Motion of S2 and bounds on scalar clouds around SgrA*

Arianna Foschi, Paulo Garcia, Vitor Cardoso & the GRAVITY collaboration

Very Light Dark Matter workshop @ Chino, Nagano (Online talk) 28 March 2023

grit gravitation in técnico

Motivation

Motivation: Ultralight bosons are possible candidates for **Dark** Matter (DM).

DM may cluster around supermassive BHs (Sadeghian *et al.* 2013).

Idea: Constrain an ultralight scalar field cloud around the supermassive Black Hole (BH), *Sagittarius A**, at the center of the Milky Way using orbital motion of Sstars.

We will focus on star S2.

Data: We have **astrometry** (positions in the sky) and **spectroscopy** (radial velocity measurements).

Several works used S-stars to obtain upper bounds on the extended mass around Sgr A*.

Credits to S. Gillessen, GRAVITY Coll., Max Planck Institute for Extraterrestrial Physics

$$S = \int d^4x \sqrt{-g} \left(\frac{R}{16\pi Gc^{-4}} - \frac{1}{2} g^{\alpha\beta} \partial_{\alpha} \Psi^* \partial_{\beta} \Psi^* - \frac{\mu}{2} \Psi \Psi^* \right) \qquad \text{Mass coupling: } \alpha = r_g \mu = \left[\frac{GM_{\bullet}}{c^2} \right] \left[\frac{m_s c}{\hbar} \right]$$

In the limit $\alpha \ll 1$, the fundamental mode of the field $(\ell = m = 1)$ is given by (Brito *et al.* 2015)

$$\Psi = A_0 e^{-i(\omega_R t - \varphi)} r \, \alpha^2 e^{-r\alpha^2/2} \sin \theta \qquad \text{where} \qquad A_0^2 = \Lambda \frac{\alpha^4}{64 \, \pi} \qquad \left(\Lambda = \frac{M_{\text{cloud}}}{M_{\text{cloud}}}\right)$$

Credits for image to Ana Carvalho, from Brito et al. 2015

$$S = \int d^4x \sqrt{-g} \left(\frac{R}{16\pi G c^{-4}} - \frac{1}{2} g^{\alpha\beta} \partial_{\alpha} \Psi^* \partial_{\beta} \Psi^* - \frac{\mu}{2} \Psi \Psi^* \right)$$
 Mass coupling: $\alpha = r_g \mu = 1$

In the limit $\alpha \ll 1$, the fundamental mode of the field $(\ell = m = 1)$ is given by (Brito *et al.* 2015)

$$\Psi = A_0 e^{-i(\omega_R t - \varphi)} r \alpha^2 e^{-r\alpha^2/2} \sin \theta \qquad \text{where} \qquad A_0^2 = \Lambda \frac{\alpha^4}{64 \pi}$$

The energy density of the scalar field is:

$$\rho = \frac{m_s^2 c^2}{\hbar^2} |\Psi|^2 + \mathcal{O}\left(c^{-4}\right)$$

Solving $\nabla^2 U_{\text{scalar}} = 4\pi\rho$ we obtain the scalar potential:

$$U_{\text{scalar}} = \sum_{\ell m} \frac{4\pi}{2\ell + 1} \left[q_{\ell m}(r) \frac{Y_{\ell m}(\theta, \varphi)}{r^{\ell + 1}} + p_{\ell m}(r) r^{\ell} Y_{\ell m}(\theta, \varphi) \right] = \Lambda \left[P_1(r, \alpha) + P_2(r, \alpha) \cos^2 \theta \right]$$

and the Lagrangian:

$$\mathscr{L} = \frac{1}{2} \left(\dot{r}^2 + r^2 \dot{\theta}^2 + r^2 \sin^2 \theta \dot{\phi} \right) + \frac{M_{\bullet}}{r} + \Lambda \left(P_1(r, \alpha) + P_2(r, \alpha) \cos^2 \theta \right)$$

 $\left[\frac{GM_{\bullet}}{c^2}\right] \left[\frac{m_s c}{\hbar}\right]$

 $\Lambda = \frac{M_{\rm cloud}}{M_{\bullet}}$

Credits for image to Ana Carvalho, from Brito et al. 2015

Corrections to the Newtonian model

(GRAVITY Coll. 2018, Alexander 2005)

- Newtonian effect: the Roemer delay due to finite value of c.
- **Relativistic effects**: the Doppler shift and the gravitational redshift.
- 1 Post Newtonian (PN) correction

Schwarzschild precession has been detected on S2 motion at 8σ confidence level (GRAVITY Coll. 2020)

$$a_{1\text{PN}} = f_{\text{SP}} \frac{M_{\bullet}}{r^2} \left[\left(\frac{4M_{\bullet}}{r} - v^2 \right) \frac{r}{r} + 4\dot{r}v \right]$$

where $f_{\text{SP}} = 1, \mathbf{r} = r\hat{r}, \mathbf{v} = (\dot{r}\hat{r}, r\dot{\theta}\hat{\theta}, r\dot{\phi}\sin\theta\hat{\phi}), \mathbf{v} = |\mathbf{v}|$

Method

First step: minimize the χ^2

Effective peak position of ρ

$$R_{\text{peak}} = \frac{\int_0^\infty \rho \bar{r} d\bar{r}}{\int_0^\infty \rho d\bar{r}} = \frac{3M_{\bullet}}{\alpha^2}$$

Smaller uncertainties in Λ for

 $0.01 \leq \alpha \leq 0.03$

which (roughly) corresponds to

 $35 M_{\bullet} \leq R_{\text{peak}} \leq 30000 M_{\bullet}$ $(3000 M_{\bullet} \leq r_{S2} \leq 50000 M_{\bullet})$

Method

Second step: applying Markov Chain Monte Carlo (MCMC) method using emcee (Foreman-Mackey et al. 2013) Python package

We need to sample $P(\theta \mid D) \propto P(D \mid \theta)P(\theta)$ for different fixed values of α

D = data set

 $P(D \mid \theta)$ = Gaussian Likelihood

 $P(\theta) =$ Uniform priors for physical parameters, Gaussian priors for $(x_0, y_0, v_{x0}, v_{y0}, v_{z0})$ (Plewa *et al.* 2015)

Results

Second step: applying Markov Chain Monte Carlo (MCMC) method

using emcee (Foreman-Mackey et al. 2013) Python package

	$\hat{\Lambda} = \arg \max$	$\mathbf{x} \mathscr{L}(\Lambda_{\alpha}$
	- Ve	
α	Â	$\log_{10} K$
0.00065	$\lesssim (0.470, 0.980)$	0.09
0.001	$\lesssim (0.470, 0.980)$	0.08
0.002	$\lesssim (0.440, 0.978)$	-0.06
0.0035	$\lesssim (0.140, 0.780)$	-10.58
0.006	0.34671 ± 0.13666	1.44
0.01	0.00361 ± 0.00147	1.29
0.015	0.00101 ± 0.00042	1.24
0.02	0.00075 ± 0.00030	1.33
0.025	0.00068 ± 0.00028	1.35
0.03	0.00073 ± 0.00029	1.33
0.045	0.00328 ± 0.00135	1.27
0.075	$\lesssim (0.0013, 0.0052)$	0.0001

Bayes' factor
$$K = \frac{\mathscr{L}(\hat{\Lambda}_{\alpha} | D)}{\mathscr{L}(\Lambda = 0 | D)}$$

D)

According to (Kass & Raftery 1995):

evidence is strong $1 \le \log_{10} K \le 2$ $\log_{10} K > 2$ evidence is decisive

Conclusions

Cloud formation process

Fluctuations of massive scalar fields can be exponentially amplified by **superradiance** (Brito *et al.* 2015). However, (Kodama & Yoshino 2012) show that for $M_{\bullet} \sim 4 \cdot 10^6 M_{\odot}$

$$m_s \ge 10^{-18} \,\mathrm{eV}$$
 ($\alpha = 0.045, \ m_s \simeq 3 \cdot 10^{-18} \,\mathrm{eV}$)

However, we can assume DM existed by itself in the galaxy and the BH passes through it, leading to long-lived structures (Cardoso *et al.* 2022a, Cardoso *et al.* 2022b).

Conclusions

Cloud formation process

Fluctuations of massive scalar fields can be exponentially amplified by **superradiance** (Brito *et al.* 2015). However, (Kodama & Yoshino 2012) show that for $M_{\bullet} \sim 4 \cdot 10^6 M_{\odot}$

$$m_s \ge 10^{-18} \,\mathrm{eV}$$
 ($\alpha = 0.045, \ m_s \simeq 3 \cdot 10^{-18} \,\mathrm{eV}$)

However, we can assume DM existed by itself in the galaxy and the BH passes through it, leading to long-lived structures (Cardoso *et al.* 2022a, Cardoso *et al.* 2022b).

To summarize...

We used the astrometry and the radial velocity measurements of S2 to constrain the fractional mass $\Lambda = M_{\rm cloud}/M$ of a scalar field cloud around Sgr A*. Orbital range of S2 only allow us to constrain $0.01 \leq \alpha \leq 0.045$ and we found $\Lambda \leq 10^{-3}$ at 3σ confidence level.

Conclusions

Cloud formation process

Fluctuations of massive scalar fields can be exponentially amplified by **superradiance** (Brito *et al.* 2015). However, (Kodama & Yoshino 2012) show that for $M_{\bullet} \sim 4 \cdot 10^6 M_{\odot}$

$$m_s \ge 10^{-18} \,\mathrm{eV}$$
 ($\alpha = 0.045, \ m_s \simeq 3 \cdot 10^{-18} \,\mathrm{eV}$)

However, we can assume DM existed by itself in the galaxy and the BH passes through it, leading to long-lived structures (Cardoso *et al.* 2022a, Cardoso *et al.* 2022b).

To summarize...

We used the astrometry and the radial velocity measurements of S2 to constrain the fractional mass $\Lambda = M_{\rm cloud}/M$ of a scalar field cloud around Sgr A*. Orbital range of S2 only allow us to constrain $0.01 \leq \alpha \leq 0.045$ and we found $\Lambda \leq 10^{-3}$ at 3σ confidence level.

Thank you for your attention!

Back-up slides

Corrections to the Newtonian model

(GRAVITY 2018, Alexander 2005)

• Newtonian effect: the Roemer delay due to finite value of *c*

Roemer equation:
$$t_{obs} - t_{em} + \frac{z_{obs}(t_{em})}{c} = 0$$
1st order expansion around t_{obs} : $t_{em} \simeq t_{obs} + \frac{z_{obs}(t_{obs})}{c - v_{z_{obs}}(t_{obs})}$ On average on S2 orbit $\Delta t = t_{em} - t_{obs} \approx 8$ days

Corrections to the Newtonian model

(GRAVITY 2018, Alexander 2005)

- **Newtonian effect**: the Roemer delay due to finite value of *c*
- **Relativistic effects**: the Doppler shift and the gravitational redshift (G = c = 1) must be included when S2 reaches periastron with total space velocity $\beta \sim 10^{-2}$.

Doppler:

$$z_D = \frac{1 + \beta \cos \theta}{\sqrt{1 - \beta^2}} - 1$$

Gravitational redshift:

$$z_{\rm grav} = \frac{1}{\sqrt{1 - 2M_{\bullet}/r_{\rm em}}} - 1$$

Corrections to the Newtonian model

(GRAVITY Coll. 2018, Alexander 2005)

- **Newtonian effect**: the Roemer delay due to finite value of *c*
- **Relativistic effects**: the Doppler shift and the gravitational redshift (G = c = 1)
- 1 Post Newtonian (PN) correction

Schwarzschild precession has been detected on S2 motion at 8σ confidence level (GRAVITY Coll. 2020)

$$a_{1\text{PN}} = f_{\text{SP}} \frac{M_{\bullet}}{r^2} \left[\left(\frac{4M_{\bullet}}{r} - v^2 \right) \frac{r}{r} + 4\dot{r}v \right]$$

where $f_{\rm SP} = 1, \mathbf{r} = r\hat{r}, \mathbf{v} = (\dot{r}\hat{r}, r\dot{\theta}\hat{\theta}, r\dot{\phi}\sin\theta\hat{\phi}), v = |\mathbf{v}|$

The equations of motion

From Euler-Lagrange equations:

$$\frac{d}{dt} \left(\frac{\partial \mathscr{L}}{\partial \dot{q}} \right) - \frac{\partial \mathscr{L}}{\partial q} = 0$$

$$\begin{cases} \ddot{r} - r\dot{\theta}^2 - r\sin^2\theta\dot{\phi}^2 + \frac{1}{r^2} - \Lambda\left(P_1'(r) + P_2'(r)\cos 2\theta\right) = 0\\ 2r\dot{r}\sin^2\theta\dot{\phi} + 2r^2\cos\theta\sin\theta\dot{\phi}\dot{\phi} + r^2\sin^2\theta\ddot{\phi} = 0\\ 2r\dot{r}\dot{\theta} + r^2\ddot{\theta} - r^2\cos 2\theta\dot{\theta}\dot{\phi}^2 + 2\Lambda P_2(r)\sin 2\theta\dot{\theta} = 0 \end{cases}$$

That we numerically integrate using an adaptive Runge-Kutta of order 4(5) and initial conditions given by the solution of Kepler's two body problem.

$$r(t_{0}) = \frac{1 - e^{2}}{1 + e \cos(\phi(t_{0}))}$$

$$\phi(t_{0}) = 2 \arctan\left(\sqrt{\frac{1 + e}{1 - e}} \tan\frac{\mathscr{E}(t_{0})}{2}\right) \qquad \text{with}$$

$$\dot{r}(t_{0}) = \frac{2\pi e \sin(\mathscr{E}(t_{0}))}{1 - e \cos(\mathscr{E}(t_{0}))}$$

$$\dot{\phi}(t_{0}) = \frac{2\pi (1 - e)}{(e \cos(\mathscr{E}(t_{0})) - 1)^{2}} \sqrt{\frac{1 + e}{1 - e}}$$

Kepler's equation

$$\mathscr{E} - e\sin\mathscr{E} - \mathscr{M} = 0$$

$$\mathcal{M} = \frac{2\pi}{P} \left(t_0 - t_p \right)$$

- Step 1. It generates K walkers around any initial value of the parameters θ_i^0 from $\mathcal{N}(\theta_i^0, \sigma)$ ($\sigma = 10^{-5}$);
- Step 2. To update the position of a walker at $X_k(t)$, a walker X_j is randomly extracted from the complementary ensemble $S_{[k]} = \{X_j, \forall j \neq k\}$ and the new position is generated as $Y = X_j + Z \left[X_k(t) X_j\right]$, where Z is drawn from g(Z = z) defined as:

$$g(z) \propto \begin{cases} \frac{1}{\sqrt{z}} & \text{if } z \in \left[\frac{1}{a}, a\right] \\ 0 & \text{otherwise} \end{cases}$$

• Step 3. It computes $q = \min\left(1, Z^{N-1} \frac{p(Y)}{p(X_k(t))}\right)$, where *N* is the number of parameters, for each walker.

• Step 4. It randomly extracts a variable $r \sim U[0, 1]$. If $r \leq q$ then the move is *accepted* and $X_k(t+1) \rightarrow Y$. If r > q the move is *rejected* and $X_k(t+1) \rightarrow X_k(t)$.

