected radius, from spa-
tially identical systems that have different dfs. In each system the density and potential
are those of the Hernquist model and the anisotropy parameter β of equation (4.61) is
independent of radius. The curves are labeled by the relevant value of β. In the isotropic
system, the velocity dispersion falls as one approaches the center (cf. Problem 4.14).

A contrasting case of almost equal simplicity is β = − 1
2 , corresponding to

σ2
θ = σ2

φ = 3
2σ

2
r . Then equation (4.66) becomes

1

2π2

ν

r
=

∫ Ψ

0
dE f1(E)(Ψ − E). (4.70)

Differentiating through twice with respect to Ψ we have

f1(Ψ) =
1

2π2

d2(ν/r)

dΨ2
(β = − 1

2 ). (4.71)

In the case of the Hernquist model, this yields

f1(E) =
1

4π3(GMa)2
d2

dẼ2

(
Ẽ5

(1 − Ẽ)2

)

, (4.72)

which one may easily show is non-negative for Ẽ ≤ 1.
Figure 4.4 shows the line-of-sight velocity dispersion σ‖ of a Hernquist

model as a function of projected radius when the df is (i) ergodic (eq. 4.50)
labeled “0”; (ii) radially biased (eqs. 4.62 and 4.69) labeled 1

2 , and (iii)
tangentially biased (eqs. 4.62 and 4.72) labeled − 1

2 . In the radially biased
system, the central value of σ‖ is nearly twice that in the isotropic system,
and more than twice that in the tangentially biased system. Conversely, at

Binney and Tremaine, Galactic Dynamics: Second Edition (2008). 

Radially biased

Tangentially biased



ANISOTROPY 

¡ Velocity anisotropy      is a 
measure of the difference 
between tangential and radial 
velocity dispersion 
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ANISOTROPY 

¡ Velocity anisotropy      is a 
measure of the difference 
between tangential and radial 
velocity dispersion 

<latexit sha1_base64="gefezzPXOslAG2+3M/mP0f1/Ce8=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKqMegF48RzAOSJcxOepMhsw9meoUQ8hFePCji1e/x5t84SfagiQUNRVU33V1BqqQh1/12CmvrG5tbxe3Szu7e/kH58KhpkkwLbIhEJbodcINKxtggSQrbqUYeBQpbwehu5reeUBuZxI80TtGP+CCWoRScrNTqBki8x3vlilt152CrxMtJBXLUe+Wvbj8RWYQxCcWN6XhuSv6Ea5JC4bTUzQymXIz4ADuWxjxC40/m507ZmVX6LEy0rZjYXP09MeGRMeMosJ0Rp6FZ9mbif14no/DGn8g4zQhjsVgUZopRwma/s77UKEiNLeFCS3srE0OuuSCbUMmG4C2/vEqaF1Xvquo9XFZqt3kcRTiBUzgHD66hBvdQhwYIGMEzvMKbkzovzrvzsWgtOPnMMfyB8/kDNxWPfg==</latexit>

�a

Radially 
biased

Tangentially 
biased

296 Chapter 4: Equilibria of Collisionless Systems
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tially identical systems that have different dfs. In each system the density and potential
are those of the Hernquist model and the anisotropy parameter β of equation (4.61) is
independent of radius. The curves are labeled by the relevant value of β. In the isotropic
system, the velocity dispersion falls as one approaches the center (cf. Problem 4.14).
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RESULTS

¡ Degeneracy between 
particle mass and halo mass 

15



RESULTS

¡ Degeneracy between 
particle mass and halo mass 

¡ Probability of 7 objects that 
size merging with a Milky 
Way sized halo is very small 
(P~10-6), would need to be 
an atypical galaxy
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RESULTS: CENTRAL BLACK HOLE 

¡ Add a black hole (point mass) 
to the dwarf galaxy center

16



RESULTS: CENTRAL BLACK HOLE 

¡ Add a black hole (point mass) 
to the dwarf galaxy center

¡ Allows for lower particle mass, 
lower halo mass posteriors

17



RESULTS: CENTRAL BLACK HOLE 

¡ Add a black hole (point mass) 
to the dwarf galaxy center

¡ Allows for lower particle mass, 
lower halo mass posteriors

¡ Requires proportionally 
massive black holes 

[S. M. Koushiappas, J. S. Bullock, and A. 
Dekel, MNRAS 354, 292 (2004), astro-
ph/0311487.] 
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EVIDENCE

¡ Evidence is the sum of likelihood 
over the prior volume 
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EVIDENCE

¡ Evidence is the sum of likelihood 
over the prior volume 

¡ Note that Ursa Minor has the 
smallest number of stars, and is the 
most irregular of the dwarfs 
analyzed 
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CONCLUSION

¡ Particle masses of m<10-20 eV are not kinematically viable in dwarfs unless:

¡ The Milky Way is an atypical halo.

¡ All dwarfs contain a central black hole of mass ~0.1% their halo mass.
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CONCLUSION

¡ Particle masses of m<10-20 eV are not kinematically viable in dwarfs unless:

¡ The Milky Way is an atypical halo.

¡ All dwarfs contain a central black hole of mass ~0.1% their halo mass.

¡ Particle masses of m>10-20 eV are allowed, but more CDM-like.

¡ There is no strong preference for any of the models in most dwarfs
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ADDITIONAL MATERIAL 

¡ ULB simulations are done with the Schrodinger-Poisson equations
¡ Describes a self gravitating quantum superfluid

A0



ADDITIONAL MATERIAL

¡ Start with the collisionless Boltzmann equation, then integrate over [velocity 
moments] to get the Spherical Jeans Equation: 

¡ Assume anisotropy is constant over the system, and you get the solution: 

with           the projected stellar density,           the radial stellar velocity dispersion 
profile,     is the projected radial distance from the center
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ADDITIONAL MATERIAL: UNBINNED

¡ Unbinned Gaussian likelihood function:

For more details, see: 
A. Geringer-Sameth, S. M. Koushiappas, and M. Walker, The Astrophysical Journal 801, 74 (2015). 
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Here, ui is the projected velocity, Ri is the projected
position, and ”u,i is the observational error in velocity
of the ith star in the data set. ÈuÍ is the bulk velocity,
which is marginalized over with a flat prior.

III. HALO PROFILES

A key ingredient in using stellar velocities to recon-
struct the dark matter distribution in dwarf galaxies is
the assumed functional form of the dark matter density
profile. In order to explore the viability of ultralight
bosonic dark matter in dwarf galaxies it is necessary to
start from a basic description of the non-linear evolution
of halos. This is a di�cult problem where the only way
to obtain such information is through numerical simula-
tions.

Below we first summarize the distribution of cold dark
matter in halos, namely the Navarro Frenk & White gen-
eralized profile (NFW hereafter) [48–50]. We then de-
scribe three di�erent prescriptions of the distribution of
dark matter in fuzzy dark matter halos. All three are
based on an internal structure that contains a quantum
mechanical pressure-supported core. How the core tran-
sitions to the outer NFW-like dark matter distribution
is the subject of these three models. The di�erences are
summarized in Table I.

A. Cold dark matter distribution – NFW profile

The NFW profile [48] and subsequently its more gen-
eralized form [49, 50] are the outcome of N-body dark
matter simulations where initial thermal velocities in the
dark matter are negligible and do not a�ect the growth
of structure (cold dark matter). The form of the dark
matter distribution is given by a generalized NFW,

flNFW(r) = fls

(r/rs)“ [1 + (r/rs)–](—≠“)/–
, (11)

where fls and rs are the characteristic density and scale
radius respectively, and {–, —, “} describe the power law
behavior of the dark matter distribution. The profile has
an inner density profile that goes as ≥ r≠“ and an outer
behavior characterised by ≥ r≠— . The normalization of
such a profile is specified either by the characteristic den-
sity fls and the scale radius rs, or by the mass of the halo

1
For binned analysis and di�erences between binned and unbinned

analyses [4].

M� =
s

fl(r)d3r and its concentration c = R�/rs, where
R� is the radius of the halo.

One has the freedom to choose how to define a halo, for
example whether a halo is defined as a virial overdensity
(in this case � = vir) or a fixed product of � times
the mean matter density of the universe (e.g., � = 200).
In what follows, when we refer to the mass of an NFW
profile we will be using � = 200, i.e., the NFW profile
can be characterized by M200 and c200 (or R200).

This functional form of dark matter distribution has
been extensively studied in numerical simulations and
has been applied in studies aimed at reconstructing the
gravitational potential of dark matter halos on many
scales, from galaxy clusters [51] to the Milky Way [52]
and dwarf galaxies [3, 53].

When implemented in MultiNest, the generalized
NFW parameters are sampled over flat priors in linear
space for the powers –, —, “ and in logarithmic space for
the parameters (1 ≠ —a), M200/M§, and c200:

≠1 Æ ≠ log
10

(1 ≠ —a) Æ +1,

log
10

(5 ◊ 107) Æ log
10

(M200/M§) Æ log
10

(5 ◊ 109),
log

10
(2) Æ log

10
(c200) Æ log

10
(30),

0.5 Æ – Æ 3,

3 Æ — Æ 10,

0 Æ “ Æ 1.2.

Note that the original NFW profile has a power law be-
havior given by {–, —, “} = {1, 3, 1}. The priors for M200

have an upper limit at M200 = 5 ◊ 109M§ because in-
creasing that limit has minimal e�ect on the posteriors.

B. Soliton cores

Fuzzy dark matter distribution in collapsed halos is
a highly non-linear process that necessitates the use of
numerical simulations. The large scale cosmological sim-
ulations of [36] found that axion-like dark matter does
lead to the formation of cores that reside in the center
of dark matter halos. The density of such cores at z = 0
(present epoch) is parameterized as

flsoliton(r) = 1.9(10m22)≠2(rc/kpc)≠4

Ë
1 + 9.1 ◊ 10≠2 (r/rc)2

È8
109M§kpc≠3,

(12)
where m22 © m/10≠22eV is the scaled dark matter par-
ticle mass and rc is the characteristic radius, defined to
be the radius at which density drops to one half of the
halo’s peak value defined as flsoliton(r æ 0). The func-
tional form of Eq. 12 is accurate to 2% for 0 < r . 3rc

[36].
The soliton core extends out to the characteristic ra-
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ADDITIONAL MATERIAL: PRIORS

4

[25]. This is an artificially constructed halo with no phys-
ical input other than the characteristics of the soliton
core and the outer functional behavior of the NFW pro-
file. There is no imposed physical connection between
the two.

It is composed of two profiles that are matched to have
equal densities at the transition radius

flsoliton

---
r=3rc

= flNFW

---
r=3rc

. (14)

In this model, the free parameters that can define the
NFW profile are the mass M200, and concentration c200.
For an NFW profile, rather than a generalized NFW,
(–, —, “) = (1, 3, 1). The soliton profile is defined by the
same mass M200 and the mass of the scalar dark matter
particle m22.

The normalization (M200) and characteristic func-
tional behavior (c200, –, —, “) of the NFW profile do not
need to correspond to physical halos as long as Eq.14 is
satisfied. Here, the NFW mass parameter and the mass
that the defines the soliton core is the same, but con-
centration can vary untethered by the core’s form. The
model parameters are sampled over the following flat pri-
ors:

≠1 Æ ≠ log
10

(1 ≠ —a) Æ +1,

log
10

(5 ◊ 107) Æ log
10

(M200/M§) Æ log
10

(5 ◊ 1010),
log

10
(2) Æ log

10
(c200) Æ log

10
(120),

≠1 Æ log
10

(m22) Æ 3.

This model represents the simplest (alas unphysical) pre-
scription for the dark matter distribution in a dwarf
galaxy.

2. Model B

A di�erent approach for connecting the soliton core
to the outer parts of the halo was proposed in González-
Morales et al. [26]. Here, the density of the soliton core is
fixed to the density of NFW profile at a transition radius
that is governed by a free parameter ‘. In this definition,

flsoliton

[1 + (r‘/rsol)2]8
= flNFW

(1 + r‘/rs)2(r‘/rs) = ‘flsol, (15)

where
r‘ = rsol(‘≠1/8

≠ 1)1/2 (16)
and rsol = rc/0.0910.5 with rc given by Eq.13 (note that
Schive et al. [16] formulation is equivalent to the formula-
tion by González-Morales et al. [26] and Marsh and Pop
[27]).

The density profile in this model is then

flGM(r) = flsol

Y
____]

____[

1
[1 + (r/rsol)2]8

r < r‘

”NFW

(1 + r/rs)2(r/rs) r Ø r‘

(17)

where

”NFW = ‘

C
r‘

rs

3
1 + r‘

rs
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. (18)

The free parameters chosen by MultiNest in this model
are M200, c200, m22, and ‘. These parameters are sam-
pled over the flat priors:

≠1 Æ ≠ log
10

(1 ≠ —a) Æ +1,

log
10

(5 ◊ 107) Æ log
10

(M200/M§) Æ log
10

(5 ◊ 1010),
log

10
(2) Æ log

10
(c200) Æ log

10
(120),

log
10

(0.5) Æ log
10

(m22) Æ 3,

≠6 Æ log
10

(‘) Æ 1

Note that for this halo construction it is possible to
choose a halo mass parameter that governs core size but
results in a di�erent total mass when integrating out to
r200.

3. RBBK Soliton Profile

A more physically motivated formulation of the soliton
dark matter profile is proposed by Robles et al. [28]. This
formulation connects the inner core of Eq.12 to an outer
NFW profile at a transition radius r– = –rc, where –
is found to be – ¥ 3 (see Mocz et al. [15], Schive et al.
[16]).

flRBBK(r) =
I

flsol(r) 0 Æ r Æ r–

flNFW(r) r– Æ r Æ r200.
(19)

In this model, mass is conserved, and the total mass of
a halo is the sum of the mass in the soliton core and the
mass of the corresponding NFW profile. In other words,

M200 = Mcore + 4fi

⁄ r�

r–

flNFW(rÕ)rÕ2drÕ (20)

Note that we take – = 3 as before, although this
may vary with M200 as discussed in [28]. One impor-
tant feature of this profile is that not every combination
of {M200, m22} parameters is valid. This reflects the fact
that there is a minimum halo mass set by the core size,
which is determined by m22 (small halos are not allowed
to form because of quantum pressure).
MultiNest implements this model by sampling over

the free parameters with the following flat priors

≠1 Æ ≠ log
10

(1 ≠ —a) Æ +1,

≠1 Æ log
10

(m22) Æ 3
Mmin

200
(m22) Æ log

10
(M200/M§) Æ log

10
(5 ◊ 1010),

A2

Model C ULB:

3

of halos. This is a di�cult problem and the only way
to obtain such information is through numerical simula-
tions.

Below we first summarize the distribution of cold dark
matter in halos, namely the Navarro Frenk & White gen-
eralized profile (NFW hereafter) [21–23]. We then de-
scribe three di�erent prescriptions of the distribution of
dark matter in fuzzy dark matter halos. All three based
on an internal structure that contains a quantum me-
chanical pressure-supported core. How the core transi-
tions to the outer NFW-like dark matter distribution is
the subject of these three models.

A. Cold dark matter distribution – NFW profile

The NFW profile [21] and subsequently its more gen-
eralized form [22, 23] are the outcome of N-body dark
matter simulations where initial thermal velocities in the
dark matter are negligible and do not a�ect the growth
of structure (cold dark matter). The form of the dark
matter distribution is given by a generalized NFW,

flNFW(r) = fls

(r/rs)“ [1 + (r/rs)–](—≠“)/–)
, (11)

where fls and rs are the characteristic density and scale
radius respectively, and {–, —, “} describe the power law
behavior of the dark matter distribution. The profile has
an inner density profile that goes as ≥ r≠“ and an outer
behavior characterised by ≥ r≠— . The normalization of
such profile is specified either by the characteristic den-
sity fls and the scale radius rs, or by the mass of the halo
M� =

s
fl(r)d3r and its concentration c = R�/rs, where

R� is the radius of the halo.
One has the freedom to choose how to define a halo, for

example whether a halo is defined as a virial overdensity
(in this case � = vir) or a fixed product of � times
the mean matter density of the universe (e.g., � = 200).
In what follows, when we refer to the mass of an NFW
profile we will be using � = 200, i.e., the NFW profile
can be characterized by M200 and R200.

This functional form of dark matter distribution has
been extensively studied in numerical simulations and
has been applied in studies aimed at reconstructing the
gravitational potential of dark matter halos on many
scales, from galaxy clusters [] to the Milky Way [] and
dwarf galaxies [].

When implemented in MultiNest, the generalized
NFW parameters are sampled over flat priors:

≠1 Æ ≠ log
10

(1 ≠ —a) Æ +1,

log
10

(5 ◊ 107) Æ log
10

(M200/M§) Æ log
10

(5 ◊ 109),
log

10
(2) Æ log

10
(c200) Æ log

10
(30),

0.5 Æ – Æ 3,

3 Æ — Æ 10,

0 Æ “ Æ 1.2.

Note that the original NFW profile has a power law be-
havior given by w © {–, —, “} = {1, 3, 1}. The priors
for M200 have an upper limit at M200 = 5 ◊ 109 because
increasing that limit has minimal e�ect on the posteriors.

B. Soliton cores

Fuzzy dark matter distribution in collapsed halos is
a highly non-linear process that necessitates the use of
numerical simulations. The large scale cosmological sim-
ulations of [16] found that axion-like dark matter does
lead to the formation of cores that reside in the center
of dark matter halos. The characteristic density of such
cores at z = 0 (present epoch) is parameterized as

flsoliton(r) = 1.9(10m22)≠2(rc/kpc)≠4

Ë
1 + 9.1 ◊ 10≠2 (r/rc)2

È8
109M§kpc≠3,

(12)
where m22 © m/10≠22eV is the scaled dark matter par-
ticle mass and rc is the characteristic radius, defined to
be the radius at which density drops to one half of the
halo’s peak value defined as flsoliton(r æ 0). The func-
tional form of 12 is accurate to 2% for 0 < r . 3rc [16].

The soliton core extends out to the characteristic ra-
dius, rc, that fitted to the numerical result is given by2

rc ¥ 1.5 m≠1

22

3
M200

109M§

4≠1/3

kpc. (13)

For the full wave dark matter density profile of Eqn.12,
the numerical simulations of Mocz et al. [15], Schive et al.
[16] show that at ≥ 3rc there is a smooth transition to
an NFW-like profile.

There is however ambiguity in how the NFW profile is
defined in this case (the value of the NFW parameters
(fls, rs) or alternatively, halo mass and concentration)
and how it relates to the characteristics of the soliton,
namely, (Mvir, m22) in Eqs.12,13. In other words, how is
the inner part of the halo (formed early on) related to
the distribution of matter in the outskirts of the halo?

Previous work assumed di�erent ways to make this
transition. In this paper we will examine how choices ef-
fect the posteriors using stellar kinematics in dwarf galax-
ies.

1. Model A

The simplest soliton-like profile is one were the soliton
core transitions to an NFW profile at a radius of ≥ 3rc

2
The original fitting function from [16] was in terms of Mvir. Here,

for consistency throughout the paper we use the relationship be-

tween M200 and Mvir for a matter density of �M = 0.3 [24] to

express Eq. 13 in terms of M200.

Generalized NFW:
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Figure 3. Illustrations of the ellipsoidal decompositions returned by Algo-
rithm 1: the points given as input are overlaid on the resulting ellipsoids. 1000
points were sampled uniformly from (a) two non-intersecting ellipsoids and
(b) a torus.

The approach outlined above allows maximum flexibility and
sampling efficiency by breaking up a posterior mode resembling a
Gaussian into relatively few ellipsoids, but a mode possessing a pro-
nounced curving degeneracy into a relatively large number of small
‘overlapping’ ellipsoids. In Fig. 3, we show the results of apply-
ing Algorithm 1 to two different problems in three dimensions: in
(a) the iso-likelihood surface consists of two non-overlapping ellip-
soids, one of which contains correlations between the parameters,
and in (b) the iso-likelihood surface is a torus. In each case, 1000
points were uniformly generated inside the iso-likelihood surface
and used as the starting set S in Algorithm 1. In case (a), Algorithm 1
correctly partitions the point set in two non-overlapping ellipsoids
with F(S) = 1.1, while in case (b) the point set is partitioned into
23 overlapping ellipsoids with F(S) = 1.2.

In our nested sampling application, it is possible that the ellipsoids
found by Algorithm 1 might not enclose the entire iso-likelihood
contour, even though the sum of their volumes is constrained to
exceed the prior volume X. This is because the ellipsoidal approxi-
mation to a region in the prior space might not be perfect. It might
therefore be desirable to sample from a region with volume greater
than the prior volume. This can easily be achieved by using X/e as
the desired minimum volume in Algorithm 1, where X is the prior
volume and e is the desired sampling efficiency (1/e is the enlarge-
ment factor). We also note that if the desired sampling efficiency e
is set to be greater than unity, then the prior can be undersampled.
Indeed, setting e > 1 can be useful if one is not interested in the ev-
idence value, but wants only to have a general idea of the posterior
distribution in relatively few likelihood evaluations. We note that,

regardless of the value of e, it is always ensured that the ellipsoids
Ek enclosing the subsets Sk are always the bounding ellipsoids.

5.3 Sampling from overlapping ellipsoids

Once the ellipsoidal bounds have been constructed at some iteration
of the nested sampling process, one must then draw a new point
uniformly from the union of these ellipsoids, many of which may
be overlapping. This is achieved using the method presented in
FH08, which is summarized below for completeness.

Suppose at iteration i of the nested sampling algorithm, one has
K ellipsoids {Ek}. One ellipsoid is then chosen with probability pk

equal to its volume fraction

pk = V (Ek)/Vtot, (24)

where Vtot =
∑K

k=1 V (Ek). Samples are then drawn uniformly from
the chosen ellipsoid until a sample is found for which the hard
constraint L > Li is satisfied, where Li is the lowest-likelihood
value among all the active points at that iteration. There is, of course,
a possibility that the chosen ellipsoid overlaps with one or more
other ellipsoids. In order to take an account of this possibility, we
find the number of ellipsoids, ne, in which the sample lies and only
accept the sample with probability 1/ne. This provides a consistent
sampling procedure in all cases.

5.4 Decreasing the number of active points

For highly multimodal problems, the nested sampling algorithm
would require a large number N of active points to ensure that all
the modes are detected. This would consequently result in very slow
convergence of the algorithm. In such cases, it would be desirable
to decrease the number of active points as the algorithm proceeds
to higher likelihood levels, since the number of isolated regions in
the iso-likelihood surface is expected to decrease with increasing
likelihood. Fortunately, nested sampling does not require the num-
ber of active points to remain constant, provided the fraction by
which the prior volume is decreased after each iteration is adjusted
accordingly. Without knowing anything about the posterior, we can
use the largest evidence contribution that can be made by the re-
maining portion of the posterior at the ith iteration !Zi = LmaxXi ,
as the guide in reducing the number of active points by assuming
that the change in !Z is linear locally. We thus set the number of
active points Ni at the ith iteration to be

Ni = Ni−1 − Nmin
!Zi−1 − !Zi

!Zi − tol
, (25)

subject to the constraint Nmin ≤ Ni ≤ Ni−1, where Nmin is the min-
imum number of active points allowed and tol is the tolerance on
the final evidence used in the stopping criterion.

5.5 Parallelization

Even with the enlargement factor, e, set to unity (see Section 5.2),
the typical sampling efficiency obtained for most problems in astro-
physics and particle physics is around 10–30 per cent for two main
reasons. First, the ellipsoidal approximation to the iso-likelihood
surface at any iteration is not perfect, and there may be regions
of the parameter space lying inside the union of the ellipsoids but
outside the true iso-likelihood surface; samples falling in such re-
gions will be rejected, resulting in a sampling efficiency less than
unity. Secondly, if the number of ellipsoids at any given iteration is
greater than one, then they may overlap, resulting in some samples
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points were sampled uniformly from (a) two non-intersecting ellipsoids and
(b) a torus.

The approach outlined above allows maximum flexibility and
sampling efficiency by breaking up a posterior mode resembling a
Gaussian into relatively few ellipsoids, but a mode possessing a pro-
nounced curving degeneracy into a relatively large number of small
‘overlapping’ ellipsoids. In Fig. 3, we show the results of apply-
ing Algorithm 1 to two different problems in three dimensions: in
(a) the iso-likelihood surface consists of two non-overlapping ellip-
soids, one of which contains correlations between the parameters,
and in (b) the iso-likelihood surface is a torus. In each case, 1000
points were uniformly generated inside the iso-likelihood surface
and used as the starting set S in Algorithm 1. In case (a), Algorithm 1
correctly partitions the point set in two non-overlapping ellipsoids
with F(S) = 1.1, while in case (b) the point set is partitioned into
23 overlapping ellipsoids with F(S) = 1.2.

In our nested sampling application, it is possible that the ellipsoids
found by Algorithm 1 might not enclose the entire iso-likelihood
contour, even though the sum of their volumes is constrained to
exceed the prior volume X. This is because the ellipsoidal approxi-
mation to a region in the prior space might not be perfect. It might
therefore be desirable to sample from a region with volume greater
than the prior volume. This can easily be achieved by using X/e as
the desired minimum volume in Algorithm 1, where X is the prior
volume and e is the desired sampling efficiency (1/e is the enlarge-
ment factor). We also note that if the desired sampling efficiency e
is set to be greater than unity, then the prior can be undersampled.
Indeed, setting e > 1 can be useful if one is not interested in the ev-
idence value, but wants only to have a general idea of the posterior
distribution in relatively few likelihood evaluations. We note that,

regardless of the value of e, it is always ensured that the ellipsoids
Ek enclosing the subsets Sk are always the bounding ellipsoids.

5.3 Sampling from overlapping ellipsoids

Once the ellipsoidal bounds have been constructed at some iteration
of the nested sampling process, one must then draw a new point
uniformly from the union of these ellipsoids, many of which may
be overlapping. This is achieved using the method presented in
FH08, which is summarized below for completeness.

Suppose at iteration i of the nested sampling algorithm, one has
K ellipsoids {Ek}. One ellipsoid is then chosen with probability pk

equal to its volume fraction

pk = V (Ek)/Vtot, (24)

where Vtot =
∑K

k=1 V (Ek). Samples are then drawn uniformly from
the chosen ellipsoid until a sample is found for which the hard
constraint L > Li is satisfied, where Li is the lowest-likelihood
value among all the active points at that iteration. There is, of course,
a possibility that the chosen ellipsoid overlaps with one or more
other ellipsoids. In order to take an account of this possibility, we
find the number of ellipsoids, ne, in which the sample lies and only
accept the sample with probability 1/ne. This provides a consistent
sampling procedure in all cases.

5.4 Decreasing the number of active points

For highly multimodal problems, the nested sampling algorithm
would require a large number N of active points to ensure that all
the modes are detected. This would consequently result in very slow
convergence of the algorithm. In such cases, it would be desirable
to decrease the number of active points as the algorithm proceeds
to higher likelihood levels, since the number of isolated regions in
the iso-likelihood surface is expected to decrease with increasing
likelihood. Fortunately, nested sampling does not require the num-
ber of active points to remain constant, provided the fraction by
which the prior volume is decreased after each iteration is adjusted
accordingly. Without knowing anything about the posterior, we can
use the largest evidence contribution that can be made by the re-
maining portion of the posterior at the ith iteration !Zi = LmaxXi ,
as the guide in reducing the number of active points by assuming
that the change in !Z is linear locally. We thus set the number of
active points Ni at the ith iteration to be

Ni = Ni−1 − Nmin
!Zi−1 − !Zi

!Zi − tol
, (25)

subject to the constraint Nmin ≤ Ni ≤ Ni−1, where Nmin is the min-
imum number of active points allowed and tol is the tolerance on
the final evidence used in the stopping criterion.

5.5 Parallelization

Even with the enlargement factor, e, set to unity (see Section 5.2),
the typical sampling efficiency obtained for most problems in astro-
physics and particle physics is around 10–30 per cent for two main
reasons. First, the ellipsoidal approximation to the iso-likelihood
surface at any iteration is not perfect, and there may be regions
of the parameter space lying inside the union of the ellipsoids but
outside the true iso-likelihood surface; samples falling in such re-
gions will be rejected, resulting in a sampling efficiency less than
unity. Secondly, if the number of ellipsoids at any given iteration is
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JEANS ANALYSIS

Observables? 
Stellar distribution function:  P(star at location x per unit volume)

Velocity dispersion tensor:

Binney and Tremaine, Galactic Dynamics: Second Edition (2008). 

17



JEANS ANALYSIS

Binney and Tremaine, Galactic Dynamics: Second Edition (2008). 

Assuming a spherical and time-independent system, 

}
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Gravity term Pressure term 

Anisotropy parameter:
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