Probing ultra-light dark matter with lensed gravitational waves

Miguel Zumalacárregui

(miguel.zumalacarregui@aei.mpg.de)

Max Planck Institute for Gravitational Physics (Albert Einstein Institute)

with G. Tambalo, L. Dai, HY Cheung, S. Singh & G. Brando

VLDM Workshop, March 2023

Miguel Zumalacárregui Probing ULDM w lensed GWs (1)

Gravitational Wave Lensing

(LIGO '16)

Deflection, multiple images, magnification, time delay, diffraction

Miguel Zumalacárregui Probing ULDM w lensed GWs

(2)

Why GW lensing?

- EM lensing \rightarrow Large-scale structure, dark matter...
- GWs highly complementary:
 - Coherent, low frequency \rightarrow wave effects
 - Weakly coupled \rightarrow universe transparent to GWs
 - Well modeled ightarrow less uncertainty
- Many GW events \rightarrow lensing increasingly relevant (e.g. LIGO/Virgo/Kagra searches)

(3)

Miguel Zumalacárregui

Frequency dependence

$$F(w) \equiv \frac{\tilde{h}_{\text{lens}}}{\tilde{h}_{\text{flat}}}$$
$$\boxed{w \equiv 8\pi G M_{Lz} f} \sim \left(\frac{M_L}{10^4 M_{\odot}}\right) \left(\frac{f}{\text{Hz}}\right)$$

(E.g. $30 + 30 M_{\odot}$ starting at 40Hz)

Miguel Zumalacárregui Probing ULDM w lensed GWs (4)

$$F(w) \equiv \frac{\tilde{h}_{\text{lens}}}{\tilde{h}_{\text{flat}}}$$
$$\boxed{w \equiv 8\pi G M_{Lz} f} \sim \left(\frac{M_L}{10^4 M_{\odot}}\right) \left(\frac{f}{\text{Hz}}\right)$$

• Perturbative $(w \rightarrow 0)$ $F \approx 1 + Aw^{\alpha}$

(E.g. $30 + 30 M_{\odot}$ starting at 40Hz)

$$F(w) \equiv \frac{\tilde{h}_{\text{lens}}}{\tilde{h}_{\text{flat}}}$$
$$w \equiv 8\pi G M_{Lz} f \sim \left(\frac{M_L}{10^4 M_{\odot}}\right) \left(\frac{f}{\text{Hz}}\right)$$

- Perturbative $(w \rightarrow 0)$ $F \approx 1 + Aw^{\alpha}$
- Wave Optics

$$F = \frac{w}{2\pi i} \int d\vec{x} e^{iwT(\vec{x})}$$

(E.g. $30 + 30 M_{\odot}$ starting at 40Hz)

$$F(w) \equiv \frac{\tilde{h}_{\text{lens}}}{\tilde{h}_{\text{flat}}}$$
$$w \equiv 8\pi G M_{Lz} f \sim \left(\frac{M_L}{10^4 M_{\odot}}\right) \left(\frac{f}{\text{Hz}}\right)$$

- Perturbative $(w \rightarrow 0)$ $F \approx 1 + Aw^{\alpha}$
- Wave Optics

$$F = \frac{w}{2\pi i} \int d\vec{x} e^{iwT(\vec{x})}$$

• Geometric optics $(w o \infty)$

$$F \to \sum_{I} \sqrt{|\mu_I|} e^{i(wT_I + \pi n_I)}$$

Miguel Zumalacárregui

(E.g. $30+30M_{\odot}$ starting at 40Hz)

Cored profile $\rho(r) \propto \frac{1}{r^2 + r_c^2}$ e.g. self-interacting DM, $\underline{\text{ultra-light DM}} \longrightarrow$

(Zhang+18)

Fixed
$$y=0.3$$
, vary $x_c\equiv r_c/R_E$

Fixed
$$y=0.3$$
, vary $x_c\equiv r_c/R_E$

Fixed
$$y=0.3$$
, vary $x_c\equiv r_c/R_E$

Fixed
$$y = 0.3$$
, vary $x_c \equiv r_c/R_E$

Reconstructing lens parameters (Fisher matrix)

LISA $(M_{\rm BBH} = 10^6 M_{\odot}, y = 0.3, x_c = 0.01, \text{ fixed SNR} = 1000)$

See also Takahashi+04, Caliskan+22

Miguel Zumalacárregui

Probing ULDM w lensed GWs

(6)

Reconstructing lens parameters (Fisher matrix)

LISA $(M_{\rm BBH} = 10^6 M_{\odot}, y = 0.3, x_c = 0.01, \text{ fixed SNR} = 1000)$

See also Takahashi+04, Caliskan+22

Miguel Zumalacárregui

Probing ULDM w lensed GWs

(6)

LISA: vary source mass (fixed SNR=1000)

LISA: vary source mass (fixed SNR=1000)

Miguel Zumalacárregui

Probing ULDM w lensed GWs

(7)

Tests of Dark Matter

(Mocz+20, Hui+16, \cdots)

"Fuzzy" DM: ultra-light axion $r_c > 0.33 {\rm kpc} {10^9 M_\odot \over M_c} \left({10^{-22} {\rm eV} \over m_\phi}
ight)^2$

Tests of Dark Matter

(Mocz+20, Hui+16, \cdots)

"Fuzzy" DM: ultra-light axion $r_c > 0.33 \text{kpc} \frac{10^9 M_{\odot}}{M_c} \left(\frac{10^{-22} \text{eV}}{m_{\phi}}\right)^2$

Assumes largest $R_E \rightarrow \text{conservative}$ (smallest x_c predicted)

Tests of Dark Matter

(Mocz+20, Hui+16,···)

"Fuzzy" DM: ultra-light axion $r_c > 0.33 \text{kpc} \frac{10^9 M_{\odot}}{M_c} \left(\frac{10^{-22} \text{eV}}{m_{\phi}}\right)^2$ Assumes largest $R_E \rightarrow \text{conservative}$ (smallest x_c predicted) Compare w/ (Dalal, Kravtsov 22)

Miguel Zumalacárregui

FDM modelling beyond cored isothermal sphere

Include more realistic profile, substructure, etc...

Miguel Zumalacárregui Probing ULDM w lensed GWs (9)

Conclusions

- GW complement EM lensing
 - wave effects
 - probes lens properties
- Fast & accurate F(w) computations
- Recover lens params precision $\sim 1/{\rm SNR}$ -strong parameter degeneracies
- Wave optics \rightarrow additional lens info!
- Probe dark matter properties

Backup Slides

Fisher matrix analysis

(Vallisneri '07)

$$F_{IJ} = \left(\frac{\partial h_L}{\partial \theta_I} \middle| \frac{\partial h_L}{\partial \theta_J}\right), \qquad (h|g) = 4\Re \left(\int \frac{df}{S_n(f)} \tilde{h}(f) \tilde{g}^*(f)\right)$$

•
$$\tilde{h}_L(w, \vec{\theta}) = F(w)\tilde{h}(w)$$

•
$$F \rightarrow \begin{cases} WO & (w < w_{cut}) \\ Geom Opt. & (w > w_{cut}) \end{cases}$$

•
$$\theta_I \in (\underbrace{\log(D_L), \phi_0}_{\text{source}}, \underbrace{\log(M_{Lz}), y, x_c}_{\text{lens}})$$

• Static single detector, optimal orientation...

(Caliskan+ '22 \rightarrow detailed source modeling)

Lens with a core:

Vary impact parameter

LISA ($M_{\rm BBH} = 10^{6} M_{\odot}$, fixed SNR=1000)

Lens mass

Impact param.

Core size

Vary impact parameter

LISA ($M_{\rm BBH} = 10^6 M_{\odot}$, fixed SNR=1000)

advanced LIGO ($M_{\rm BBH} = 10^6 M_{\odot}$, fixed SNR=100)

Miguel Zumalacárregui

Fix core size $x_c = 0.05$

Miguel Zumalacárregui

Fix core size $x_c = 0.05$

Miguel Zumalacárregui

Fix core size $x_c = 0.05$

Miguel Zumalacárregui

Fix core size $x_c = 0.05$

Miguel Zumalacárregui

Fix core size $x_c = 0.05$

7 CIS $x_c = 0.05$ U 6 0.1 0.350.550.6 $|\overset{(x)}{\overset{(x)}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}$ 1.2 $\mathbf{2}$ 10^{0} 10^{-1} 10^{1} 500 1000 1500 2000 2500 3000

w

Miguel Zumalacárregui

Computing amplification factor I

1) beyond Geometric Optics:

$$\sum_{I} \sqrt{|\mu_{I}|} \left(1 + i \frac{\Delta_{I}}{w} \right) e^{i(wT_{I} + \pi n_{I})}$$

Computing amplification factor I

1) beyond Geometric Optics:

$$\sum_{I} \sqrt{|\mu_{I}|} \left(1 + i \frac{\Delta_{I}}{w} \right) e^{i(wT_{I} + \pi n_{I})}$$

- 2) \mathbb{C} -deformation: $\vec{x} \to (r, \theta) \to (z(\lambda), \theta)$
 - (Feldbrugge+, Tambalo, MZ+)

Computing amplification factor I

1) beyond Geometric Optics:

$$\sum_{I} \sqrt{|\mu_{I}|} \left(1 + i rac{\Delta_{I}}{w}
ight) e^{i(wT_{I} + \pi n_{I})}$$

2) \mathbb{C} -deformation: $\vec{x} \to (r, \theta) \to (z(\lambda), \theta)$ (Feldbrugge+, Tambalo, MZ+)

Computing amplification factor II

Contour flow

$$\begin{split} \tilde{I}(\tau) &= \int dw e^{-iw\tau} I(w) \\ &= \int d^2 x \delta(\tau - T(\vec{x})) \end{split}$$

(Ulmer+ , Diego+, Tambalo, MZ+)

Computing amplification factor II

Contour flow

$$\begin{split} \tilde{I}(\tau) &= \int dw e^{-iw\tau} I(w) \\ &= \int d^2 x \delta(\tau - T(\vec{x})) \end{split}$$

(Ulmer+ , Diego+, Tambalo, MZ+)

Computing amplification factor II

Contour flow

$$\begin{split} \tilde{I}(\tau) &= \int dw e^{-iw\tau} I(w) \\ &= \int d^2x \delta(\tau - T(\vec{x})) \end{split}$$

(Ulmer+ , Diego+, Tambalo, MZ+)

