Stochastic Properties of Ultralight Scalar Fields

Mariangela Lisanti Princeton University

Flatiron Institute

Lisanti, Moschella, Terrano PRD 104, 055037 (2021) Lee, Lisanti, Terrano, and Romalis PRX in print (2023)

Dark Matter Mass Range

Well-motivated dark matter models cover an extensive mass range

Examples of Axion Interactions

 $\mathscr{L} \propto g_{a\gamma\gamma} a \mathbf{E} \cdot \mathbf{B}$

 $\mathscr{L} \propto g_{aff} \nabla \mathbf{a} \cdot \mathbf{S}_{f}$

The Local Dark Matter Distribution

Image Credit: Lucy Reading-Ikkanda/Quanta Magazine

- Average dark matter density ~0.4 GeV/cm³
- Average dark matter velocity ~200 km/s
- Dark matter flux modulates annually & daily
- Axions act like classical field due to high number density

$$n_{\rm a} \sim 10^{14} \left(\frac{10^{-6} \text{ eV}}{m_a} \right) \frac{\text{axions}}{\text{cm}^3}$$

The Axion Field

Individual axion state λ with mass m_a has random energy (E_λ) and phase (ϕ_λ)

 $a_{\lambda}(\mathbf{x},t) \propto \cos\left(E_{\lambda}(t)t+\phi_{\lambda}\right)$ $E_{\lambda}(t) \approx m_a + \frac{1}{2}m_a v_{\lambda}(t)^2$

Total axion field is the sum over all individual states

Axion Coherence

Assume axions virialized in Milky Way with velocity dispersion $\sigma_v \sim 10^{-3}$

Coherence time depends on frequency dispersion across axion states

$$\pi_c \sim \frac{1}{\delta f} \sim \frac{1}{m_a \sigma_v^2}$$

Coherence Timescale

Amplitude and phase of axion oscillations vary stochastically when $\tau \gtrsim \tau_c$

$$\tau_c \sim 10 \text{ days} \left(\frac{m_a}{10^{-15} \text{ eV}}\right)^{-1} \left(\frac{v}{10^{-3}}\right)^{-2}$$

Derevianko [1605.009717]; Foster et al. [1711.10489]

Axion Field Gradient

Axion-fermion coupling is proportional to the total gradient of the field

$$\nabla \mathbf{a}(t) \propto \sum_{\lambda} \mathbf{v}_{\lambda}(t) \cos\left(E_{\lambda}(t) t + \phi_{\lambda}\right)$$

Experiments measure projection of $\nabla \mathbf{a}(t)$ ontomeasurement axis $\mathbf{m}(t)$

$$S(t) = g_{\text{eff}} \nabla \mathbf{a}(t) \cdot \mathbf{m}(t)$$

Yields daily modulation

Relevant Timescales

Moschella, Lisanti, and Terrano [2107.10260]

The Coherent Limit $\tau_c \gg T_{\rm exp}$

Axion Field in Coherent Limit

$$a(t) = \sum_{\lambda} a_{\lambda}(t) \sim \sum_{\lambda} \cos\left(m_{a}t + \phi_{\lambda}\right)$$

$$\sim \cos\left(m_{a}t\right) \left(\sum_{\lambda} \cos\phi_{\lambda}\right) - \sin\left(m_{a}t\right) \left(\sum_{\lambda} \sin\phi_{\lambda}\right)$$

$$\sim \frac{1}{\sqrt{2}} X \cos\left(m_{a}t\right) - \frac{1}{\sqrt{2}} Y \sin\left(m_{a}t\right)$$

$$\sim \frac{1}{\sqrt{2}} \alpha \cos\left(m_{a}t + \phi\right)$$

Axion Field in Coherent Limit

Axion Gradient Field

Experimental signal for gradient field depends on 6 Gaussian random variables

3 Rayleigh-distributed amplitudes

3 uniformly-distributed phases

$$\begin{aligned} G_{3D, \text{ stoch.}}(t) \propto g_{\text{eff}} \sqrt{\sigma_v^2 + v_\odot^2} \, \alpha_z \cos\left(m_a t + \phi_z\right) \, m_z(t) \\ &+ g_{\text{eff}} \, \sigma_v \, \alpha_y \cos\left(m_a t + \phi_y\right) \, m_y(t) \\ &+ g_{\text{eff}} \, \sigma_v \, \alpha_x \cos\left(m_a t + \phi_x\right) \, m_x(t) \end{aligned}$$

Signal Injection Tests

Signal injection tests on mock data crucial for verifying analysis pipeline

(no white noise)

(injected white noise at spectral density ~0.3 fT/Hz^{1/2})

Signal Injection Tests

Uncertainty bands indicate spread over many Monte Carlo iterations

Injected Signal

3D Stochastic Signal

Signal recovery and limit-setting procedures successful with stochastic model

Injected Signal

Incorrect Approaches

Across axion-fermion searches, stochastic behavior has been incorrectly modeled or ignored when it should not have been

Incorrect Model: 1D Deterministic

$$S_{1D, \text{det.}}(t) \propto g_{\text{eff}} v_{\odot} \cos(m_a t + \phi) m_z(t)$$

Correct Model

$$S_{3D, \text{ stoch.}}(t) \propto g_{\text{eff}} \sqrt{\sigma_v^2 + v_{\odot}^2} \alpha_z \cos\left(m_a t + \phi_z\right) m_z(t)$$
$$+ g_{\text{eff}} \sigma_v \alpha_y \cos\left(m_a t + \phi_z\right) m_y(t)$$
$$+ g_{\text{eff}} \sigma_v \alpha_x \cos\left(m_a t + \phi_x\right) m_x(t)$$

Signal Injection Tests

3D Stochastic Model

1D Deterministic Model

Assuming 1D Deterministic Model yields:

greater variability in recovered signal 95% upper limits are too strong at large coupling

Incorrect Approaches

Across axion-fermion searches, stochastic behavior has either been incorrectly modeled or ignored when it should not be

Incorrect Model: 1D Stochastic

$$S_{1D, \text{ stoch.}}(t) \propto g_{\text{eff}} v_{\odot} \alpha \cos(m_a t + \phi) m_z(t)$$

Correct Model

$$\begin{split} S_{\rm 3D,\,stoch.}(t) \propto g_{\rm eff} \sqrt{\sigma_v^2 + v_\odot^2} \, \alpha_z \cos\left(m_a t + \phi_z\right) \, {\rm m}_z(t) \\ &+ g_{\rm eff} \, \sigma_v \, \alpha_y \cos\left(m_a t + \phi_z\right) \, {\rm m}_y(t) \\ &+ g_{\rm eff} \, \sigma_v \, \alpha_x \cos\left(m_a t + \phi_x\right) \, {\rm m}_x(t) \end{split}$$

Signal Injection Tests

3D Stochastic Model

1D Stochastic Model

Assuming 1D Deterministic Model yields:

incorrect limits

greater variability in recovered signal

Incorrect Approaches

1D Stochastic Model misses signal information from x and y directions

Provides poor fit to mock data generated with total axion gradient signal

Reduced Chi-Squared Test Statistic

Potential Failure to Discover Signal

Improper modeling of stochastic signal can potentially result in failure to discover a true signal

All Coherence Times

For a time series of N data points $\{D(t_n) \mid n \in 1, ..., N\}$, the total likelihood is

The combined covariance matrix is

$$\Sigma = \Sigma_{sig} + \Sigma_{bkg}$$
 where $\Sigma_{sig,nm} = \langle S(t_n) S(t_m) \rangle$

Princeton Comagnetometer Experiment

Princeton Comagnetometer Experiment

sensitive to feV axions

 $\tau_c \sim 10 \text{ days}$

Image Credit: Bloch et al. [1907.03767]

Lee, Lisanti, Terrano, and Romalis [2209.03289]

Some Mock Data Example

Experiment is sensitive to 0.4-4 feV axions, covering a wide range of signal shapes

Search Limits

New limits are about 5 orders of magnitude more stringent than previous laboratory constraints in this mass range

High Significance Peaks

Signal Line

Lineshapes of high-significance peaks are not consistent with axion interpretation

Conclusions

Comagnetometers are sensitive probes for ultralight dark matter

Stochastic behavior of axions has important experimental ramifications

Re-analysis of data from Princeton Comagnetometer Experiment sets world-leading constraints on 0.4-4 feV axions

