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Dark Matter Mass Range 

wave-like dark matter

fuzzy QCD axion

Well-motivated dark matter models cover an extensive mass range

particle-like dark matter

electron
proton

eVeV

WIMPs



Examples of Axion Interactions

ℒ ∝ gaγγ a E ⋅ B ℒ ∝ gaff ∇a ⋅ Sf

Anomalous magnetic field 
from axion

neutron

Sf

Image Credit: Carosi, van Bibber and Pivovaroff (2008)



The Local Dark Matter Distribution

Image Credit: Lucy Reading-Ikkanda/Quanta Magazine

not to 
scale

• Average dark matter density ~0.4 GeV/cm3 

• Average dark matter velocity ~200 km/s 

• Dark matter flux modulates annually & daily 

• Axions act like classical field due to high 
number density

na ∼ 1014 ( 10−6 eV
ma ) axions

cm3



The Axion Field

Individual axion state  with mass  has random energy ( ) and phase ( ) λ ma Eλ ϕλ

aλ(x, t) ∝ cos ( Eλ(t) t + ϕλ )
Eλ(t) ≈ ma + 1

2 mavλ(t)2

Total axion field is the sum over all individual states 

a1(t) ∝ cos (E1 t + ϕ1)
a2(t) ∝ cos (E2 t + ϕ2)
a3(t) ∝ cos (E3 t + ϕ3)
a4(t) ∝ cos (E4 t + ϕ4)

…

Total Axion Wave =
na

∑
λ=1

aλ(x, t)



Axion Coherence

frequency frequency

σv ∼ 0 σv ≳ 0

Assume axions virialized in Milky Way with velocity dispersion σv ∼ 10−3

Coherence time depends on frequency dispersion across axion states 

τc ∼ 1
δf

∼ 1
maσ2v



Coherence Timescale

τc ∼ 10 days ( ma

10−15 eV )
−1

( v
10−3 )

−2

Amplitude and phase of axion oscillations vary stochastically when τ ≳ τc

Derevianko [1605.009717]; Foster et al. [1711.10489]



Axion Field Gradient

∇a(t) ∝ ∑
λ

vλ(t) cos ( Eλ(t) t + ϕλ )

Axion-fermion coupling is proportional to the total gradient of the field
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FIG. 1. Left: A schematic illustration of the orientation of the laboratory measurement axis m, which we assume has a fixed
orientation relative to the surface of the Earth at some latitude and longitude, and our Galactic-frame basis {ex, ey, ez}. As
the Earth rotates about its axis relative to the inertial Galactic frame, the Galactic-frame components of the measurement axis
m oscillate with period of 1 day, thereby inducing daily modulation into the signal ra ·m. Note that the daily modulation of
ra · m is periodic but not necessarily sinusoidal and that its exact form is stochastic, since it depends on the instantaneous
direction of the axion gradient. Right: A single randomly generated time series for an axion gradient signal ra ·m with mass
ma/2⇡ = 0.01 Hz over the course of 3 years. On the smallest timescales, the signal undergoes rapid coherent oscillations with
period 2⇡/ma = 100 s. The amplitude of these oscillations modulates with period of 1 day due to the rotation of the Earth,
and evolves randomly on long timescales due to the coherence time ⌧c ⇠ 6 months.

of localized regions where total destructive interference
drives the axion field to zero, resulting in vortices [53].

For experiments sensitive to the gradient of the axion
field, there is an additional source of time dependence.
This arises because such experiments do not measure the
entire vector ra, but the projection onto a sensitive
axis, which is fixed in the laboratory frame.1 Because
the direction of ra is uniquely determined in the Galac-
tic frame, this introduces an additional modulation of
the signal due to the rotation of the Earth, as illustrated
in the far left of Fig. 1. From an experimental perspec-
tive, this daily modulation is particularly useful when the
Compton period is longer than 1 day, as it up-modulates
the signal to a manageable frequency.

An axion gradient signal is therefore characterized by
three timescales: the Compton period, 2⇡/ma; the coher-
ence time, ⌧c ⇠ 106/ma; and the period of the Earth’s
rotation, 1 day. The relative size of these timescales and
the length of experimental observation can dramatically
a↵ect the phenomenology of the signal. Fig. 1 provides a
visualization of each of these timescales for an experiment
that is sensitive to the axion field gradient. The figure
shows the measured time series over the span of 3 years
for an axion of mass ma/2⇡ = 0.01 Hz. For the particu-
lar axion mass shown in the figure, the three timescales
obey the following hierarchy: 2⇡/ma ⌧ 1 day ⌧ ⌧c. On
very short timescales (right panel), the signal oscillates
coherently with frequency ma. The amplitude of these

1 It is possible for an experiment to have multiple sensitive axes.
Although we do not consider this case specifically in this paper,
the procedure outlined here is straightforward to generalize. See
Ref. [26] for an example.

coherent oscillations undergoes daily modulations with a
period of 1 day (middle panel). On very long timescales
(left panel), the signal decoheres and the overall ampli-
tude fluctuates stochastically.

The stochastic nature of the axion field can have a pro-
found e↵ect on experimental observations—potentially
leading to a suppression or enhancement in the signal,
depending on the nature of the interference and its time
dependence. These e↵ects must be properly accounted
for in a complete data analysis to obtain reliable limits
or properly recover a signal. Although many experimen-
tal analyses have simply ignored the stochastic nature
of the axion field, such e↵ects have been well understood
for experiments that are sensitive to the amplitude of the
axion field itself [1, 2, 54]. However, these results do not
immediately generalize to the case of the gradient of the
axion field, where the direction and not just the ampli-
tude of the axion field fluctuates stochastically. Although
there have been some attempts in recent literature to ad-
dress the stochastic nature of the gradient of the axion
field [25, 54], they have relied on inadequate assumptions
that do not capture the parametric freedom of an axion
gradient signal.

In this paper, we present a general stochastic descrip-
tion for the gradient of the axion field as well as provide
a likelihood formalism for the statistical analysis of ex-
perimental data. This stochastic formalism can be used
to analyze axion signals of any frequency, regardless of
the coherence time. We demonstrate, contrary to the as-
sumptions of Ref. [54], that the gradient of the axion field
has both a random amplitude and direction, and that
an analysis that ignores this e↵ect has a non-negligible
chance of failing to correctly identify an axion signal.
Sec. II introduces the basic formalism we use to model

Experiments measure projection of  onto 
measurement axis 

∇a(t)
m(t)

S(t) = geff ∇a(t) ⋅ m(t)

Yields daily modulation 



Moschella, Lisanti, and Terrano [2107.10260]

Relevant Timescales
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FIG. 1. Left: A schematic illustration of the orientation of the laboratory measurement axis m, which we assume has a fixed
orientation relative to the surface of the Earth at some latitude and longitude, and our Galactic-frame basis {ex, ey, ez}. As
the Earth rotates about its axis relative to the inertial Galactic frame, the Galactic-frame components of the measurement axis
m oscillate with period of 1 day, thereby inducing daily modulation into the signal ra ·m. Note that the daily modulation of
ra · m is periodic but not necessarily sinusoidal and that its exact form is stochastic, since it depends on the instantaneous
direction of the axion gradient. Right: A single randomly generated time series for an axion gradient signal ra ·m with mass
ma/2⇡ = 0.01 Hz over the course of 3 years. On the smallest timescales, the signal undergoes rapid coherent oscillations with
period 2⇡/ma = 100 s. The amplitude of these oscillations modulates with period of 1 day due to the rotation of the Earth,
and evolves randomly on long timescales due to the coherence time ⌧c ⇠ 6 months.

of localized regions where total destructive interference
drives the axion field to zero, resulting in vortices [53].

For experiments sensitive to the gradient of the axion
field, there is an additional source of time dependence.
This arises because such experiments do not measure the
entire vector ra, but the projection onto a sensitive
axis, which is fixed in the laboratory frame.1 Because
the direction of ra is uniquely determined in the Galac-
tic frame, this introduces an additional modulation of
the signal due to the rotation of the Earth, as illustrated
in the far left of Fig. 1. From an experimental perspec-
tive, this daily modulation is particularly useful when the
Compton period is longer than 1 day, as it up-modulates
the signal to a manageable frequency.

An axion gradient signal is therefore characterized by
three timescales: the Compton period, 2⇡/ma; the coher-
ence time, ⌧c ⇠ 106/ma; and the period of the Earth’s
rotation, 1 day. The relative size of these timescales and
the length of experimental observation can dramatically
a↵ect the phenomenology of the signal. Fig. 1 provides a
visualization of each of these timescales for an experiment
that is sensitive to the axion field gradient. The figure
shows the measured time series over the span of 3 years
for an axion of mass ma/2⇡ = 0.01 Hz. For the particu-
lar axion mass shown in the figure, the three timescales
obey the following hierarchy: 2⇡/ma ⌧ 1 day ⌧ ⌧c. On
very short timescales (right panel), the signal oscillates
coherently with frequency ma. The amplitude of these

1 It is possible for an experiment to have multiple sensitive axes.
Although we do not consider this case specifically in this paper,
the procedure outlined here is straightforward to generalize. See
Ref. [26] for an example.

coherent oscillations undergoes daily modulations with a
period of 1 day (middle panel). On very long timescales
(left panel), the signal decoheres and the overall ampli-
tude fluctuates stochastically.

The stochastic nature of the axion field can have a pro-
found e↵ect on experimental observations—potentially
leading to a suppression or enhancement in the signal,
depending on the nature of the interference and its time
dependence. These e↵ects must be properly accounted
for in a complete data analysis to obtain reliable limits
or properly recover a signal. Although many experimen-
tal analyses have simply ignored the stochastic nature
of the axion field, such e↵ects have been well understood
for experiments that are sensitive to the amplitude of the
axion field itself [1, 2, 54]. However, these results do not
immediately generalize to the case of the gradient of the
axion field, where the direction and not just the ampli-
tude of the axion field fluctuates stochastically. Although
there have been some attempts in recent literature to ad-
dress the stochastic nature of the gradient of the axion
field [25, 54], they have relied on inadequate assumptions
that do not capture the parametric freedom of an axion
gradient signal.

In this paper, we present a general stochastic descrip-
tion for the gradient of the axion field as well as provide
a likelihood formalism for the statistical analysis of ex-
perimental data. This stochastic formalism can be used
to analyze axion signals of any frequency, regardless of
the coherence time. We demonstrate, contrary to the as-
sumptions of Ref. [54], that the gradient of the axion field
has both a random amplitude and direction, and that
an analysis that ignores this e↵ect has a non-negligible
chance of failing to correctly identify an axion signal.
Sec. II introduces the basic formalism we use to model

ma /2π = 0.01 Hz
τc ∼ 6 months



The Coherent Limit 
τc ≫ Texp



Axion Field in Coherent Limit

a(t) = ∑
λ

aλ(t) ∼ ∑
λ

cos ( ma t + ϕλ )

∼ cos (ma t) (∑
λ

cos ϕλ) − sin (ma t) (∑
λ

sin ϕλ)
∼ 1

2
X cos (ma t) − 1

2
Y sin (ma t)

∼ 1
2

α cos ( ma t + ϕ )



Axion Field in Coherent Limit



Axion Gradient Field

S3D, stoch.(t) ∝ geff σ2
v + v2

⊙ αz cos (ma t + ϕz) mz(t)

+ geff σv αy cos (ma t + ϕy) my(t)

+ geff σv αx cos (ma t + ϕx) mx(t)
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FIG. 1. Left: A schematic illustration of the orientation of the laboratory measurement axis m, which we assume has a fixed
orientation relative to the surface of the Earth at some latitude and longitude, and our Galactic-frame basis {ex, ey, ez}. As
the Earth rotates about its axis relative to the inertial Galactic frame, the Galactic-frame components of the measurement axis
m oscillate with period of 1 day, thereby inducing daily modulation into the signal ra ·m. Note that the daily modulation of
ra · m is periodic but not necessarily sinusoidal and that its exact form is stochastic, since it depends on the instantaneous
direction of the axion gradient. Right: A single randomly generated time series for an axion gradient signal ra ·m with mass
ma/2⇡ = 0.01 Hz over the course of 3 years. On the smallest timescales, the signal undergoes rapid coherent oscillations with
period 2⇡/ma = 100 s. The amplitude of these oscillations modulates with period of 1 day due to the rotation of the Earth,
and evolves randomly on long timescales due to the coherence time ⌧c ⇠ 6 months.

of localized regions where total destructive interference
drives the axion field to zero, resulting in vortices [53].

For experiments sensitive to the gradient of the axion
field, there is an additional source of time dependence.
This arises because such experiments do not measure the
entire vector ra, but the projection onto a sensitive
axis, which is fixed in the laboratory frame.1 Because
the direction of ra is uniquely determined in the Galac-
tic frame, this introduces an additional modulation of
the signal due to the rotation of the Earth, as illustrated
in the far left of Fig. 1. From an experimental perspec-
tive, this daily modulation is particularly useful when the
Compton period is longer than 1 day, as it up-modulates
the signal to a manageable frequency.

An axion gradient signal is therefore characterized by
three timescales: the Compton period, 2⇡/ma; the coher-
ence time, ⌧c ⇠ 106/ma; and the period of the Earth’s
rotation, 1 day. The relative size of these timescales and
the length of experimental observation can dramatically
a↵ect the phenomenology of the signal. Fig. 1 provides a
visualization of each of these timescales for an experiment
that is sensitive to the axion field gradient. The figure
shows the measured time series over the span of 3 years
for an axion of mass ma/2⇡ = 0.01 Hz. For the particu-
lar axion mass shown in the figure, the three timescales
obey the following hierarchy: 2⇡/ma ⌧ 1 day ⌧ ⌧c. On
very short timescales (right panel), the signal oscillates
coherently with frequency ma. The amplitude of these

1 It is possible for an experiment to have multiple sensitive axes.
Although we do not consider this case specifically in this paper,
the procedure outlined here is straightforward to generalize. See
Ref. [26] for an example.

coherent oscillations undergoes daily modulations with a
period of 1 day (middle panel). On very long timescales
(left panel), the signal decoheres and the overall ampli-
tude fluctuates stochastically.

The stochastic nature of the axion field can have a pro-
found e↵ect on experimental observations—potentially
leading to a suppression or enhancement in the signal,
depending on the nature of the interference and its time
dependence. These e↵ects must be properly accounted
for in a complete data analysis to obtain reliable limits
or properly recover a signal. Although many experimen-
tal analyses have simply ignored the stochastic nature
of the axion field, such e↵ects have been well understood
for experiments that are sensitive to the amplitude of the
axion field itself [1, 2, 54]. However, these results do not
immediately generalize to the case of the gradient of the
axion field, where the direction and not just the ampli-
tude of the axion field fluctuates stochastically. Although
there have been some attempts in recent literature to ad-
dress the stochastic nature of the gradient of the axion
field [25, 54], they have relied on inadequate assumptions
that do not capture the parametric freedom of an axion
gradient signal.

In this paper, we present a general stochastic descrip-
tion for the gradient of the axion field as well as provide
a likelihood formalism for the statistical analysis of ex-
perimental data. This stochastic formalism can be used
to analyze axion signals of any frequency, regardless of
the coherence time. We demonstrate, contrary to the as-
sumptions of Ref. [54], that the gradient of the axion field
has both a random amplitude and direction, and that
an analysis that ignores this e↵ect has a non-negligible
chance of failing to correctly identify an axion signal.
Sec. II introduces the basic formalism we use to model
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Signal Injection Tests

Signal injection tests on mock data crucial for verifying analysis pipeline

Mock  
Data

Likelihood 
Analysis

Signal  
Recovery

(no white noise) (injected white noise at spectral density ~0.3 fT/Hz1/2)

Can we recover injected signal? 
Are 95% confidence limits robust?



Null Limit

Signal Injection Tests
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Uncertainty bands 
indicate spread over 
many Monte Carlo  
iterations



3D Stochastic Signal
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FIG. 3. Signal injection plots using mock data to test the benchmark analysis procedures considered in Sec. IV. Each column
is analogous to Fig. 2 but for the 3D Stochastic (Left), 1D Stochastic (Center), and 1D Deterministic (Right) models. The
same mock data were used for all three analyses. The mock data were generated with a sampling rate of 1 mHz for 10 days
with Gaussian white noise background with standard deviation �B = 10�8p⇢av� GeV�1. The signal was generated with an
axion mass of ma/2⇡ = 1 mHz for 20 di↵erent couplings ge↵ . For each value of injected coupling, we simulate 10,000 random
mock data sets, and analyze each data set using the corresponding procedure, as described in the text. The 1D Stochastic and
1D Deterministic models set an incorrect 95% upper limit on ge↵ and exhibit more variability in their TSmax, as compared to
the 3D Stochastic model. Additionally, for large injected coupling, the 95% upper limit for the 1D Deterministic model falls
below the true value about 50% time, when this should only occur about 5% of the time for a correct model.

of the individual probabilities of observing the given co-
e�cients, marginalized over the underlying probability
distributions. Because the underlying noise distribution
is Gaussian as well, the result is a Gaussian likelihood

L(Ai, Bi, �̃i|ge↵) =
Y

i=x,y,z

e�(A2
i+B2

i )/2�
2
i (geff ,�̃i)

2⇡�2
i (ge↵ , �̃i)

,(22)

where

�2
x(ge↵ , �̃x) = g2e↵⇢a�

2
v + �̃2

x

�2
y(ge↵ , �̃y) = g2e↵⇢a�

2
v + �̃2

y

�2
z(ge↵ , �̃z) = g2e↵⇢a(�

2
v + v2�) + �̃2

z . (23)

Note that there is a near-degeneracy between ge↵ and
�bkg (through each of the �̃i). In Sec. III B, we treated
�bkg as unknown and marginalized over �̃ as a nuisance
parameter. However, due to the degeneracy between
ge↵ and �bkg in Eq. (22), we cannot repeat the same
procedure and must assume that �bkg is measured in-
dependently. For example, �bkg can be determined via
�bkg ⇡

p
SSR/N , where SSR is the minimum sum of the

squares of the residuals obtained in the fitting procedure.
We will therefore assume that �bkg and the fit coe�cient
uncertainties, �̃i, are known.

We validate this likelihood and analysis procedure by
generating 10 days of mock data sampled at 10 mHz with
Gaussian white noise and injected signal with an axion
frequency of ma/2⇡ = 1 mHz and 20 di↵erent values of
the coupling ge↵ . We repeat this for 104 di↵erent random
iterations of noise and axion signal. For each mock data
set, we obtain the six Ai and Bi coe�cients as well as
the uncertainty estimates �̃i via ordinary least squares
fitting. We then compute the best-fit coupling gbest, the
discovery test statistic TSmax, and the 95% upper limit
using the likelihood in Eq. (22), following the same pro-
cedure discussed in Sec. III B.
The results of the mock analysis are displayed in the

left column of Fig. 3, which is analogous to Fig. 2, but
for the coherent analysis discussed above. The discovery
significance and 95% upper limit couplings behave as de-
sired across all injected couplings. However, it is worth
noting that the error bars on the recovered couplings and
TSmax do not decrease in the limit of large injected cou-
pling; this is expected behavior because, with much less
than one coherence time of data, the stochastic fluctua-
tions do not “average out.”
Next, we compare the data model and analysis proce-

dure outlined in this section against two benchmark mod-
els that do not fully encapsulate the behavior of Eq. (20).

Injected Signal
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Signal recovery and limit-setting procedures successful with stochastic model



Incorrect Approaches

Across axion-fermion searches, stochastic behavior has been incorrectly 
modeled or ignored when it should not have been

S3D, stoch.(t) ∝ geff σ2
v + v2

⊙ αz cos (ma t + ϕz) mz(t)

+ geff σv αy cos (ma t + ϕz) my(t)

+ geff σv αx cos (ma t + ϕx) mx(t)

Correct Model

Incorrect Model: 1D Deterministic

S1D, det.(t) ∝ geff v⊙ cos (ma t + ϕ) mz(t)



Signal Injection Tests
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FIG. 3. Signal injection plots using mock data to test the benchmark analysis procedures considered in Sec. IV. Each column
is analogous to Fig. 2 but for the 3D Stochastic (Left), 1D Stochastic (Center), and 1D Deterministic (Right) models. The
same mock data were used for all three analyses. The mock data were generated with a sampling rate of 1 mHz for 10 days
with Gaussian white noise background with standard deviation �B = 10�8p⇢av� GeV�1. The signal was generated with an
axion mass of ma/2⇡ = 1 mHz for 20 di↵erent couplings ge↵ . For each value of injected coupling, we simulate 10,000 random
mock data sets, and analyze each data set using the corresponding procedure, as described in the text. The 1D Stochastic and
1D Deterministic models set an incorrect 95% upper limit on ge↵ and exhibit more variability in their TSmax, as compared to
the 3D Stochastic model. Additionally, for large injected coupling, the 95% upper limit for the 1D Deterministic model falls
below the true value about 50% time, when this should only occur about 5% of the time for a correct model.
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�bkg (through each of the �̃i). In Sec. III B, we treated
�bkg as unknown and marginalized over �̃ as a nuisance
parameter. However, due to the degeneracy between
ge↵ and �bkg in Eq. (22), we cannot repeat the same
procedure and must assume that �bkg is measured in-
dependently. For example, �bkg can be determined via
�bkg ⇡

p
SSR/N , where SSR is the minimum sum of the

squares of the residuals obtained in the fitting procedure.
We will therefore assume that �bkg and the fit coe�cient
uncertainties, �̃i, are known.

We validate this likelihood and analysis procedure by
generating 10 days of mock data sampled at 10 mHz with
Gaussian white noise and injected signal with an axion
frequency of ma/2⇡ = 1 mHz and 20 di↵erent values of
the coupling ge↵ . We repeat this for 104 di↵erent random
iterations of noise and axion signal. For each mock data
set, we obtain the six Ai and Bi coe�cients as well as
the uncertainty estimates �̃i via ordinary least squares
fitting. We then compute the best-fit coupling gbest, the
discovery test statistic TSmax, and the 95% upper limit
using the likelihood in Eq. (22), following the same pro-
cedure discussed in Sec. III B.
The results of the mock analysis are displayed in the

left column of Fig. 3, which is analogous to Fig. 2, but
for the coherent analysis discussed above. The discovery
significance and 95% upper limit couplings behave as de-
sired across all injected couplings. However, it is worth
noting that the error bars on the recovered couplings and
TSmax do not decrease in the limit of large injected cou-
pling; this is expected behavior because, with much less
than one coherence time of data, the stochastic fluctua-
tions do not “average out.”
Next, we compare the data model and analysis proce-

dure outlined in this section against two benchmark mod-
els that do not fully encapsulate the behavior of Eq. (20).
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same mock data were used for all three analyses. The mock data were generated with a sampling rate of 1 mHz for 10 days
with Gaussian white noise background with standard deviation �B = 10�8p⇢av� GeV�1. The signal was generated with an
axion mass of ma/2⇡ = 1 mHz for 20 di↵erent couplings ge↵ . For each value of injected coupling, we simulate 10,000 random
mock data sets, and analyze each data set using the corresponding procedure, as described in the text. The 1D Stochastic and
1D Deterministic models set an incorrect 95% upper limit on ge↵ and exhibit more variability in their TSmax, as compared to
the 3D Stochastic model. Additionally, for large injected coupling, the 95% upper limit for the 1D Deterministic model falls
below the true value about 50% time, when this should only occur about 5% of the time for a correct model.
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distributions. Because the underlying noise distribution
is Gaussian as well, the result is a Gaussian likelihood
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Note that there is a near-degeneracy between ge↵ and
�bkg (through each of the �̃i). In Sec. III B, we treated
�bkg as unknown and marginalized over �̃ as a nuisance
parameter. However, due to the degeneracy between
ge↵ and �bkg in Eq. (22), we cannot repeat the same
procedure and must assume that �bkg is measured in-
dependently. For example, �bkg can be determined via
�bkg ⇡

p
SSR/N , where SSR is the minimum sum of the

squares of the residuals obtained in the fitting procedure.
We will therefore assume that �bkg and the fit coe�cient
uncertainties, �̃i, are known.

We validate this likelihood and analysis procedure by
generating 10 days of mock data sampled at 10 mHz with
Gaussian white noise and injected signal with an axion
frequency of ma/2⇡ = 1 mHz and 20 di↵erent values of
the coupling ge↵ . We repeat this for 104 di↵erent random
iterations of noise and axion signal. For each mock data
set, we obtain the six Ai and Bi coe�cients as well as
the uncertainty estimates �̃i via ordinary least squares
fitting. We then compute the best-fit coupling gbest, the
discovery test statistic TSmax, and the 95% upper limit
using the likelihood in Eq. (22), following the same pro-
cedure discussed in Sec. III B.
The results of the mock analysis are displayed in the

left column of Fig. 3, which is analogous to Fig. 2, but
for the coherent analysis discussed above. The discovery
significance and 95% upper limit couplings behave as de-
sired across all injected couplings. However, it is worth
noting that the error bars on the recovered couplings and
TSmax do not decrease in the limit of large injected cou-
pling; this is expected behavior because, with much less
than one coherence time of data, the stochastic fluctua-
tions do not “average out.”
Next, we compare the data model and analysis proce-
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 95% upper limits are too strong at large coupling



Incorrect Approaches

Across axion-fermion searches, stochastic behavior has either been incorrectly 
modeled or ignored when it should not be

S3D, stoch.(t) ∝ geff σ2
v + v2

⊙ αz cos (ma t + ϕz) mz(t)

+ geff σv αy cos (ma t + ϕz) my(t)

+ geff σv αx cos (ma t + ϕx) mx(t)

Correct Model

Incorrect Model: 1D Stochastic

S1D, stoch.(t) ∝ geff v⊙ α cos (ma t + ϕ) mz(t)
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FIG. 3. Signal injection plots using mock data to test the benchmark analysis procedures considered in Sec. IV. Each column
is analogous to Fig. 2 but for the 3D Stochastic (Left), 1D Stochastic (Center), and 1D Deterministic (Right) models. The
same mock data were used for all three analyses. The mock data were generated with a sampling rate of 1 mHz for 10 days
with Gaussian white noise background with standard deviation �B = 10�8p⇢av� GeV�1. The signal was generated with an
axion mass of ma/2⇡ = 1 mHz for 20 di↵erent couplings ge↵ . For each value of injected coupling, we simulate 10,000 random
mock data sets, and analyze each data set using the corresponding procedure, as described in the text. The 1D Stochastic and
1D Deterministic models set an incorrect 95% upper limit on ge↵ and exhibit more variability in their TSmax, as compared to
the 3D Stochastic model. Additionally, for large injected coupling, the 95% upper limit for the 1D Deterministic model falls
below the true value about 50% time, when this should only occur about 5% of the time for a correct model.

of the individual probabilities of observing the given co-
e�cients, marginalized over the underlying probability
distributions. Because the underlying noise distribution
is Gaussian as well, the result is a Gaussian likelihood

L(Ai, Bi, �̃i|ge↵) =
Y

i=x,y,z

e�(A2
i+B2

i )/2�
2
i (geff ,�̃i)

2⇡�2
i (ge↵ , �̃i)

,(22)

where

�2
x(ge↵ , �̃x) = g2e↵⇢a�

2
v + �̃2

x

�2
y(ge↵ , �̃y) = g2e↵⇢a�

2
v + �̃2

y

�2
z(ge↵ , �̃z) = g2e↵⇢a(�

2
v + v2�) + �̃2

z . (23)

Note that there is a near-degeneracy between ge↵ and
�bkg (through each of the �̃i). In Sec. III B, we treated
�bkg as unknown and marginalized over �̃ as a nuisance
parameter. However, due to the degeneracy between
ge↵ and �bkg in Eq. (22), we cannot repeat the same
procedure and must assume that �bkg is measured in-
dependently. For example, �bkg can be determined via
�bkg ⇡

p
SSR/N , where SSR is the minimum sum of the

squares of the residuals obtained in the fitting procedure.
We will therefore assume that �bkg and the fit coe�cient
uncertainties, �̃i, are known.

We validate this likelihood and analysis procedure by
generating 10 days of mock data sampled at 10 mHz with
Gaussian white noise and injected signal with an axion
frequency of ma/2⇡ = 1 mHz and 20 di↵erent values of
the coupling ge↵ . We repeat this for 104 di↵erent random
iterations of noise and axion signal. For each mock data
set, we obtain the six Ai and Bi coe�cients as well as
the uncertainty estimates �̃i via ordinary least squares
fitting. We then compute the best-fit coupling gbest, the
discovery test statistic TSmax, and the 95% upper limit
using the likelihood in Eq. (22), following the same pro-
cedure discussed in Sec. III B.
The results of the mock analysis are displayed in the

left column of Fig. 3, which is analogous to Fig. 2, but
for the coherent analysis discussed above. The discovery
significance and 95% upper limit couplings behave as de-
sired across all injected couplings. However, it is worth
noting that the error bars on the recovered couplings and
TSmax do not decrease in the limit of large injected cou-
pling; this is expected behavior because, with much less
than one coherence time of data, the stochastic fluctua-
tions do not “average out.”
Next, we compare the data model and analysis proce-

dure outlined in this section against two benchmark mod-
els that do not fully encapsulate the behavior of Eq. (20).
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same mock data were used for all three analyses. The mock data were generated with a sampling rate of 1 mHz for 10 days
with Gaussian white noise background with standard deviation �B = 10�8p⇢av� GeV�1. The signal was generated with an
axion mass of ma/2⇡ = 1 mHz for 20 di↵erent couplings ge↵ . For each value of injected coupling, we simulate 10,000 random
mock data sets, and analyze each data set using the corresponding procedure, as described in the text. The 1D Stochastic and
1D Deterministic models set an incorrect 95% upper limit on ge↵ and exhibit more variability in their TSmax, as compared to
the 3D Stochastic model. Additionally, for large injected coupling, the 95% upper limit for the 1D Deterministic model falls
below the true value about 50% time, when this should only occur about 5% of the time for a correct model.

of the individual probabilities of observing the given co-
e�cients, marginalized over the underlying probability
distributions. Because the underlying noise distribution
is Gaussian as well, the result is a Gaussian likelihood

L(Ai, Bi, �̃i|ge↵) =
Y

i=x,y,z

e�(A2
i+B2

i )/2�
2
i (geff ,�̃i)

2⇡�2
i (ge↵ , �̃i)

,(22)

where
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x(ge↵ , �̃x) = g2e↵⇢a�

2
v + �̃2
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Note that there is a near-degeneracy between ge↵ and
�bkg (through each of the �̃i). In Sec. III B, we treated
�bkg as unknown and marginalized over �̃ as a nuisance
parameter. However, due to the degeneracy between
ge↵ and �bkg in Eq. (22), we cannot repeat the same
procedure and must assume that �bkg is measured in-
dependently. For example, �bkg can be determined via
�bkg ⇡

p
SSR/N , where SSR is the minimum sum of the

squares of the residuals obtained in the fitting procedure.
We will therefore assume that �bkg and the fit coe�cient
uncertainties, �̃i, are known.

We validate this likelihood and analysis procedure by
generating 10 days of mock data sampled at 10 mHz with
Gaussian white noise and injected signal with an axion
frequency of ma/2⇡ = 1 mHz and 20 di↵erent values of
the coupling ge↵ . We repeat this for 104 di↵erent random
iterations of noise and axion signal. For each mock data
set, we obtain the six Ai and Bi coe�cients as well as
the uncertainty estimates �̃i via ordinary least squares
fitting. We then compute the best-fit coupling gbest, the
discovery test statistic TSmax, and the 95% upper limit
using the likelihood in Eq. (22), following the same pro-
cedure discussed in Sec. III B.
The results of the mock analysis are displayed in the

left column of Fig. 3, which is analogous to Fig. 2, but
for the coherent analysis discussed above. The discovery
significance and 95% upper limit couplings behave as de-
sired across all injected couplings. However, it is worth
noting that the error bars on the recovered couplings and
TSmax do not decrease in the limit of large injected cou-
pling; this is expected behavior because, with much less
than one coherence time of data, the stochastic fluctua-
tions do not “average out.”
Next, we compare the data model and analysis proce-

dure outlined in this section against two benchmark mod-
els that do not fully encapsulate the behavior of Eq. (20).

3D Stochastic Model 1D Stochastic Model

Assuming 1D Deterministic Model yields:  

incorrect limits 

greater variability in recovered signal
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FIG. 4. Left: Randomly generated time series for an axion gradient signal ra · m in the coherent limit. The data were
generated with an axion mass of ma/2⇡ = 10�3 Hz (⌧c ⇠ 5 yr) for 5 days. The data include Gaussian white noise with
standard deviation �bkg = 10�2p⇢av�. The purple curve is a random realization of a true axion signal, the 3D Stochastic
model, given by Eq. (20) with a set of randomly generated amplitudes ↵i and phases �i. The orange curve is a realization of the
1D Stochastic model given in Eq. (25) with the same amplitude and phase in the ez component as in the realization of the 3D
model, but no contribution from the ex or ey components. The 1D model is an insu�cient approximation of the full 3D model.
Note, in particular, that the amplitude modulation in the orange curve is determined entirely by mz(t), while in the purple
curve it is determined by a random linear combination of mx(t), my(t), and mz(t), giving the purple curve parametrically more
freedom than the orange curve. Right: The distribution of the reduced chi-squared statistic for the correct 3D Stochastic model
and the 1D Stochastic model over many random iterations of the same time series. For each model, the best-fit amplitudes
and phases are obtained by fitting the mock data to either Eq. (20) or Eq. (25). The reduced chi-squared statistic is defined

as �̃2 =
P

n
S(tn)�Dn

⌫�bkg
, where S(tn) is the predicted signal for the model given the least-squares amplitudes and phases and ⌫

is the number of degrees of freedom equal to N minus the number of fit parameters. The reduced chi-squared statistic serves
as a measure of goodness-of-fit for the models, with �̃2 ⇡ 1 indicating a good fit, as is the case for the 3D model, and �̃2 � 1
indicating a poor fit, as is the case for the 1D model.

Our goal is to motivate the use of the full stochastic axion
model presented in this paper and show that certain sim-
plifying assumptions that have previously been made in
the literature can fail to capture the crucial phenomenol-
ogy of a true underlying axion signal. This can result
in unreliable upper limits from experimental data and,
more dramatically, missed discoveries of axion signals.

The first benchmark model we consider is purely de-
terministic and equivalent to the full stochastic model
in Eq. (20) in the limit of zero velocity dispersion. In
this case, the direction of ra is the same as the average
DM velocity vobs(t) ⇡ v�, and therefore, the signal is
proportional to v� ·m(t) = v�mz(t):

S1D,det.(t) = ge↵

q
2⇢av2� cos(mat+ �)mz(t) . (24)

Here, � is a random phase, but note that the amplitude of
oscillations is determined solely by the axion coupling ge↵
and astrophysical parameters. The factor of

p
2 in the

amplitude ensures that the signal has the same RMS as
Eq. (20) in the limit of zero velocity dispersion. We refer
to this model as the 1D Deterministic model because it
assumes that the axion gradient is always in one direction
and is fully deterministic.

The second benchmark model is inspired by the treat-

ment of the gradient of the axion field in Ref. [54]. This
model again assumes that the direction of ra is deter-
mined solely by v�, so that the signal is still proportional
to v�mz(t); however, this model includes an additional
random amplitude to account for stochastic interference
e↵ects:

S1D,stoch.(t) = ge↵

q
⇢av2�↵ cos(mat+ �)mz(t) . (25)

Here, ↵ is a Rayleigh-distributed random amplitude, and
� is a uniformly-distributed random phase. We refer to
this model as the 1D Stochastic model.8 For the sake
of comparison, we refer to the correct model given in
Eq. (20) as the 3D Stochastic model, since it does not
fix the direction of ra, but assigns a random amplitude
and phase independently to each of the three components
of ra, e↵ectively giving the axion gradient a random
direction as well as a random amplitude.
The 1D Stochastic model is motivated by previous

studies, such as Refs. [54] and [25], that have incorrectly

8 Note that the 1D Stochastic model lacks self-consistency because
there are no stochastic amplitude fluctuations in the limit of zero
velocity dispersion.

ma /2π = 10−3 Hz
τc ∼ 5 days

Reduced Chi-Squared Test Statistic

1D Stochastic Model misses signal information from  and  directions 

Provides poor fit to mock data generated with total axion gradient signal

x y

Incorrect Approaches



Potential Failure to Discover Signal
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FIG. 5. The probability that an axion signal fluctuates
such that the full 3D Stochastic analysis yields a local sig-
nificance

p
TSmax > 5� and the 1D Stochastic (orange) or

1D Deterministic (green) analyses yield a local significancep
TSmax < 3�. This corresponds to the probability that a 5�

discovery, which could have been made using the 3D Stochas-
tic analysis, would be “missed” in either of the other two
benchmark analyses. This probability is plotted as a func-
tion of injected signal for the same mock data used in Fig. 3.
For injected signals with signal-to-noise ratios of ⇠ 1–10, the
probability of a missed discovery is & 10% for both the 1D
Stochastic and 1D Deterministic analyses. This occurs be-
cause the 1D models do not su�ciently capture the time evo-
lution of the axion signal. In particular, the daily modulation
of a real axion signal need not follow the form of mz(t), as
shown in Fig. 4.

assumed that the axion signal contains a single ampli-
tude and phase coming from the overlap of the sensi-
tive axis with the direction of the average DM velocity,
ez. As illustrated in Fig. 4, this incorrect assumption
implies a dramatic di↵erence in the behavior of the sig-
nal time series. In the left panel of Fig. 4, the purple
curve shows a randomly generated time series for an ax-
ion mass of ma/2⇡ = 10�3 Hz (⌧c ⇠ 5 yr) for 5 days, in-
cluding Gaussian white noise with �bkg = 10�2/

p
⇢av�.

This should be compared to the orange curve, which has
the same amplitude and phase in the ez direction, but
does not include the ex and ey components as in the 1D
Stochastic model of Eq. (25). There are clear di↵erences
in the time evolution of the axion signal in the 1D and
3D Stochastic cases. Thus, it is not surprising that at-
tempting to fit a real axion signal using the 1D Stochastic
model assumption results in an extremely poor goodness-
of-fit as quantified by the reduced chi-squared statistic in
the right panel of the figure.

Both the 1D Deterministic and 1D Stochastic models
contain no notion of a two-point correlation function. It
is therefore not immediately clear how to apply these
models to a more general scenario as we considered in
Sec. III B. Although this point alone provides a strong

motivation for the use of the full axion model, in the
limit of long coherence times, the signal can be treated
as coherent and these models can be directly compared
to the correct model given by Eq. (20).
We use the 1D Deterministic and 1D Stochastic mod-

els to analyze the same mock data that was used to val-
idate the 3D Stochastic model. For the 1D Stochastic
model, the data analysis procedure is exactly analogous
to the 3D Stochastic model, except only the i = z parts of
Eq. (21) and Eq. (22) are used. For the 1D Deterministic
model, the likelihood is di↵erent, because the signal am-
plitude is uniquely determined given the model parame-
ters. In this case, the correct probability distribution for
the observed amplitude is a Rice distribution. Changing
variables from the observed amplitude and phase to the
measured coe�cients, Az and Bz, the normalized likeli-
hood is

L1D,det.(Az, Bz, �̃z|ge↵) (26)

=
e�(R2

z+2g2
eff⇢av

2
�)/2�̃2

z

2⇡�̃2
z

I0

0

@
Rzge↵

q
2⇢av2�

�̃2
z

1

A ,

where we have introduced the shorthand for the mea-
sured amplitude Rz =

p
A2

z +B2
z , and I0(z) is the modi-

fied Bessel function of the first kind with order zero. With
this likelihood, the data analysis for the 1D Determinis-
tic model proceeds analogously to the 1D Stochastic and
3D Stochastic model.
We compare the results of the mock data analysis us-

ing the three benchmark models in Fig. 3. In particular,
we find that neither the 1D Stochastic nor the 1D De-
terministic models set the correct 95% upper limit on
ge↵ . Additionally, in the limit of large injected coupling,
the 95% upper limit set by the 1D Deterministic analysis
is below the true injected value about 50% of the time,
while the expected frequency of this occurrence is 5% for
a correct model. More concerning is the di↵erent level
of local statistical significance as measured by TSmax for
the three models. The lower panels in Fig. 3 show that
there is considerable more variability in the TSmax in the
1D Stochastic and 1D Deterministic models than in the
3D Stochastic model.
We find that there can be considerable di↵erence in

TSmax across the three models for a given set of mock
data. As shown in Fig. 5, for certain signal-to-noise ra-
tios, both the 1D Deterministic and 1D Stochastic mod-
els have a ⇠10% chance of finding a test statistic with
significance of less than 3� on the same mock data set
where the full analysis finds a significance of at least 5�.
Furthermore, even when the signal-to-noise ratio is large
enough that 1D Deterministic and 1D Stochastic mod-
els would claim a significant detection based on the test
statistic, these models would fit the data very poorly, as
shown in the right panel of Fig. 4, and such a detection
could easily be discarded as spurious.
Thus, using the 1D Stochastic or 1D Deterministic

models to analyze a real data set incurs a risk of fail-
ing to discover a real axion signal. This occurs because

Improper modeling of stochastic signal can potentially result in failure 
to discover a true signal 



All Coherence Times



For a time series of N data points , the total likelihood is {D(tn) | n ∈ 1,…, N}

The combined covariance matrix is 

Σ = Σsig + Σbkg Σsig,nm = ⟨S(tn) S(tm)⟩where

ℒ (D) = 1
(2π)6N det Σ

e− 1
2 DTΣ−1D
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FIG. 1. Center: Schematic illustration of the principles of operation of the comagnetometer, including the pump laser, probe
laser, polarization measurement, glass cell, K droplet (indicated by the silver sphere), K atoms and 3He atoms. The pump laser
in the ẑ direction polarizes the K atoms, which themselves polarize the 3He to the ẑ direction. Measuring the outgoing probe
laser beam’s polarization allows one to measure the x̂ projection of the alkali spin. In this illustration an anomalous field ~bn
is present (e.g. sourced by an ALP) along the ŷ direction and a↵ects only the 3He atoms. Side panels: 3-dimensional axes

depicting the spins of the 3He (left) and K (right) and the di↵erent fields (anomalous as well as magnetic). ~BK�3He ( ~B3He�K)
is the magnetic field the K (3He) spins induce on the 3He (K) atoms. Both atoms are in the presence of an external magnetic

field ~Bext, which has a small deviation from the large, controlled ẑ magnetic field due to magnetic noise, here assumed in the
x̂ axis. The overall magnetization of the K (3He) are depicted by the dotted vectors and marked as �� ~MK (�� ~M3He). The

tuning of the ẑ component of ~Bext to what is called the compensation point, ensures that the e↵ect of the 3He’s magnetization
on the K spins, ~B3He, has a projection in the x̂ axis which exactly cancels the e↵ects of ~Bext on K. The rotation induced by ~bn
on the 3He induces transverse polarization in the perpendicular direction on the K spin. This implies the comagnetometer has
sensitivity to anomalous fields, while it is insensitive to regular magnetic noise. See main text for further details.

system exhibits two modes, one that is mostly aligned
with the short-lived alkali metal, and the other much
longer-lived mode that is mostly aligned with the spin
of the noble gas. The interactions between the two gases
induce an e↵ective coupling that triggers both the pump-
ing e↵ect in the helium-3 and mutual e↵ective magnetic
fields.2

The mixing, however, is a priori insu�cient to signifi-
cantly a↵ect the lifetime of the helium-3 (of order a few
hours; see RHe in table I), unless the two modes are in
resonance. Since the pump and external magnetic field
are both aligned with the ẑ direction, the noise in the
pumping rate and in the Bz amplitude would dominate

2 Note that the e↵ective pumping of the alkali due to the presence
of the helium is negligible compared to the direct pumping from
the pump beam. Conversely, the source of the helium polariza-
tion is non other than the pumping achieved by the presence of
the alkali.

over any new anomalous field in the ẑ direction. There-
fore, sensitive measurements cannot be implemented in
the ẑ direction, and one only measures the transverse
spins.

By tuning the magnetic field in the ẑ direction, one can
tune the energy splitting due to ẑ magnetic fields in the
two spin species to be identical, putting the two magne-
tometers in resonance. At this point, the two previously
separable magnetometers become mixed—allowing sen-
sitivity to the nuclear spins through the measurement of
the alkali spins. Moreover, the lifetimes become similar,
and in particular, the e↵ective lifetime of the helium-3
is reduced by orders of magnitude compared to the non-
resonant mode, of order ⇠ 100 msec.

A very important e↵ect happens close to the resonance
regime, which significantly enhances the comagnetometer
sensitivity. Under steady state conditions, the nuclear
polarization of the helium-3 can be made to follow exter-
nal magnetic fields, thus canceling the net magnetic fields
felt by the alkali (in the transverse directions). This spe-

Image Credit: Bloch et al. [1907.03767]

τc ∼ 10 days
sensitive to feV axions

recorded  
data for 40 days

Lee, Lisanti, Terrano, and Romalis [2209.03289]
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FIG. 3. (color online) Expected magnetic power spectrum for
axion linewidths∆fa where (a)∆fa/fe < 1 and (b)∆fa/fe >
1. fe = ωe/2π is the Earth’s sidereal rotation frequency. We
have assumed in these plots that the experimental frequency
resolution is sufficient to fully resolve the axion’s lineshape
and that the experimental uncertainty at each point is negligi-
ble. The solid blue line is the expected power spectrum, taken
from Eq. (B52), while the orange points give the mean power
from 100 Monte-Carlo simulations. Orange error bars give
the standard deviation of the mean power from the simula-
tions. The green dots (with connecting lines to guide the eye)
show an example of one particular realization of a stochas-
tic axion power spectrum. The data here is generated for a
coupling constant of gaNN = 1 GeV−1. Notice that for the
same coupling constant, the peak axion power is lower for (b)
compared to (a) due to the broadening of the axion peak for
more massive axions. The shaded area denotes the frequency
span [fa, fa +∆fa].

into account the axion’s randomness must nevertheless
still return the correct gaNN. At higher axion masses,
∆fa ∝ ma increases and, as shown in Fig. 3b, the three
peaks re-combine into a single peak when ∆fa > fe. An-
other physical consequence of this broadening is that for
the same coupling constant, the peak axion power is lower
for a heavier axion than a lighter one since the total ax-
ion power must be conserved (for the same dark matter
density). This can be observed in Fig. 3a and Fig. 3b,
where both the heaver and lighter axion’s spectrum were
generated for a fixed coupling constant of gaNN.

B. Likelihood Procedure

The likelihood-based analysis used in this work applies
to both the regime of low (∆fa < fe) axion mass depicted
in Fig. 3a, as well as in the high-mass regime of Fig. 3b.
We now briefly review the likelihood formalism [35] for
recovering and/or setting upper limits on the coupling
constant gaNN. The measured experimental spectrum is
{Ak, Bk | k = 0, . . . , N − 1}, where

Ak =
2

N
Re[β̃k] , Bk = −

2

N
Im[β̃k] , (10)

and β̃k is the discrete Fourier transform of βn from
Eq. (7) given by

β̃k =
N−1
∑

n=0

βn exp
−iωkn∆t , ωk ≡

2πk

N∆t
. (11)

For a time series with gaps, Ak and Bk, as defined in
Eq. (10), are determined by performing a linear least-
squares fit of the time series to the form

Ak cosωkt+Bk sinωkt , (12)

where Ak, Bk here are the fit parameters. To compute
the likelihood of obtaining a spectrum {Ak, Bk | k =
0, . . . , N − 1}, we need to have both a signal and back-
ground model. The spectrum for an axion with mass
ma can be shown to follow a multi-variate normal dis-
tribution with zero mean and a non-diagonal covari-
ance matrix Σa(gaNN,ma) that depends on gaNN and
ma. We assume that the background is white with
variance σ2

b . Consequently, the measured signal is nor-
mally distributed with zero mean and variance Σ =
Σa + σ2

b1, and the likelihood of measuring the spectrum
d = {Ak, Bk | k = 0, . . . , N − 1} is therefore

L(d | gaNN,σb) =
1

√

(2π)2N det(Σ)
exp

[

−
1

2
dTΣ−1d

]

.

(13)
Although the experimental noise is frequency dependent,
it is to a good approximation white over the bandwidth
used for d (see Table I), except in certain localized cases
that result in peaks in the recovered upper limits (see
Fig. 5 and the discussion in Sec. IV).
To set a 95% upper limit, we define the test statistic

q(g) =







2
[

logL(d|µ̂, σ̂b)−max
σ

logL(d|g,σ)
]

, µ̂ ≤ g

0 , µ̂ > g
,

(14)
where µ̂ and σ̂b are the unconditional maximum likeli-
hood estimators of gaNN and σb, respectively:

µ̂ = argmax
µ

logL(d|µ,σ) ∀ σ

σ̂b = argmax
σ

logL(d|µ,σ) ∀ µ . (15)
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FIG. 3. (color online) Expected magnetic power spectrum for
axion linewidths∆fa where (a)∆fa/fe < 1 and (b)∆fa/fe >
1. fe = ωe/2π is the Earth’s sidereal rotation frequency. We
have assumed in these plots that the experimental frequency
resolution is sufficient to fully resolve the axion’s lineshape
and that the experimental uncertainty at each point is negligi-
ble. The solid blue line is the expected power spectrum, taken
from Eq. (B52), while the orange points give the mean power
from 100 Monte-Carlo simulations. Orange error bars give
the standard deviation of the mean power from the simula-
tions. The green dots (with connecting lines to guide the eye)
show an example of one particular realization of a stochas-
tic axion power spectrum. The data here is generated for a
coupling constant of gaNN = 1 GeV−1. Notice that for the
same coupling constant, the peak axion power is lower for (b)
compared to (a) due to the broadening of the axion peak for
more massive axions. The shaded area denotes the frequency
span [fa, fa +∆fa].

into account the axion’s randomness must nevertheless
still return the correct gaNN. At higher axion masses,
∆fa ∝ ma increases and, as shown in Fig. 3b, the three
peaks re-combine into a single peak when ∆fa > fe. An-
other physical consequence of this broadening is that for
the same coupling constant, the peak axion power is lower
for a heavier axion than a lighter one since the total ax-
ion power must be conserved (for the same dark matter
density). This can be observed in Fig. 3a and Fig. 3b,
where both the heaver and lighter axion’s spectrum were
generated for a fixed coupling constant of gaNN.

B. Likelihood Procedure

The likelihood-based analysis used in this work applies
to both the regime of low (∆fa < fe) axion mass depicted
in Fig. 3a, as well as in the high-mass regime of Fig. 3b.
We now briefly review the likelihood formalism [35] for
recovering and/or setting upper limits on the coupling
constant gaNN. The measured experimental spectrum is
{Ak, Bk | k = 0, . . . , N − 1}, where

Ak =
2

N
Re[β̃k] , Bk = −

2

N
Im[β̃k] , (10)

and β̃k is the discrete Fourier transform of βn from
Eq. (7) given by

β̃k =
N−1
∑

n=0

βn exp
−iωkn∆t , ωk ≡

2πk

N∆t
. (11)

For a time series with gaps, Ak and Bk, as defined in
Eq. (10), are determined by performing a linear least-
squares fit of the time series to the form

Ak cosωkt+Bk sinωkt , (12)

where Ak, Bk here are the fit parameters. To compute
the likelihood of obtaining a spectrum {Ak, Bk | k =
0, . . . , N − 1}, we need to have both a signal and back-
ground model. The spectrum for an axion with mass
ma can be shown to follow a multi-variate normal dis-
tribution with zero mean and a non-diagonal covari-
ance matrix Σa(gaNN,ma) that depends on gaNN and
ma. We assume that the background is white with
variance σ2

b . Consequently, the measured signal is nor-
mally distributed with zero mean and variance Σ =
Σa + σ2

b1, and the likelihood of measuring the spectrum
d = {Ak, Bk | k = 0, . . . , N − 1} is therefore

L(d | gaNN,σb) =
1

√

(2π)2N det(Σ)
exp

[

−
1

2
dTΣ−1d

]

.

(13)
Although the experimental noise is frequency dependent,
it is to a good approximation white over the bandwidth
used for d (see Table I), except in certain localized cases
that result in peaks in the recovered upper limits (see
Fig. 5 and the discussion in Sec. IV).
To set a 95% upper limit, we define the test statistic

q(g) =







2
[

logL(d|µ̂, σ̂b)−max
σ

logL(d|g,σ)
]

, µ̂ ≤ g

0 , µ̂ > g
,

(14)
where µ̂ and σ̂b are the unconditional maximum likeli-
hood estimators of gaNN and σb, respectively:

µ̂ = argmax
µ

logL(d|µ,σ) ∀ σ

σ̂b = argmax
σ

logL(d|µ,σ) ∀ µ . (15)

Experiment is sensitive to 0.4-4 feV axions,  
covering a wide range of signal shapes
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FIG. 5. (color online) Orange lines show the 95% upper limit on gaNN obtained from our experimental data. The sensitivity
of the experiment can be characterized by recovering the 95% upper limit over an ensemble of Monte Carlo data with no
injected signal and plotting the median of those recovered limits (shown as green dots with connecting line to guide the eye).
We achieve a median limit of 2.4 × 10−10 GeV−1 at 0.36 Hz, approximately five-orders of magnitude stronger than previous
laboratory bounds. Due to the large number of axion masses tested, there is a considerable spread in the recovered limits. This
is however consistent with the ±4- and 5-σ bands (illustrated by pairs of dashed blue and violet lines respectively) obtained
via Monte Carlo simulations. At higher axion frequencies, there is a greater density of axion masses on the log-scale plot, but
as the magnifying inset shows, the recovered experimental limits are within the ±5σ band as expected when viewed at the
appropriate scale. The dotted SN1987 limit is a constraint from [45], which refines the usual one-pion exchange approximation
of the nucleon-nucleon bremsstrahlung process. The dash-dot neutron star limit is a 95% upper limit from [46] that analyzed
cooling from five neutron stars. Limits from the NASDUCK collaboration [25] are shown as a coral solid line.

ficients as well as their fit covariance matrices (assuming
a white-noise background) at each fit frequency and for
each bundle. The final experimental spectrum was then
obtained by computing the weighted average of the best-
fit coefficients of each frequency over all the bundles. Be-
fore performing our fits, we also filter the data with an
appropriate bandpass filter and downsample the original
data that was sampled at 200 Hz to a frequency that is
at least 4 times larger than the fit frequency. In total,
we fitted for this analysis ∼ 17 million frequencies from
0.01 to 10 Hz with a frequency resolution of 0.57 µHz ≈
1/(40 days).

The original experiment in [9] consisted of two main
data-taking campaigns: one in the spring of 2008 and
another in the summer of 2008, with a gap of approxi-
mately 50 days in between. Absolute time was recorded
in the original experiment as fractional sidereal days since
J2000.0 (defined as January 1st, 2000, 12 PM Terrestrial
Time), which allows for the orientation of the experi-
ment’s sensitive axis to be calculated in terms of Galactic
coordinates. Given that the experiment’s sensitive axis
was oriented vertically throughout both data-taking cam-
paigns, and the coordinates of the experiment at Prince-
ton are ≈ 40.35 ◦N, 74.65 ◦W [47], the experiment’s
sensitive axis in Galactic coordinates can be calculated
from the definition of a (Greenwich mean) fractional side-
real day and performing a coordinate transformation be-

tween the equatorial and Galactic coordinate systems,
taking into account precession of the Earth’s axis since
J2000.0 [48].
Lastly, we note that throughout the course of the orig-

inal experiment, the direction of the bias field was peri-
odically flipped as a check on systematic effects. Phys-
ically, this causes the K spins to rotate in the opposite
direction under the influence of the same anomalous (or
magnetic) field pointing along the sensitive axis. Exper-
imentally, this is measured as a sign-flip in the lock-in
signal, and we therefore take these field reversals into ac-
count by multiplying the co-magnetometer’s calibration
to anomalous fields with the appropriate signs.

IV. RESULTS

We analyzed our experimental data for roughly 8 mil-
lion axion frequencies between 0.01 to 10 Hz with a spac-
ing of ∆fa/2 using the likelihood procedure outlined in
Sec. II. At each axion frequency, a slice of the experimen-
tal frequency spectrum with a bandwidth δf (tabulated
in Table I) was used to calculate the likelihood (Eq. (13)),
which assumes a white noise background. To verify the
assumption of a white noise background, we performed a
Shapiro-Wilks test on the noise portion of the bandwidth
δf where the axion’s power is expected to be negligible.

New limits are about 5 orders of magnitude more stringent than previous 
laboratory constraints in this mass range   
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FIG. 8. Best-fit gaNN recovered from both the spring and summer datasets for all axion masses with q0 > 52.1 corresponding
to a significance of more than 5σ after taking into account the look-elsewhere effect. Error bars show the 95% confidence
intervals for the best-fit values. Of the 63 possible candidates shown here, only 14 have overlapping confidence intervals. These
candidates are also shown in the inset.

from their average values, this modulation of the best-fit
gaNN stemming from our use of 〈vE〉 rather than vE is
therefore also not always symmetric. This asymmetric
modulation of the recovered best-fit gaNN should be con-
trasted with the symmetric modulation of the expected
raw axion power which we show in Fig. 7b.

As an aside, it is interesting to note here that the an-
nual peak-to-peak power modulation of thermalized ax-
ions in the Standard Halo Model is only about 8% of its
mean value, making this a relatively small effect that will
be especially difficult to observe for low-frequency axions
with coherence times on the order of a year.

In Fig. 7a, we chose to simulate a 6 Hz axion because
it is close in frequency to several of the axion candidates
that we discuss below. Moreover, we inject the axion sig-
nal with a relatively large gaNN of 5×10−8 GeV−1 (shown
as a dashed orange line in Fig. 7a) and for a sufficiently
long measurement time so that the 1σ containment in-

terval would be comparable to the experimental confi-
dence intervals for our best-fit gaNN. Nevertheless, the
expected modulation of the recovered gaNN in Fig. 7a is
still negligible over the duration of our experiment, which
is demarcated in the figure by the green shaded window.
Consequently, we would expect the 95% confidence inter-
vals of the recovered best-fit gaNN values from both the
spring and summer datasets to overlap with each other
if they are indeed due to a true axion signal.

In Fig. 8, we plot the best-fit gaNN recovered from both
the spring and summer datasets for all axion masses with
q0 > 52.1 in the full combined dataset. Vertical lines indi-
cate their 95% confidence intervals obtained by analyzing
the data in each season using the formalism in Sec. II B.
Although there are numerous prominent peaks in Fig. 5
with frequencies below 2 Hz, their significance does not
exceed 5σ because the width of their peaks is generally
much broader than the expected axion linewidth at those

High Significance Peaks
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frequencies. It therefore turns out that there are only 63
axion candidates above ≈ 2 Hz that have significance
above 5σ after taking into account the look-elsewhere
effect. Out of these 63 possible axion candidates with
q0 > 52.1, only 14 have overlapping 95% confidence in-
tervals. We deem the other 49 axion candidates with
non-overlapping gaNN confidence intervals as unlikely to
be true axions due to inconsistencies from both the spring
and summer datasets, and we do not perform any further
analysis on them. For the remaining 14 axion candidates
with overlapping 95% confidence intervals, we further
perform a peak shape analysis on them that we describe
below.

A unique feature of the signal lineshape in the axion
frequency range that we examined is the appearance of
3 distinct peaks spaced by the Earth’s sidereal rotation
frequency. This allows us to discriminate between side-
real modulation of the axion signal and monochromatic
signals that are likely due to terrestrial sources. Fig. 9
shows an example of an experimental peak at 6.666 Hz
where the likelihood analysis identifies several possible
axion candidates with q0 of around 200. However, be-
cause the likelihood analysis is effectively a hypothesis
test for the axion model against the null hypothesis of a
white noise background, any relatively narrow deviation
from a flat spectrum results in a high q0 value favoring
the axion hypothesis even if the lineshape match to a true
axion signal is poor.

An obvious way to directly test an axion candidate
against the signal model is to fit its lineshape to the ex-
pected line shape of an axion. Nevertheless, fitting the
lineshape of the expected axion signal is in general dif-
ficult since it has large statistical fluctuations in each
frequency bin. To reduce this uncertainty, one has to
combine the power in many bins together, but the ex-
act number of bins to combine depends on the axion
linewidth which is itself proportional to the axion fre-
quency. In order to have a general lineshape analysis, we
calculate the total power under each of the three expected
axion peaks. When the peaks overlap, we separate the
signal into three frequency bands as shown for example
by the different colors in Fig. 9. We then calculate the
ratio of the central peak power to the average of the two
side peak powers. From Monte-Carlo simulations of ax-
ions in our mass range of interest, this ratio is generally
expected to be slightly larger than 1 for a good axion
candidate. In Fig. 10, we plot a distribution of relative
peak power ratios based on 1000Monte-Carlo simulations
for a candidate signal at 6.66675 Hz. We also show the
experimental power ratios for the four signal candidates
near 6.666 Hz that have overlapping gaNN confidence in-
tervals from both summer and spring datasets. One can
see that all signal candidates are excluded with > 90%
probability. Similar analyses are performed for other can-
didate peaks near 7 Hz and 8 Hz, and they are similarly
inconsistent with the expected axion lineshape.

Lastly, we note that the 6.666 Hz candidates are an
integer multiple of the 3.333 Hz candidates which have
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FIG. 9. (color online) Experimental magnetic power near
6.666 Hz (dots). The average magnetic power of a signal
candidate identified by the likelihood analysis at 6.66675 Hz
is shown by the solid line. We split the signal power into three
regions identified by colored lines to calculate the power under
each peak.
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FIG. 10. (color online) A histogram of ratios of the power in
the central axion peak relative to the average power of the
side peaks based on Monte-Carlo simulations for a signal can-
didate at 6.66675 Hz. The solid blue line shows a smoothed
distribution. Red lines indicate the experimental ratios for
the four peaks near 6.666 Hz shown on the inset of Fig. 8.

non-overlapping confidence intervals in Fig. 8, and that
the 7 and 8 Hz candidates are integer multiples of a 1 Hz
peak that is likely due to a clock signal in one of our
electronics. Given the suspicious coincidences of these
candidates and the fact that their lineshapes do not agree
well with a true axion’s lineshape, we do not in the final
analysis deem any of them to be serious axion contenders.

VI. CONCLUSION

Axions are well-motivated dark matter candidates that
arise in many theories beyond the Standard Model. In
this paper, we re-analyzed approximately 40 days of data
from a K-3He co-magnetometer that was originally built
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linewidth which is itself proportional to the axion fre-
quency. In order to have a general lineshape analysis, we
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by the different colors in Fig. 9. We then calculate the
ratio of the central peak power to the average of the two
side peak powers. From Monte-Carlo simulations of ax-
ions in our mass range of interest, this ratio is generally
expected to be slightly larger than 1 for a good axion
candidate. In Fig. 10, we plot a distribution of relative
peak power ratios based on 1000Monte-Carlo simulations
for a candidate signal at 6.66675 Hz. We also show the
experimental power ratios for the four signal candidates
near 6.666 Hz that have overlapping gaNN confidence in-
tervals from both summer and spring datasets. One can
see that all signal candidates are excluded with > 90%
probability. Similar analyses are performed for other can-
didate peaks near 7 Hz and 8 Hz, and they are similarly
inconsistent with the expected axion lineshape.

Lastly, we note that the 6.666 Hz candidates are an
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FIG. 9. (color online) Experimental magnetic power near
6.666 Hz (dots). The average magnetic power of a signal
candidate identified by the likelihood analysis at 6.66675 Hz
is shown by the solid line. We split the signal power into three
regions identified by colored lines to calculate the power under
each peak.
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FIG. 10. (color online) A histogram of ratios of the power in
the central axion peak relative to the average power of the
side peaks based on Monte-Carlo simulations for a signal can-
didate at 6.66675 Hz. The solid blue line shows a smoothed
distribution. Red lines indicate the experimental ratios for
the four peaks near 6.666 Hz shown on the inset of Fig. 8.

non-overlapping confidence intervals in Fig. 8, and that
the 7 and 8 Hz candidates are integer multiples of a 1 Hz
peak that is likely due to a clock signal in one of our
electronics. Given the suspicious coincidences of these
candidates and the fact that their lineshapes do not agree
well with a true axion’s lineshape, we do not in the final
analysis deem any of them to be serious axion contenders.

VI. CONCLUSION

Axions are well-motivated dark matter candidates that
arise in many theories beyond the Standard Model. In
this paper, we re-analyzed approximately 40 days of data
from a K-3He co-magnetometer that was originally built

Lineshapes of high-significance peaks are not consistent 
with axion interpretation



Conclusions

Stochastic behavior of axions has important experimental ramifications

Comagnetometers are sensitive probes for ultralight dark matter

Re-analysis of data from Princeton Comagnetometer Experiment  
sets world-leading constraints on 0.4-4 feV axions


