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Motivation: Ultralight bosons are possible candidates for Dark

Matter (DM).
DM may cluster around supermassive BHs (Sadeghian et al.

2013).

Idea: Constrain an ultralight scalar field cloud around
the supermassive Black Hole (BH), Sagittarius A*, at
the center of the Milky Way using orbital motion of S-
stars.

We will focus on star S2.

Data: We have astrometry (positions in the sky) and
spectroscopy (radial velocity measurements).

Several works used S-stars to obtain upper bounds on the
extended mass around Sgr A*.

Credits to S. Gillessen, GRAVITY Coll., Max Planck Institute for Extraterrestrial
Physics
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In the limit o << 1, the fundamental mode of the field (¢ = m = 1) is given by (Brito et al. 2015)
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Credits for image to Ana Carvalho, from Brito et al. 2015
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The energy density of the scalar field is:
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Credits for image to Ana Carvalho, from Brito et al. 2015
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Corrections to the Newtonian model
(GRAVITY Coll. 2018, Alexander 2005)

* Newtonian effect: the Roemer delay due to finite value of c.
* Relativistic effects: the Doppler shift and the gravitational redshift.

* 1 Post Newtonian (PN) correction

Schwarzschild precession has been detected on S2 motion at 8¢ confidence level (GRAVITY Coll. 2020)
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Second step: applying Markov Chain Monte Carlo (MCMC) method
using emcee (Foreman-Mackey et al. 2013) Python package

We need to sample  P(@|D) «x P(D|0)P(0) for different fixed values of o

D = data set
0; = 1€, Asma> $2, 1, @, 1, Ro, M., Xo, Y05 Vx5 Vyo» V00 N
BH Mass ( : Scalar field
Keplerian elements orrection to .
P a.nd GC NACO and RV fractional
distance data mass

P(D | 0) = Gaussian Likelihood

P(0) = Uniform priors for physical parameters, Gaussian priors for (Xo, o, Vy0, Vy0» V;0) (Plewa et al. 2015)




Second step: applying Markov Chain Monte Carlo (MCMC) method
using emcee (Foreman-Mackey et al. 2013) Python package
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Orange bands: 1o confidence interval, such that P(A, < A{|D) =~ 68 % of P(A,| D)

According to

(Kass & Raftery

1995):
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evidence is strong

evidence is decisive




Cloud formation process

Fluctuations of massive scalar fields can be exponentially amplified by superradiance (Brito ef al. 2015).
However, (Kodama & Yoshino 2012) show that for M, ~ 4 - 10° M,

m, > 10"18eV (@ =0.045, m ~3-10718eV)

However, we can assume DM existed by itself in the galaxy and the BH passes through it, leading to long-lived
structures (Cardoso et al. 2022a, Cardoso et al. 2022b).




Cloud formation process

Fluctuations of massive scalar fields can be exponentially amplified by superradiance (Brito ef al. 2015).
However, (Kodama & Yoshino 2012) show that for M, ~ 4 - 10° M,

m, > 10"18eV (@ =0.045, m ~3-10718eV)

However, we can assume DM existed by itself in the galaxy and the BH passes through it, leading to long-lived
structures (Cardoso et al. 2022a, Cardoso et al. 2022b).

To summarize...

We used the astrometry and the radial velocity measurements of S2 to constrain the fractional mass
AN =M_,,q/M of a scalar field cloud around Sgr A*.

lou

Orbital range of S2 only allow us to constrain 0.01 < o < 0.045 and we found A < 10~ at 36 confidence
level.




Cloud formation process

Fluctuations of massive scalar fields can be exponentially amplified by superradiance (Brito ef al. 2015).
However, (Kodama & Yoshino 2012) show that for M, ~ 4 - 10° M,

m, > 10"18eV (@ =0.045, m ~3-10718eV)

However, we can assume DM existed by itself in the galaxy and the BH passes through it, leading to long-lived
structures (Cardoso et al. 2022a, Cardoso et al. 2022b).

To summarize...

We used the astrometry and the radial velocity measurements of S2 to constrain the fractional mass

AN =M_,,q/M of a scalar field cloud around Sgr A*.

Orbital range of S2 only allow us to constrain 0.01 < o < 0.045 and we found A < 10~ at 36 confidence
level.

Thank you for your attention!
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Corrections to the Newtonian model
(GRAVITY 2018, Alexander 2005)

* Newtonian effect: the Roemer delay due to finite value of ¢

Zobs(Tem)
Roemer equation: fobs — b T+ obsem” — )
C
it ord _ gr f + Zobs(Zobs) On average on S2 orbit
st order expansion around £, : em = Tops " () At =1 —t, ~8days
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Corrections to the Newtonian model
(GRAVITY 2018, Alexander 2005)

* Newtonian effect: the Roemer delay due to finite value of ¢

« Relativistic effects: the Doppler shift and the gravitational redshift (G = ¢ = 1) must be included when S2 reaches
periastron with total space velocity f ~ 1072

1+ fcosb
Doppler: p = -1
\/1—p?
1
Gravitational redshift:  Zyry = —1

V1= 2M.Jrem




Corrections to the Newtonian model
(GRAVITY Coll. 2018, Alexander 2005)

* Newtonian effect: the Roemer delay due to finite value of ¢

« Relativistic effects: the Doppler shift and the gravitational redshift (G =c¢ = 1)
* 1 Post Newtonian (PN) correction

Schwarzschild precession has been detected on S2 motion at 8¢ confidence level (GRAVITY Coll. 2020)
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From Euler-Lagrange equations: =0
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— 2risin® O¢h + 212 cos 0 sin 00¢ + r? sin’ O = 0

2ri0 + 1?0 — r? cos 200¢* + 2AP,(r)sin 200 = 0

That we numerically integrate using an adaptive Runge-Kutta of order 4(5) and initial conditions given by
the solution of Kepler’s two body problem.
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« Step 1. It generates K walkers around any initial value of the parameters 91.0 from A/ (Hl.o, 6) (6 = 107°);

. Step 2. To update the position of a walker at X,(7), a walker X] is randomly extracted from the

complementary ensemble S[k] = {XJ, Vj # k} and the new position is generated as

Y=X+272 [Xk(t) — XJ] where Z is drawn from g(Z = z) defined as:

2(2) é isz[%,a]

O otherwise

p(Y)
p (X))

« Step 3. It computes ¢ = min <1, zZN=1 > , where N is the number of parameters, for each walker.

. Step 4. It randomly extracts a variable r ~ U [O, 1]. If r < g then the move is accepted and

X (t+ 1) = Y. If r > g the move is rejected and X,(t + 1) — X, (¢).
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