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1. Introduction



very light DMs = very light particles with tiny couplings to SM particles


→ How light DMs can be? How tiny the couplings can be?



Recent studies in the Swampland Program are pointing an interesting possibility


that such lower bounds on masses & couplings might exist in quantum gravity.



Quantum Gravity and Symmetries

It is widely believed that there exist no global symmetries in quantum gravity.

[…, Banks-Dixon ’88, …, Banks-Seiberg ’10, …, Ooguri-Harlow ’18, …]

ex. axion potential V(ϕ) = Λ4 cos
ϕ
f

2⇡f

�

V (�)

- To make the axion very light, we need to consider small  or large .


  Shift symmetry emerges in such limits → QG obstruction to very light masses.


 ※ Fuzzy axion DM w/  eV has a conflict with Weak Gravity Conjecture.


- Large  means a tiny axion self-coupling → QG obstruction to tiny couplings.

Λ f

m ≲ 10−21

f



Various bounds on gauge couplings, Yukawa couplings, scalar potentials etc


have been conjectured and studied in the context of the Swampland Program.


→ Can we derive QG constraints on DM masses & DM-SM couplings?
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The rotation (17) generates tiny couplings between
A0 and the Standard Model: they are included in
LSM|Ab!A�(✏/

p
1�✏2)A0 . By contrast, couplings between

A and hidden matters are not induced by this rotation.
Below, we call A and A0 photon and the dark photon,
respectively, and analyze the photon-dark photon scat-
tering ��0

! ��0.
The amplitude depends on the helicity configurations

in general. For the process with transversely polarized
dark photon, we consider

MT (s, t) :=
1
4

⇥
M(1+2+3+4+) +M(1+2�3+4�)

+M(1�2�3�4�) +M(1�2+3�4+)
⇤
,

where 1 and 2 (3 and 4) are the ingoing (outgoing) pho-
ton and dark photon, respectively, and the superscript
± denotes the helicity. For the process with longitudinal
modes, we consider

ML(s, t) :=
1

2

⇥
M(1+2L3+4L) +M(1�2L3�4L)

⇤
,

where L means the longitudinal polarization. For these
amplitudes, the crossing symmetry implies the s $ u
permutation invariance.

Below, we refer to (B(2)
non-grav, B

(2)
grav) for MT and ML

as (B(2)
T,non-grav, B

(2)
T,grav) and (B(2)

L,non-grav, B
(2)
L,grav), re-

spectively.

A simplest model

To begin with, we consider the simplest model with
Lhm = 0. In this case, the process ��0

! ��0 is mediated
only by the Standard Model particles. For simplicity, we
neglect the QCD sector for a while. Since new particles
coupled to photon below 1 TeV have not been found, we
choose ⇤ � 1 TeV.

The form of interactions between A0 and the Stan-
dard Model particles are the same as those for A ex-
cept that the coupling strength is suppressed by a factor
✏/
p
1� ✏2 ' ✏. As a result, the calculations of MT and

ML are similar to those of the amplitude of the light-
by-light scattering which has been done in [36]. As it is
the case for the light-by-light scattering, in our case, the

dominant contributions to B(2)
non-grav(⇤) at ⇤ � 1TeV are

given by the W-boson loop whereas the dominant term

in B(2)
grav arises from the electron, the lightest charged

particle in the Standard Model. The results are,

B(2)
T,non-grav(⇤) '

32↵2✏2

m2
W⇤2

, B(2)
L,non-grav(⇤) '

8↵2✏2m2
A0

⇤2m4
W

,

B(2)
T,grav(⇤) ' B(2)

L,grav(⇤) ' �
11↵

180⇡m2
eM

2
Pl

, (18)

where ↵ ' 1/137 denotes the fine-structure constant.
Then, (13) implies a lower bound on ✏: from MT we

FIG. 2. The upper bounds (19) and (20) for ⇤ = 1 TeV are
plotted in the (mA0 , ✏)-plane by the black dotted line and the
white line, respectively. We find that there is no parameter
space compatible with experiments and the bound (20). The
figure is made based on the data given in [41, 42].
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while we obtain a stronger constraint from ML as

✏ �

r
11

1440⇡↵
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' 3.0⇥ 10�3
⇥

✓
⇤

1TeV

◆✓
1 keV

mA0

◆
. (20)

These bounds (19) and (20) are plotted in FIG. 2. The
bound (20) also shows the existence of a lower bound on
mA0 for given ✏ and ⇤ (this bound applies to massive dark
photons only, so massless dark photons are free from this
constraint). The origin of the lower bound on mA0 is the

suppression factor (mA0/mW )2 contained in B(2)
L,non-grav.

This factor appears because longitudinal modes of dark
photons are decoupled fromW-bosons in the limitmA0 !

0.
We have neglected QCD contributions so far. Since the

QCD scale is lower than the electroweak scale, it may give

relevant contributions to B(2)
non-grav. Indeed, QCD e↵ects,

particularly the Pomeron exchange, provide the leading

contribution to B(2)
non-grav in the Standard Model analysis

of [36]. If we extend the analysis to transversely polarized
dark photons simply by multiplying the factor ✏ to the
coupling between photon and Pomeron, the bound (19)
is slightly relaxed as ✏ & 10�13 for ⇤ ⇠ 1 TeV.
It would be interesting to investigate how much the

bound (20) is relaxed when QCD is taken into account.
In general, the QCD contributions to ML will be sup-
pressed by the dark photon mass mA0 at least as long the
mass is the Stückelberg mass. We thus expect that the
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lower bounds on couplings to SM lower bounds on DM masses

Such QG lower bounds, if exist, would be useful for comprehensive DM searches.


※ experiments + theories → curve out the theory space from different directions!

Curve out the DM theory space by QG constraints



In this talk,


I introduce our recent attempts toward derivation of such QG constraints


based on positivity bounds that follow from consistency of gravitational scattering.
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Positivity bounds provide various UV-IR consistency relations


that can be used as UV constraints on IR effective field theories.



The recipe of gravitational positivity bounds


1. Compute scattering amplitudes  in your model taking into account gravity.


 ※ The model should be considered as an IR EFT since gravity is there.


2. Perform IR expansion, e.g., as .

3. Evaluate a cutoff-dependent quantity .

4. Then,  is required for the EFT to have a consistent UV completion. 

 → Quantum gravity constraints on your gravitational model!

ℳ(s, t)

ℳ(s, t) = (graviton poles) +
∞

∑
n=0

a2n s2n + 𝒪(t)

B(Λ) := a2 −
2
π ∫

Λ2

m2
th

ds
Imℳ(s, t = 0)

s3

B(Λ) ≳ 0



The key idea of positivity bounds [ex. Adams et al ’06]:


Analyticity of scattering amplitudes connects UV and IR.



analytic structure of ℳ(s, t)

s

−(m2
th + t) m2

th

Scattering amplitudes are analytic

away from the real axis! (cf. causality)

Analyticity is the key

Consider a scattering amplitude  in the forward limit .ℳ(s, t) t → − 0

0



analytic structure of ℳ(s, t)

s

−(m2
th + t) m2

th

Scattering amplitudes are analytic

away from the real axis! (cf. causality)

Analyticity is the key

Consider a scattering amplitude  in the forward limit .ℳ(s, t) t → − 0

0

IR data is near the origin!



analytic structure of ℳ(s, t)

s

−(m2
th + t) m2

th

Scattering amplitudes are analytic

away from the real axis! (cf. causality)

Analyticity is the key

Consider a scattering amplitude  in the forward limit .ℳ(s, t) t → − 0

0

UV data is in the outside!



CIR

s

−(m2
th + t) m2

th−
t
2

CUV

analytic structure of ℳ(s, t)

Scattering amplitudes are analytic

away from the real axis! (cf. causality)

Analyticity is the key

Consider a scattering amplitude  in the forward limit .ℳ(s, t) t → − 0

By deforming the integration contour, we can connect UV and IR:


IR data →            ← UV data


Careful analysis gives various UV-IR relations (dispersion relations).

∮CIR

ds
2πi

ℳ(s, t)
(s + t

2 )3
= ∮CUV

ds
2πi

ℳ(s, t)
(s + t

2 )3

0



In non-gravitational theories, this gives the dispersion relation:


    .


This implies ,


which is called the positivity bounds.

a2 = ∫
∞

m2
th

Imℳ(s, t = 0)
s3

, ℳ(s, t = 0) =
∞

∑
n=0

a2n s2n

B(Λ) := a2 − ∫
Λ2

m2
th

Imℳ(s, t = 0)
s3

= ∫
∞

Λ2

Imℳ(s, t = 0)
s3

≥ 0



 in IR effective field theoriesB(Λ)

B(Λ)

Λ0 Λ*

-  for , then the EFT is not trustable above .
B(Λ) < 0 Λ > Λ* Λ*



B(Λ)

Λ0 Λ*

UV completion!

 in IR effective field theoriesB(Λ)

-  for , then the EFT is not trustable above .


- The amplitude has to be modified such that  for all .

B(Λ) < 0 Λ > Λ* Λ*

B(Λ) ≥ 0 Λ

cutoff



How the story changes in the presence of gravity?



In the presence of gravity, the IR expansion is modified as

.


The t-channel graviton exchange dominates in the forward limit,


so that a careful analysis is required to derive positivity bounds.

ℳ(s, t) = −
s2

M2
Plt

+
∞

∑
n=0

a2n s2n + 𝒪(t)

3 3

�

� �

�

e

�

� �

�

hµ⌫

�

� �

�

hµ⌫

e
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derivative operators representing corrections from (un-
known) UV physics, which will be taken care of in the
following discussion. As we will see, they turn out to be
irrelevant for our purpose except for the QED case.

Because the SM is a renormalizable theory, the SM am-
plitude satisfies the twice-subtracted dispersion relation,
meaning that the relations

B(2)
i (⇤) =

4

⇡

Z 1

⇤2

ds0
ImAi(s0 + i✏)

s03
(8)

have to hold for i = QED, Weak, and QCD. Here,
Ai(s) := Mi(s, t = 0) is the forward limit amplitude.

The relations (8) conclude B(2)
i (⇤ ! 1) = 0. The same

relation does not need to apply to the GR sector, how-
ever, because GR is not UV complete; as we will see,

B(2)
GR(⇤ ! 1) ! constant < 0. As ⇤ increases, the GR

contribution eventually dominates over the SM contribu-
tions, leading to violation of (6). The maximum cuto↵
scale of the SM coupled to GR is determined when the
inequality (6) is saturated.

Positivity in QED.— We begin with the light-by-light
scattering in QED coupled to GR which was discussed
recently in [25]. The leading QED contribution is the
one-loop diagram shown in the first diagram of Fig. 2.
The forward limit amplitude is given by

AQED ⇡ �8↵2

✓
6 + ln2

m2
e

�s
+ 2 ln

m2
e

�s

◆
+ (s $ �s)

(9)

in the high-energy limit |s| � m2
e, where ↵ = e2/4⇡ is the

fine-structure constant. B(2)(⇤) from the QED process
at one-loop level is

B(2)
QED ⇡

64↵2

⇤4

✓
ln

⇤

me
�

1

4

◆
(10)
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� �
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FIG. 4. Feynman diagrams relevant for MQCD.

for ⇤ � me. Regarding MGR, we have the tree and one-
loop diagrams up to O(M�2

Pl ) as shown in Fig. 2. The
tree level (pole) contribution is cancelled with the high-
energy integral of RHS of (4). As a result, the one-loop
diagram is the leading gravitational contribution to the
bound (6). In the high-energy limit, we obtain

B(2)
GR ⇡ �

22↵

45⇡m2
eM

2
Pl

. (11)

Whereas B(2)
QED vanishes as ⇤ ! 1, B(2)

GR approaches
a negative constant in the limit ⇤ ! 1. This is why
we obtain a nontrivial cuto↵ scale from (approximate)
positivity bounds.

We remark that the result (11) can be used even in
the later analysis beyond QED. In general, the one-loop

contribution to B(2)
GR from charged particles should be

proportional to e2/M2
Pl and the dimensional analysis con-

cludes B(2)
GR / e2/(m2M2

Pl), where m is the mass of the
propagating particle in the loop. Therefore, the lightest
charged particle should provide the dominant contribu-

tion to B(2)
GR. We thus take into account the electron loop

only to compute B(2)
GR throughout this letter.

Now we discuss implications of the gravitational pos-
itivity bound (6). First, we can simply discard the
O(M�2

Pl M
�2
s ) uncertainty in (6) because the GR contri-

bution (11) is much larger than the uncertainty. Second,
as we mentioned earlier, there are potential higher deriva-
tive corrections that are originated from UV physics
above the cuto↵ scale ⇤. From the EFT perspective,

its contribution to B(2) can be estimated as B(2)
UV = ↵UV

⇤4 ,
where |↵UV| . 1 characterizes the size of interactions at
the scale ⇤.

All in all, the gravitational positivity implies the bound

B(2)
QED +B(2)

UV +B(2)
GR > 0, yielding

64↵2

⇤4

✓
ln

⇤

me
�

1

4

◆
+

↵UV

⇤4
>

22↵

45⇡m2
eM

2
Pl

. (12)

If the first term is dominant, we have the same bound
as [25], ⇤ .

p
emeMPl. On the other hand, if the second

term is dominant and ↵UV ⇠ 1, we find ⇤ .
p

meMPl/e,
which is the one obtained in [18] from a slightly di↵erent
setup (see footnote 2). In either case, the typical size is
⇤ < ⇤QED ⇠ 108GeV which is regarded as the maximum

FIG. 2. Feynman diagrams relevant for MQED and MGR.
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computed accordingly. In general, EFT must contain
higher derivative operators representing corrections from
UV physics, which will be taken care of in the following
discussion. As we will see, they turn out to be irrelevant
for our purpose except for the QED case.
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recently in [25]. The leading QED contribution is the
one-loop diagram shown in the first diagram of Fig. 2.
The forward limit amplitude is given by
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derivative operators representing corrections from (un-
known) UV physics, which will be taken care of in the
following discussion. As we will see, they turn out to be
irrelevant for our purpose except for the QED case.

Because the SM is a renormalizable theory, the SM am-
plitude satisfies the twice-subtracted dispersion relation,
meaning that the relations
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have to hold for i = QED, Weak, and QCD. Here,
Ai(s) := Mi(s, t = 0) is the forward limit amplitude.

The relations (8) conclude B(2)
i (⇤ ! 1) = 0. The same

relation does not need to apply to the GR sector, how-
ever, because GR is not UV complete; as we will see,

B(2)
GR(⇤ ! 1) ! constant < 0. As ⇤ increases, the GR

contribution eventually dominates over the SM contribu-
tions, leading to violation of (6). The maximum cuto↵
scale of the SM coupled to GR is determined when the
inequality (6) is saturated.

Positivity in QED.— We begin with the light-by-light
scattering in QED coupled to GR which was discussed
recently in [25]. The leading QED contribution is the
one-loop diagram shown in the first diagram of Fig. 2.
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for ⇤ � me. Regarding MGR, we have the tree and one-
loop diagrams up to O(M�2

Pl ) as shown in Fig. 2. The
tree level (pole) contribution is cancelled with the high-
energy integral of RHS of (4). As a result, the one-loop
diagram is the leading gravitational contribution to the
bound (6). In the high-energy limit, we obtain
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. (11)

Whereas B(2)
QED vanishes as ⇤ ! 1, B(2)

GR approaches
a negative constant in the limit ⇤ ! 1. This is why
we obtain a nontrivial cuto↵ scale from (approximate)
positivity bounds.

We remark that the result (11) can be used even in
the later analysis beyond QED. In general, the one-loop

contribution to B(2)
GR from charged particles should be

proportional to e2/M2
Pl and the dimensional analysis con-

cludes B(2)
GR / e2/(m2M2

Pl), where m is the mass of the
propagating particle in the loop. Therefore, the lightest
charged particle should provide the dominant contribu-

tion to B(2)
GR. We thus take into account the electron loop

only to compute B(2)
GR throughout this letter.

Now we discuss implications of the gravitational pos-
itivity bound (6). First, we can simply discard the
O(M�2

Pl M
�2
s ) uncertainty in (6) because the GR contri-

bution (11) is much larger than the uncertainty. Second,
as we mentioned earlier, there are potential higher deriva-
tive corrections that are originated from UV physics
above the cuto↵ scale ⇤. From the EFT perspective,

its contribution to B(2) can be estimated as B(2)
UV = ↵UV

⇤4 ,
where |↵UV| . 1 characterizes the size of interactions at
the scale ⇤.

All in all, the gravitational positivity implies the bound
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which is the one obtained in [18] from a slightly di↵erent
setup (see footnote 2). In either case, the typical size is
⇤ < ⇤QED ⇠ 108GeV which is regarded as the maximum
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QED vanishes as ⇤ ! 1, B(2)
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which is the one obtained in [18] from a slightly di↵erent
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[Tokuda-Aoki-Hirano ’20] performed such a careful study in gravitational EFTs.
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Consistent dispersion relations require Reggization of gravitational amplitudes:
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 cf. In string theory, an infinite higher spin tower is responsible for this.
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Finding 1 

Consistent dispersion relations require Reggization of gravitational amplitudes:


  (  : Reggeization scale).


 cf. In string theory, an infinite higher spin tower is responsible for this.

Imℳ(s, t) ≃ f(t)( s
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s )
2+α′￼t+α′￼′￼t2+⋯

s > MRegge

Finding 2


If we perform IR expansion ,


and define a cutoff-dependent quantity ,


dispersion relations imply .


※  carries information of Regge amplitudes (ex.  for tree-level string).


※ Positivity bounds w/o gravity  is reproduced in the limit .
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M M ∼ Ms
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In the following I discuss phenomenological implications of .


※  is calculable in the standard Feynman rule for a given gravitational EFT.
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Gravitational Electroweak Theory and SM [Aoki-Loc-TN-Tokuda ’21]



Light-by-light scattering in gravitational EW theory

#  from each sector: 

 ,    ,     

 - Non-gravitational contributions  vanish for .


 - Gravitational contribution is negative!

B(Λ) B(Λ) = BQED(Λ) + Bweak(Λ) + Bgrav(Λ)
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Bgrav(Λ) ≃−
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Bnon-grav = BQED + Bweak Λ → ∞

#  scattering at one-loop: .γγ → γγ ℳ = ℳQED + ℳweak + ℳgrav 3 3
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derivative operators representing corrections from (un-
known) UV physics, which will be taken care of in the
following discussion. As we will see, they turn out to be
irrelevant for our purpose except for the QED case.

Because the SM is a renormalizable theory, the SM am-
plitude satisfies the twice-subtracted dispersion relation,
meaning that the relations
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have to hold for i = QED, Weak, and QCD. Here,
Ai(s) := Mi(s, t = 0) is the forward limit amplitude.

The relations (8) conclude B(2)
i (⇤ ! 1) = 0. The same

relation does not need to apply to the GR sector, how-
ever, because GR is not UV complete; as we will see,

B(2)
GR(⇤ ! 1) ! constant < 0. As ⇤ increases, the GR

contribution eventually dominates over the SM contribu-
tions, leading to violation of (6). The maximum cuto↵
scale of the SM coupled to GR is determined when the
inequality (6) is saturated.

Positivity in QED.— We begin with the light-by-light
scattering in QED coupled to GR which was discussed
recently in [25]. The leading QED contribution is the
one-loop diagram shown in the first diagram of Fig. 2.
The forward limit amplitude is given by
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for ⇤ � me. Regarding MGR, we have the tree and one-
loop diagrams up to O(M�2

Pl ) as shown in Fig. 2. The
tree level (pole) contribution is cancelled with the high-
energy integral of RHS of (4). As a result, the one-loop
diagram is the leading gravitational contribution to the
bound (6). In the high-energy limit, we obtain
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Whereas B(2)
QED vanishes as ⇤ ! 1, B(2)

GR approaches
a negative constant in the limit ⇤ ! 1. This is why
we obtain a nontrivial cuto↵ scale from (approximate)
positivity bounds.

We remark that the result (11) can be used even in
the later analysis beyond QED. In general, the one-loop

contribution to B(2)
GR from charged particles should be

proportional to e2/M2
Pl and the dimensional analysis con-

cludes B(2)
GR / e2/(m2M2

Pl), where m is the mass of the
propagating particle in the loop. Therefore, the lightest
charged particle should provide the dominant contribu-

tion to B(2)
GR. We thus take into account the electron loop

only to compute B(2)
GR throughout this letter.

Now we discuss implications of the gravitational pos-
itivity bound (6). First, we can simply discard the
O(M�2

Pl M
�2
s ) uncertainty in (6) because the GR contri-

bution (11) is much larger than the uncertainty. Second,
as we mentioned earlier, there are potential higher deriva-
tive corrections that are originated from UV physics
above the cuto↵ scale ⇤. From the EFT perspective,

its contribution to B(2) can be estimated as B(2)
UV = ↵UV

⇤4 ,
where |↵UV| . 1 characterizes the size of interactions at
the scale ⇤.

All in all, the gravitational positivity implies the bound
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which is the one obtained in [18] from a slightly di↵erent
setup (see footnote 2). In either case, the typical size is
⇤ < ⇤QED ⇠ 108GeV which is regarded as the maximum
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derivative operators representing corrections from (un-
known) UV physics, which will be taken care of in the
following discussion. As we will see, they turn out to be
irrelevant for our purpose except for the QED case.

Because the SM is a renormalizable theory, the SM am-
plitude satisfies the twice-subtracted dispersion relation,
meaning that the relations

B(2)
i (⇤) =
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Z 1
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ds0
ImAi(s0 + i✏)
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(8)

have to hold for i = QED, Weak, and QCD. Here,
Ai(s) := Mi(s, t = 0) is the forward limit amplitude.

The relations (8) conclude B(2)
i (⇤ ! 1) = 0. The same

relation does not need to apply to the GR sector, how-
ever, because GR is not UV complete; as we will see,

B(2)
GR(⇤ ! 1) ! constant < 0. As ⇤ increases, the GR

contribution eventually dominates over the SM contribu-
tions, leading to violation of (6). The maximum cuto↵
scale of the SM coupled to GR is determined when the
inequality (6) is saturated.

Positivity in QED.— We begin with the light-by-light
scattering in QED coupled to GR which was discussed
recently in [25]. The leading QED contribution is the
one-loop diagram shown in the first diagram of Fig. 2.
The forward limit amplitude is given by

AQED ⇡ �8↵2

✓
6 + ln2

m2
e

�s
+ 2 ln

m2
e

�s

◆
+ (s $ �s)

(9)

in the high-energy limit |s| � m2
e, where ↵ = e2/4⇡ is the
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at one-loop level is
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for ⇤ � me. Regarding MGR, we have the tree and one-
loop diagrams up to O(M�2

Pl ) as shown in Fig. 2. The
tree level (pole) contribution is cancelled with the high-
energy integral of RHS of (4). As a result, the one-loop
diagram is the leading gravitational contribution to the
bound (6). In the high-energy limit, we obtain
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Whereas B(2)
QED vanishes as ⇤ ! 1, B(2)

GR approaches
a negative constant in the limit ⇤ ! 1. This is why
we obtain a nontrivial cuto↵ scale from (approximate)
positivity bounds.

We remark that the result (11) can be used even in
the later analysis beyond QED. In general, the one-loop

contribution to B(2)
GR from charged particles should be

proportional to e2/M2
Pl and the dimensional analysis con-

cludes B(2)
GR / e2/(m2M2

Pl), where m is the mass of the
propagating particle in the loop. Therefore, the lightest
charged particle should provide the dominant contribu-

tion to B(2)
GR. We thus take into account the electron loop

only to compute B(2)
GR throughout this letter.

Now we discuss implications of the gravitational pos-
itivity bound (6). First, we can simply discard the
O(M�2

Pl M
�2
s ) uncertainty in (6) because the GR contri-

bution (11) is much larger than the uncertainty. Second,
as we mentioned earlier, there are potential higher deriva-
tive corrections that are originated from UV physics
above the cuto↵ scale ⇤. From the EFT perspective,

its contribution to B(2) can be estimated as B(2)
UV = ↵UV

⇤4 ,
where |↵UV| . 1 characterizes the size of interactions at
the scale ⇤.

All in all, the gravitational positivity implies the bound
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computed accordingly. In general, EFT must contain
higher derivative operators representing corrections from
UV physics, which will be taken care of in the following
discussion. As we will see, they turn out to be irrelevant
for our purpose except for the QED case.

Because the SM is a renormalizable theory, the SM am-
plitude satisfies the twice-subtracted dispersion relation,
meaning that the relations
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ImAi(s0 + i✏)
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have to hold for i = QED, Weak, and QCD. Here,
Ai(s) := Mi(s, t = 0) is the forward limit amplitude.

The relations (8) conclude B(2)
i (⇤ ! 1) = 0. The same

relation does not need to apply to the GR sector, how-
ever, because GR is not UV complete; as we will see,

B(2)
GR(⇤ ! 1) ! constant < 0. As ⇤ increases, i.e.,

as the SM coupled to GR is extrapolated to a high-energy
scale, the GR contribution eventually dominates over the
SM contributions, leading to violation of (6). The maxi-
mum cuto↵ scale of the SM coupled to GR is determined
when the inequality (6) is saturated.

Positivity in QED.— We begin with the light-by-light
scattering in QED coupled to GR which was discussed
recently in [25]. The leading QED contribution is the
one-loop diagram shown in the first diagram of Fig. 2.
The forward limit amplitude is given by
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derivative operators representing corrections from (un-
known) UV physics, which will be taken care of in the
following discussion. As we will see, they turn out to be
irrelevant for our purpose except for the QED case.

Because the SM is a renormalizable theory, the SM am-
plitude satisfies the twice-subtracted dispersion relation,
meaning that the relations
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have to hold for i = QED, Weak, and QCD. Here,
Ai(s) := Mi(s, t = 0) is the forward limit amplitude.

The relations (8) conclude B(2)
i (⇤ ! 1) = 0. The same

relation does not need to apply to the GR sector, how-
ever, because GR is not UV complete; as we will see,

B(2)
GR(⇤ ! 1) ! constant < 0. As ⇤ increases, the GR

contribution eventually dominates over the SM contribu-
tions, leading to violation of (6). The maximum cuto↵
scale of the SM coupled to GR is determined when the
inequality (6) is saturated.

Positivity in QED.— We begin with the light-by-light
scattering in QED coupled to GR which was discussed
recently in [25]. The leading QED contribution is the
one-loop diagram shown in the first diagram of Fig. 2.
The forward limit amplitude is given by
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for ⇤ � me. Regarding MGR, we have the tree and one-
loop diagrams up to O(M�2

Pl ) as shown in Fig. 2. The
tree level (pole) contribution is cancelled with the high-
energy integral of RHS of (4). As a result, the one-loop
diagram is the leading gravitational contribution to the
bound (6). In the high-energy limit, we obtain
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Whereas B(2)
QED vanishes as ⇤ ! 1, B(2)

GR approaches
a negative constant in the limit ⇤ ! 1. This is why
we obtain a nontrivial cuto↵ scale from (approximate)
positivity bounds.

We remark that the result (11) can be used even in
the later analysis beyond QED. In general, the one-loop

contribution to B(2)
GR from charged particles should be

proportional to e2/M2
Pl and the dimensional analysis con-

cludes B(2)
GR / e2/(m2M2

Pl), where m is the mass of the
propagating particle in the loop. Therefore, the lightest
charged particle should provide the dominant contribu-

tion to B(2)
GR. We thus take into account the electron loop

only to compute B(2)
GR throughout this letter.

Now we discuss implications of the gravitational pos-
itivity bound (6). First, we can simply discard the
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s ) uncertainty in (6) because the GR contri-
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its contribution to B(2) can be estimated as B(2)
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derivative operators representing corrections from (un-
known) UV physics, which will be taken care of in the
following discussion. As we will see, they turn out to be
irrelevant for our purpose except for the QED case.

Because the SM is a renormalizable theory, the SM am-
plitude satisfies the twice-subtracted dispersion relation,
meaning that the relations
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have to hold for i = QED, Weak, and QCD. Here,
Ai(s) := Mi(s, t = 0) is the forward limit amplitude.

The relations (8) conclude B(2)
i (⇤ ! 1) = 0. The same

relation does not need to apply to the GR sector, how-
ever, because GR is not UV complete; as we will see,

B(2)
GR(⇤ ! 1) ! constant < 0. As ⇤ increases, the GR

contribution eventually dominates over the SM contribu-
tions, leading to violation of (6). The maximum cuto↵
scale of the SM coupled to GR is determined when the
inequality (6) is saturated.

Positivity in QED.— We begin with the light-by-light
scattering in QED coupled to GR which was discussed
recently in [25]. The leading QED contribution is the
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The forward limit amplitude is given by
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derivative operators representing corrections from (un-
known) UV physics, which will be taken care of in the
following discussion. As we will see, they turn out to be
irrelevant for our purpose except for the QED case.
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Ai(s) := Mi(s, t = 0) is the forward limit amplitude.

The relations (8) conclude B(2)
i (⇤ ! 1) = 0. The same

relation does not need to apply to the GR sector, how-
ever, because GR is not UV complete; as we will see,

B(2)
GR(⇤ ! 1) ! constant < 0. As ⇤ increases, the GR

contribution eventually dominates over the SM contribu-
tions, leading to violation of (6). The maximum cuto↵
scale of the SM coupled to GR is determined when the
inequality (6) is saturated.

Positivity in QED.— We begin with the light-by-light
scattering in QED coupled to GR which was discussed
recently in [25]. The leading QED contribution is the
one-loop diagram shown in the first diagram of Fig. 2.
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Pl), where m is the mass of the
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tion to B(2)
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GR throughout this letter.

Now we discuss implications of the gravitational pos-
itivity bound (6). First, we can simply discard the
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s ) uncertainty in (6) because the GR contri-

bution (11) is much larger than the uncertainty. Second,
as we mentioned earlier, there are potential higher deriva-
tive corrections that are originated from UV physics
above the cuto↵ scale ⇤. From the EFT perspective,

its contribution to B(2) can be estimated as B(2)
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⇤4 ,
where |↵UV| . 1 characterizes the size of interactions at
the scale ⇤.
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computed accordingly. In general, EFT must contain
higher derivative operators representing corrections from
UV physics, which will be taken care of in the following
discussion. As we will see, they turn out to be irrelevant
for our purpose except for the QED case.
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have to hold for i = QED, Weak, and QCD. Here,
Ai(s) := Mi(s, t = 0) is the forward limit amplitude.

The relations (8) conclude B(2)
i (⇤ ! 1) = 0. The same
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scale, the GR contribution eventually dominates over the
SM contributions, leading to violation of (6). The maxi-
mum cuto↵ scale of the SM coupled to GR is determined
when the inequality (6) is saturated.

Positivity in QED.— We begin with the light-by-light
scattering in QED coupled to GR which was discussed
recently in [25]. The leading QED contribution is the
one-loop diagram shown in the first diagram of Fig. 2.
The forward limit amplitude is given by
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derivative operators representing corrections from (un-
known) UV physics, which will be taken care of in the
following discussion. As we will see, they turn out to be
irrelevant for our purpose except for the QED case.

Because the SM is a renormalizable theory, the SM am-
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contribution eventually dominates over the SM contribu-
tions, leading to violation of (6). The maximum cuto↵
scale of the SM coupled to GR is determined when the
inequality (6) is saturated.

Positivity in QED.— We begin with the light-by-light
scattering in QED coupled to GR which was discussed
recently in [25]. The leading QED contribution is the
one-loop diagram shown in the first diagram of Fig. 2.
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for ⇤ � me. Regarding MGR, we have the tree and one-
loop diagrams up to O(M�2

Pl ) as shown in Fig. 2. The
tree level (pole) contribution is cancelled with the high-
energy integral of RHS of (4). As a result, the one-loop
diagram is the leading gravitational contribution to the
bound (6). In the high-energy limit, we obtain
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Whereas B(2)
QED vanishes as ⇤ ! 1, B(2)

GR approaches
a negative constant in the limit ⇤ ! 1. This is why
we obtain a nontrivial cuto↵ scale from (approximate)
positivity bounds.

We remark that the result (11) can be used even in
the later analysis beyond QED. In general, the one-loop

contribution to B(2)
GR from charged particles should be

proportional to e2/M2
Pl and the dimensional analysis con-

cludes B(2)
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Pl), where m is the mass of the
propagating particle in the loop. Therefore, the lightest
charged particle should provide the dominant contribu-

tion to B(2)
GR. We thus take into account the electron loop

only to compute B(2)
GR throughout this letter.

Now we discuss implications of the gravitational pos-
itivity bound (6). First, we can simply discard the
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s ) uncertainty in (6) because the GR contri-

bution (11) is much larger than the uncertainty. Second,
as we mentioned earlier, there are potential higher deriva-
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above the cuto↵ scale ⇤. From the EFT perspective,

its contribution to B(2) can be estimated as B(2)
UV = ↵UV

⇤4 ,
where |↵UV| . 1 characterizes the size of interactions at
the scale ⇤.
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derivative operators representing corrections from (un-
known) UV physics, which will be taken care of in the
following discussion. As we will see, they turn out to be
irrelevant for our purpose except for the QED case.

Because the SM is a renormalizable theory, the SM am-
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contribution eventually dominates over the SM contribu-
tions, leading to violation of (6). The maximum cuto↵
scale of the SM coupled to GR is determined when the
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Positivity in QED.— We begin with the light-by-light
scattering in QED coupled to GR which was discussed
recently in [25]. The leading QED contribution is the
one-loop diagram shown in the first diagram of Fig. 2.
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proportional to e2/M2
Pl and the dimensional analysis con-

cludes B(2)
GR / e2/(m2M2

Pl), where m is the mass of the
propagating particle in the loop. Therefore, the lightest
charged particle should provide the dominant contribu-

tion to B(2)
GR. We thus take into account the electron loop

only to compute B(2)
GR throughout this letter.

Now we discuss implications of the gravitational pos-
itivity bound (6). First, we can simply discard the
O(M�2

Pl M
�2
s ) uncertainty in (6) because the GR contri-

bution (11) is much larger than the uncertainty. Second,
as we mentioned earlier, there are potential higher deriva-
tive corrections that are originated from UV physics
above the cuto↵ scale ⇤. From the EFT perspective,

its contribution to B(2) can be estimated as B(2)
UV = ↵UV

⇤4 ,
where |↵UV| . 1 characterizes the size of interactions at
the scale ⇤.

All in all, the gravitational positivity implies the bound

B(2)
QED +B(2)

UV +B(2)
GR > 0, yielding

64↵2

⇤4

✓
ln

⇤

me
�

1

4

◆
+

↵UV

⇤4
>

22↵

45⇡m2
eM

2
Pl

. (12)

If the first term is dominant, we have the same bound
as [25], ⇤ .

p
emeMPl. On the other hand, if the second

term is dominant and ↵UV ⇠ 1, we find ⇤ .
p

meMPl/e,
which is the one obtained in [18] from a slightly di↵erent
setup (see footnote 2). In either case, the typical size is
⇤ < ⇤QED ⇠ 108GeV which is regarded as the maximum

FIG. 2. Feynman diagrams relevant for MQED and MGR.

3

�

� �

�

e

�

� �

�

hµ⌫

�

� �

�

hµ⌫

e

FIG. 2. Feynman diagrams relevant for MQED and MGR.

�

� �

�

W

�

� �

� �

� �

�

FIG. 3. Feynman diagrams relevant for MWeak.

derivative operators representing corrections from (un-
known) UV physics, which will be taken care of in the
following discussion. As we will see, they turn out to be
irrelevant for our purpose except for the QED case.

Because the SM is a renormalizable theory, the SM am-
plitude satisfies the twice-subtracted dispersion relation,
meaning that the relations
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have to hold for i = QED, Weak, and QCD. Here,
Ai(s) := Mi(s, t = 0) is the forward limit amplitude.

The relations (8) conclude B(2)
i (⇤ ! 1) = 0. The same

relation does not need to apply to the GR sector, how-
ever, because GR is not UV complete; as we will see,

B(2)
GR(⇤ ! 1) ! constant < 0. As ⇤ increases, the GR

contribution eventually dominates over the SM contribu-
tions, leading to violation of (6). The maximum cuto↵
scale of the SM coupled to GR is determined when the
inequality (6) is saturated.

Positivity in QED.— We begin with the light-by-light
scattering in QED coupled to GR which was discussed
recently in [25]. The leading QED contribution is the
one-loop diagram shown in the first diagram of Fig. 2.
The forward limit amplitude is given by
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for ⇤ � me. Regarding MGR, we have the tree and one-
loop diagrams up to O(M�2

Pl ) as shown in Fig. 2. The
tree level (pole) contribution is cancelled with the high-
energy integral of RHS of (4). As a result, the one-loop
diagram is the leading gravitational contribution to the
bound (6). In the high-energy limit, we obtain
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Whereas B(2)
QED vanishes as ⇤ ! 1, B(2)

GR approaches
a negative constant in the limit ⇤ ! 1. This is why
we obtain a nontrivial cuto↵ scale from (approximate)
positivity bounds.

We remark that the result (11) can be used even in
the later analysis beyond QED. In general, the one-loop

contribution to B(2)
GR from charged particles should be
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Pl), where m is the mass of the
propagating particle in the loop. Therefore, the lightest
charged particle should provide the dominant contribu-

tion to B(2)
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only to compute B(2)
GR throughout this letter.
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itivity bound (6). First, we can simply discard the
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bution (11) is much larger than the uncertainty. Second,
as we mentioned earlier, there are potential higher deriva-
tive corrections that are originated from UV physics
above the cuto↵ scale ⇤. From the EFT perspective,

its contribution to B(2) can be estimated as B(2)
UV = ↵UV

⇤4 ,
where |↵UV| . 1 characterizes the size of interactions at
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computed accordingly. In general, EFT must contain
higher derivative operators representing corrections from
UV physics, which will be taken care of in the following
discussion. As we will see, they turn out to be irrelevant
for our purpose except for the QED case.

Because the SM is a renormalizable theory, the SM am-
plitude satisfies the twice-subtracted dispersion relation,
meaning that the relations
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have to hold for i = QED, Weak, and QCD. Here,
Ai(s) := Mi(s, t = 0) is the forward limit amplitude.

The relations (8) conclude B(2)
i (⇤ ! 1) = 0. The same

relation does not need to apply to the GR sector, how-
ever, because GR is not UV complete; as we will see,

B(2)
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scale, the GR contribution eventually dominates over the
SM contributions, leading to violation of (6). The maxi-
mum cuto↵ scale of the SM coupled to GR is determined
when the inequality (6) is saturated.

Positivity in QED.— We begin with the light-by-light
scattering in QED coupled to GR which was discussed
recently in [25]. The leading QED contribution is the
one-loop diagram shown in the first diagram of Fig. 2.
The forward limit amplitude is given by
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derivative operators representing corrections from (un-
known) UV physics, which will be taken care of in the
following discussion. As we will see, they turn out to be
irrelevant for our purpose except for the QED case.

Because the SM is a renormalizable theory, the SM am-
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have to hold for i = QED, Weak, and QCD. Here,
Ai(s) := Mi(s, t = 0) is the forward limit amplitude.
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i (⇤ ! 1) = 0. The same

relation does not need to apply to the GR sector, how-
ever, because GR is not UV complete; as we will see,

B(2)
GR(⇤ ! 1) ! constant < 0. As ⇤ increases, the GR

contribution eventually dominates over the SM contribu-
tions, leading to violation of (6). The maximum cuto↵
scale of the SM coupled to GR is determined when the
inequality (6) is saturated.

Positivity in QED.— We begin with the light-by-light
scattering in QED coupled to GR which was discussed
recently in [25]. The leading QED contribution is the
one-loop diagram shown in the first diagram of Fig. 2.
The forward limit amplitude is given by
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for ⇤ � me. Regarding MGR, we have the tree and one-
loop diagrams up to O(M�2

Pl ) as shown in Fig. 2. The
tree level (pole) contribution is cancelled with the high-
energy integral of RHS of (4). As a result, the one-loop
diagram is the leading gravitational contribution to the
bound (6). In the high-energy limit, we obtain
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Whereas B(2)
QED vanishes as ⇤ ! 1, B(2)

GR approaches
a negative constant in the limit ⇤ ! 1. This is why
we obtain a nontrivial cuto↵ scale from (approximate)
positivity bounds.

We remark that the result (11) can be used even in
the later analysis beyond QED. In general, the one-loop

contribution to B(2)
GR from charged particles should be

proportional to e2/M2
Pl and the dimensional analysis con-

cludes B(2)
GR / e2/(m2M2

Pl), where m is the mass of the
propagating particle in the loop. Therefore, the lightest
charged particle should provide the dominant contribu-

tion to B(2)
GR. We thus take into account the electron loop

only to compute B(2)
GR throughout this letter.

Now we discuss implications of the gravitational pos-
itivity bound (6). First, we can simply discard the
O(M�2

Pl M
�2
s ) uncertainty in (6) because the GR contri-

bution (11) is much larger than the uncertainty. Second,
as we mentioned earlier, there are potential higher deriva-
tive corrections that are originated from UV physics
above the cuto↵ scale ⇤. From the EFT perspective,

its contribution to B(2) can be estimated as B(2)
UV = ↵UV

⇤4 ,
where |↵UV| . 1 characterizes the size of interactions at
the scale ⇤.

All in all, the gravitational positivity implies the bound
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emeMPl. On the other hand, if the second

term is dominant and ↵UV ⇠ 1, we find ⇤ .
p

meMPl/e,
which is the one obtained in [18] from a slightly di↵erent
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Whereas B(2)
QED vanishes as ⇤ ! 1, B(2)

GR approaches
a negative constant in the limit ⇤ ! 1. This is why
we obtain a nontrivial cuto↵ scale from (approximate)
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out this letter.

Now we discuss implications of the gravitational pos-
itivity bound (6). First, we can simply discard the
O(M�2
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s ) uncertainty in (6) because the GR contri-

bution (11) is much larger than the uncertainty. Second,
as we mentioned earlier, there are potential higher deriva-
tive corrections that are originated from UV physics
above the scale ⇤. From the EFT perspective, its contri-

bution to B(2) can be estimated as B(2)
UV = ↵UV
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derivative operators representing corrections from (un-
known) UV physics, which will be taken care of in the
following discussion. As we will see, they turn out to be
irrelevant for our purpose except for the QED case.

Because the SM is a renormalizable theory, the SM am-
plitude satisfies the twice-subtracted dispersion relation,
meaning that the relations
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4

⇡

Z 1

⇤2

ds0
ImAi(s0 + i✏)
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have to hold for i = QED, Weak, and QCD. Here,
Ai(s) := Mi(s, t = 0) is the forward limit amplitude.

The relations (8) conclude B(2)
i (⇤ ! 1) = 0. The same

relation does not need to apply to the GR sector, how-
ever, because GR is not UV complete; as we will see,

B(2)
GR(⇤ ! 1) ! constant < 0. As ⇤ increases, the GR

contribution eventually dominates over the SM contribu-
tions, leading to violation of (6). The maximum cuto↵
scale of the SM coupled to GR is determined when the
inequality (6) is saturated.

Positivity in QED.— We begin with the light-by-light
scattering in QED coupled to GR which was discussed
recently in [25]. The leading QED contribution is the
one-loop diagram shown in the first diagram of Fig. 2.
The forward limit amplitude is given by
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for ⇤ � me. Regarding MGR, we have the tree and one-
loop diagrams up to O(M�2

Pl ) as shown in Fig. 2. The
tree level (pole) contribution is cancelled with the high-
energy integral of RHS of (4). As a result, the one-loop
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Whereas B(2)
QED vanishes as ⇤ ! 1, B(2)

GR approaches
a negative constant in the limit ⇤ ! 1. This is why
we obtain a nontrivial cuto↵ scale from (approximate)
positivity bounds.

We remark that the result (11) can be used even in
the later analysis beyond QED. In general, the one-loop

contribution to B(2)
GR from charged particles should be

proportional to e2/M2
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cludes B(2)
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Pl), where m is the mass of the
propagating particle in the loop. Therefore, the lightest
charged particle should provide the dominant contribu-

tion to B(2)
GR. We thus take into account the electron loop

only to compute B(2)
GR throughout this letter.

Now we discuss implications of the gravitational pos-
itivity bound (6). First, we can simply discard the
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s ) uncertainty in (6) because the GR contri-

bution (11) is much larger than the uncertainty. Second,
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above the cuto↵ scale ⇤. From the EFT perspective,

its contribution to B(2) can be estimated as B(2)
UV = ↵UV

⇤4 ,
where |↵UV| . 1 characterizes the size of interactions at
the scale ⇤.
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derivative operators representing corrections from (un-
known) UV physics, which will be taken care of in the
following discussion. As we will see, they turn out to be
irrelevant for our purpose except for the QED case.

Because the SM is a renormalizable theory, the SM am-
plitude satisfies the twice-subtracted dispersion relation,
meaning that the relations
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have to hold for i = QED, Weak, and QCD. Here,
Ai(s) := Mi(s, t = 0) is the forward limit amplitude.

The relations (8) conclude B(2)
i (⇤ ! 1) = 0. The same

relation does not need to apply to the GR sector, how-
ever, because GR is not UV complete; as we will see,

B(2)
GR(⇤ ! 1) ! constant < 0. As ⇤ increases, the GR

contribution eventually dominates over the SM contribu-
tions, leading to violation of (6). The maximum cuto↵
scale of the SM coupled to GR is determined when the
inequality (6) is saturated.

Positivity in QED.— We begin with the light-by-light
scattering in QED coupled to GR which was discussed
recently in [25]. The leading QED contribution is the
one-loop diagram shown in the first diagram of Fig. 2.
The forward limit amplitude is given by
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Pl ) as shown in Fig. 2. The
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We remark that the result (11) can be used even in
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Pl), where m is the mass of the
propagating particle in the loop. Therefore, the lightest
charged particle should provide the dominant contribu-
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only to compute B(2)
GR throughout this letter.
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computed accordingly. In general, EFT must contain
higher derivative operators representing corrections from
UV physics, which will be taken care of in the following
discussion. As we will see, they turn out to be irrelevant
for our purpose except for the QED case.

Because the SM is a renormalizable theory, the SM am-
plitude satisfies the twice-subtracted dispersion relation,
meaning that the relations
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have to hold for i = QED, Weak, and QCD. Here,
Ai(s) := Mi(s, t = 0) is the forward limit amplitude.

The relations (8) conclude B(2)
i (⇤ ! 1) = 0. The same

relation does not need to apply to the GR sector, how-
ever, because GR is not UV complete; as we will see,

B(2)
GR(⇤ ! 1) ! constant < 0. As ⇤ increases, i.e.,

as the SM coupled to GR is extrapolated to a high-energy
scale, the GR contribution eventually dominates over the
SM contributions, leading to violation of (6). The maxi-
mum cuto↵ scale of the SM coupled to GR is determined
when the inequality (6) is saturated.

Positivity in QED.— We begin with the light-by-light
scattering in QED coupled to GR which was discussed
recently in [25]. The leading QED contribution is the
one-loop diagram shown in the first diagram of Fig. 2.
The forward limit amplitude is given by
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derivative operators representing corrections from (un-
known) UV physics, which will be taken care of in the
following discussion. As we will see, they turn out to be
irrelevant for our purpose except for the QED case.
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for ⇤ � me. Regarding MGR, we have the tree and one-
loop diagrams up to O(M�2

Pl ) as shown in Fig. 2. The
tree level (pole) contribution is cancelled with the high-
energy integral of RHS of (4). As a result, the one-loop
diagram is the leading gravitational contribution to the
bound (6). In the high-energy limit, we obtain
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Whereas B(2)
QED vanishes as ⇤ ! 1, B(2)

GR approaches
a negative constant in the limit ⇤ ! 1. This is why
we obtain a nontrivial cuto↵ scale from (approximate)
positivity bounds.

We remark that the result (11) can be used even in
the later analysis beyond QED. In general, the one-loop

contribution to B(2)
GR from charged particles should be

proportional to e2/M2
Pl and the dimensional analysis con-

cludes B(2)
GR / e2/(m2M2

Pl), where m is the mass of the
propagating particle in the loop. Therefore, the lightest
charged particle should provide the dominant contribu-

tion to B(2)
GR. We thus take into account the electron loop

only to compute B(2)
GR throughout this letter.

Now we discuss implications of the gravitational pos-
itivity bound (6). First, we can simply discard the
O(M�2

Pl M
�2
s ) uncertainty in (6) because the GR contri-

bution (11) is much larger than the uncertainty. Second,
as we mentioned earlier, there are potential higher deriva-
tive corrections that are originated from UV physics
above the cuto↵ scale ⇤. From the EFT perspective,

its contribution to B(2) can be estimated as B(2)
UV = ↵UV

⇤4 ,
where |↵UV| . 1 characterizes the size of interactions at
the scale ⇤.

All in all, the gravitational positivity implies the bound
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emeMPl. On the other hand, if the second

term is dominant and ↵UV ⇠ 1, we find ⇤ .
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which is the one obtained in [18] from a slightly di↵erent
setup (see footnote 2). In either case, the typical size is
⇤ < ⇤QED ⇠ 108GeV which is regarded as the maximum
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derivative operators representing corrections from (un-
known) UV physics, which will be taken care of in the
following discussion. As we will see, they turn out to be
irrelevant for our purpose except for the QED case.

Because the SM is a renormalizable theory, the SM am-
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meaning that the relations

B(2)
i (⇤) =

4

⇡

Z 1

⇤2

ds0
ImAi(s0 + i✏)

s03
(8)

have to hold for i = QED, Weak, and QCD. Here,
Ai(s) := Mi(s, t = 0) is the forward limit amplitude.

The relations (8) conclude B(2)
i (⇤ ! 1) = 0. The same

relation does not need to apply to the GR sector, how-
ever, because GR is not UV complete; as we will see,

B(2)
GR(⇤ ! 1) ! constant < 0. As ⇤ increases, the GR

contribution eventually dominates over the SM contribu-
tions, leading to violation of (6). The maximum cuto↵
scale of the SM coupled to GR is determined when the
inequality (6) is saturated.

Positivity in QED.— We begin with the light-by-light
scattering in QED coupled to GR which was discussed
recently in [25]. The leading QED contribution is the
one-loop diagram shown in the first diagram of Fig. 2.
The forward limit amplitude is given by
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derivative operators representing corrections from (un-
known) UV physics, which will be taken care of in the
following discussion. As we will see, they turn out to be
irrelevant for our purpose except for the QED case.

Because the SM is a renormalizable theory, the SM am-
plitude satisfies the twice-subtracted dispersion relation,
meaning that the relations
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have to hold for i = QED, Weak, and QCD. Here,
Ai(s) := Mi(s, t = 0) is the forward limit amplitude.

The relations (8) conclude B(2)
i (⇤ ! 1) = 0. The same

relation does not need to apply to the GR sector, how-
ever, because GR is not UV complete; as we will see,

B(2)
GR(⇤ ! 1) ! constant < 0. As ⇤ increases, the GR

contribution eventually dominates over the SM contribu-
tions, leading to violation of (6). The maximum cuto↵
scale of the SM coupled to GR is determined when the
inequality (6) is saturated.

Positivity in QED.— We begin with the light-by-light
scattering in QED coupled to GR which was discussed
recently in [25]. The leading QED contribution is the
one-loop diagram shown in the first diagram of Fig. 2.
The forward limit amplitude is given by
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for ⇤ � me. Regarding MGR, we have the tree and one-
loop diagrams up to O(M�2

Pl ) as shown in Fig. 2. The
tree level (pole) contribution is cancelled with the high-
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Whereas B(2)
QED vanishes as ⇤ ! 1, B(2)

GR approaches
a negative constant in the limit ⇤ ! 1. This is why
we obtain a nontrivial cuto↵ scale from (approximate)
positivity bounds.

We remark that the result (11) can be used even in
the later analysis beyond QED. In general, the one-loop

contribution to B(2)
GR from charged particles should be

proportional to e2/M2
Pl and the dimensional analysis con-

cludes B(2)
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Pl), where m is the mass of the
propagating particle in the loop. Therefore, the lightest
charged particle should provide the dominant contribu-

tion to B(2)
GR. We thus take into account the electron loop

only to compute B(2)
GR throughout this letter.

Now we discuss implications of the gravitational pos-
itivity bound (6). First, we can simply discard the
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s ) uncertainty in (6) because the GR contri-

bution (11) is much larger than the uncertainty. Second,
as we mentioned earlier, there are potential higher deriva-
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above the cuto↵ scale ⇤. From the EFT perspective,

its contribution to B(2) can be estimated as B(2)
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⇤4 ,
where |↵UV| . 1 characterizes the size of interactions at
the scale ⇤.
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computed accordingly. In general, EFT must contain
higher derivative operators representing corrections from
UV physics, which will be taken care of in the following
discussion. As we will see, they turn out to be irrelevant
for our purpose except for the QED case.
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have to hold for i = QED, Weak, and QCD. Here,
Ai(s) := Mi(s, t = 0) is the forward limit amplitude.

The relations (8) conclude B(2)
i (⇤ ! 1) = 0. The same

relation does not need to apply to the GR sector, how-
ever, because GR is not UV complete; as we will see,

B(2)
GR(⇤ ! 1) ! constant < 0. As ⇤ increases, i.e.,

as the SM coupled to GR is extrapolated to a high-energy
scale, the GR contribution eventually dominates over the
SM contributions, leading to violation of (6). The maxi-
mum cuto↵ scale of the SM coupled to GR is determined
when the inequality (6) is saturated.

Positivity in QED.— We begin with the light-by-light
scattering in QED coupled to GR which was discussed
recently in [25]. The leading QED contribution is the
one-loop diagram shown in the first diagram of Fig. 2.
The forward limit amplitude is given by
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derivative operators representing corrections from (un-
known) UV physics, which will be taken care of in the
following discussion. As we will see, they turn out to be
irrelevant for our purpose except for the QED case.
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tions, leading to violation of (6). The maximum cuto↵
scale of the SM coupled to GR is determined when the
inequality (6) is saturated.

Positivity in QED.— We begin with the light-by-light
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one-loop diagram shown in the first diagram of Fig. 2.
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Pl and the di-
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Therefore, the lightest charged particle should provide
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GR through-

out this letter.
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derivative operators representing corrections from (un-
known) UV physics, which will be taken care of in the
following discussion. As we will see, they turn out to be
irrelevant for our purpose except for the QED case.

Because the SM is a renormalizable theory, the SM am-
plitude satisfies the twice-subtracted dispersion relation,
meaning that the relations
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have to hold for i = QED, Weak, and QCD. Here,
Ai(s) := Mi(s, t = 0) is the forward limit amplitude.

The relations (8) conclude B(2)
i (⇤ ! 1) = 0. The same

relation does not need to apply to the GR sector, how-
ever, because GR is not UV complete; as we will see,

B(2)
GR(⇤ ! 1) ! constant < 0. As ⇤ increases, the GR

contribution eventually dominates over the SM contribu-
tions, leading to violation of (6). The maximum cuto↵
scale of the SM coupled to GR is determined when the
inequality (6) is saturated.

Positivity in QED.— We begin with the light-by-light
scattering in QED coupled to GR which was discussed
recently in [25]. The leading QED contribution is the
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The forward limit amplitude is given by
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derivative operators representing corrections from (un-
known) UV physics, which will be taken care of in the
following discussion. As we will see, they turn out to be
irrelevant for our purpose except for the QED case.

Because the SM is a renormalizable theory, the SM am-
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have to hold for i = QED, Weak, and QCD. Here,
Ai(s) := Mi(s, t = 0) is the forward limit amplitude.

The relations (8) conclude B(2)
i (⇤ ! 1) = 0. The same

relation does not need to apply to the GR sector, how-
ever, because GR is not UV complete; as we will see,
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GR(⇤ ! 1) ! constant < 0. As ⇤ increases, the GR

contribution eventually dominates over the SM contribu-
tions, leading to violation of (6). The maximum cuto↵
scale of the SM coupled to GR is determined when the
inequality (6) is saturated.

Positivity in QED.— We begin with the light-by-light
scattering in QED coupled to GR which was discussed
recently in [25]. The leading QED contribution is the
one-loop diagram shown in the first diagram of Fig. 2.
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we obtain a nontrivial cuto↵ scale from (approximate)
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We remark that the result (11) can be used even in
the later analysis beyond QED. In general, the one-loop

contribution to B(2)
GR from charged particles should be
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cludes B(2)
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Pl), where m is the mass of the
propagating particle in the loop. Therefore, the lightest
charged particle should provide the dominant contribu-

tion to B(2)
GR. We thus take into account the electron loop

only to compute B(2)
GR throughout this letter.

Now we discuss implications of the gravitational pos-
itivity bound (6). First, we can simply discard the
O(M�2

Pl M
�2
s ) uncertainty in (6) because the GR contri-

bution (11) is much larger than the uncertainty. Second,
as we mentioned earlier, there are potential higher deriva-
tive corrections that are originated from UV physics
above the cuto↵ scale ⇤. From the EFT perspective,

its contribution to B(2) can be estimated as B(2)
UV = ↵UV

⇤4 ,
where |↵UV| . 1 characterizes the size of interactions at
the scale ⇤.
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computed accordingly. In general, EFT must contain
higher derivative operators representing corrections from
UV physics, which will be taken care of in the following
discussion. As we will see, they turn out to be irrelevant
for our purpose except for the QED case.

Because the SM is a renormalizable theory, the SM am-
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meaning that the relations
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have to hold for i = QED, Weak, and QCD. Here,
Ai(s) := Mi(s, t = 0) is the forward limit amplitude.

The relations (8) conclude B(2)
i (⇤ ! 1) = 0. The same

relation does not need to apply to the GR sector, how-
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B(2)
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scale, the GR contribution eventually dominates over the
SM contributions, leading to violation of (6). The maxi-
mum cuto↵ scale of the SM coupled to GR is determined
when the inequality (6) is saturated.

Positivity in QED.— We begin with the light-by-light
scattering in QED coupled to GR which was discussed
recently in [25]. The leading QED contribution is the
one-loop diagram shown in the first diagram of Fig. 2.
The forward limit amplitude is given by
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derivative operators representing corrections from (un-
known) UV physics, which will be taken care of in the
following discussion. As we will see, they turn out to be
irrelevant for our purpose except for the QED case.

Because the SM is a renormalizable theory, the SM am-
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have to hold for i = QED, Weak, and QCD. Here,
Ai(s) := Mi(s, t = 0) is the forward limit amplitude.

The relations (8) conclude B(2)
i (⇤ ! 1) = 0. The same

relation does not need to apply to the GR sector, how-
ever, because GR is not UV complete; as we will see,
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GR(⇤ ! 1) ! constant < 0. As ⇤ increases, the GR

contribution eventually dominates over the SM contribu-
tions, leading to violation of (6). The maximum cuto↵
scale of the SM coupled to GR is determined when the
inequality (6) is saturated.

Positivity in QED.— We begin with the light-by-light
scattering in QED coupled to GR which was discussed
recently in [25]. The leading QED contribution is the
one-loop diagram shown in the first diagram of Fig. 2.
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for ⇤ � me. Regarding MGR, we have the tree and one-
loop diagrams up to O(M�2

Pl ) as shown in Fig. 2. The
tree level (pole) contribution is cancelled with the high-
energy integral of RHS of (4). As a result, the one-loop
diagram is the leading gravitational contribution to the
bound (6). In the high-energy limit, we obtain
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Whereas B(2)
QED vanishes as ⇤ ! 1, B(2)

GR approaches
a negative constant in the limit ⇤ ! 1. This is why
we obtain a nontrivial cuto↵ scale from (approximate)
positivity bounds.

We remark that the result (11) can be used even in
the later analysis beyond QED. In general, the one-loop

contribution to B(2)
GR from charged particles should be

proportional to e2/M2
Pl and the dimensional analysis con-

cludes B(2)
GR / e2/(m2M2

Pl), where m is the mass of the
propagating particle in the loop. Therefore, the lightest
charged particle should provide the dominant contribu-

tion to B(2)
GR. We thus take into account the electron loop

only to compute B(2)
GR throughout this letter.

Now we discuss implications of the gravitational pos-
itivity bound (6). First, we can simply discard the
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s ) uncertainty in (6) because the GR contri-

bution (11) is much larger than the uncertainty. Second,
as we mentioned earlier, there are potential higher deriva-
tive corrections that are originated from UV physics
above the cuto↵ scale ⇤. From the EFT perspective,

its contribution to B(2) can be estimated as B(2)
UV = ↵UV

⇤4 ,
where |↵UV| . 1 characterizes the size of interactions at
the scale ⇤.

All in all, the gravitational positivity implies the bound
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# Consider the following two cases:


1) 

     RHS is negligible, so that a nontrivial bound appears:
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# Consider the following two cases:


1) 

     RHS is negligible, so that a nontrivial bound appears:


         ⇄     ⇄  

     - Explains the hierarchy between the EW scale and the Planck scale??


     - A WGC type bound on the Yukawa coupling and the Weinberg angle.


     - A similar analysis for SM implies  GeV (grand unification??)

 2) If it is violated, negative sign and  are required on RHS


    ※ This means that Regge amplitudes highly depend on IR physics,


         which seems nontrivial (  in tree-level string).
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Implications for dark sector physics [Sato-TN-Tokuda ’22]



Dark sector cannot be completely dark?

gravity

other tiny interactions (if any)

our world (SM) dark sector

- Consider scattering of SM particles and dark sector particles:

= ℳnon-grav + ℳgrav

- Positivity implies 

 ※ To our knowledge,  is quite generic.

Bnon-grav(Λ) > − Bgrav(Λ) ± 1
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PlM2

Bgrav(Λ) < 0

- Under the assumption “ ,” we have .


 →  cannot be too small: dark sector cannot be completely dark?

M ≫ me Bnon-grav(Λ) > − Bgrav(Λ)

Bnon-grav(Λ)



Dark photon models

In [TN-Sato-Tokuda ’22],


we performed a concrete analysis in dark photon models as an illustrative example.


The value of  and therefore implications of gravitational positivity bounds


depend on details of dark photon scenarios.


In our previous paper, we focused on the Stuckelberg case and considered


A) SM-DM interactions are only through dark photon-photon kinetic mixing


B) There exists a spin 1 particle charged under both U(1)’s.
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Scenario A: kinetic mixing only

If we make the assumptions “ ” discussed in the SM analysis,


other SM-DM interactions are needed to save the above plotted region.


※ In the heavier regime, there is a target of collider experiments.

M ≫ me

4

The rotation (17) generates tiny couplings between
A0 and the Standard Model: they are included in
LSM|Ab!A�(✏/

p
1�✏2)A0 . By contrast, couplings between

A and hidden matters are not induced by this rotation.
Below, we call A and A0 photon and the dark photon,
respectively, and analyze the photon-dark photon scat-
tering ��0

! ��0.
The amplitude depends on the helicity configurations

in general. For the process with transversely polarized
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A simplest model
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Lhm = 0. In this case, the process ��0

! ��0 is mediated
only by the Standard Model particles. For simplicity, we
neglect the QCD sector for a while. Since new particles
coupled to photon below 1 TeV have not been found, we
choose ⇤ � 1 TeV.

The form of interactions between A0 and the Stan-
dard Model particles are the same as those for A ex-
cept that the coupling strength is suppressed by a factor
✏/
p
1� ✏2 ' ✏. As a result, the calculations of MT and

ML are similar to those of the amplitude of the light-
by-light scattering which has been done in [36]. As it is
the case for the light-by-light scattering, in our case, the

dominant contributions to B(2)
non-grav(⇤) at ⇤ � 1TeV are

given by the W-boson loop whereas the dominant term

in B(2)
grav arises from the electron, the lightest charged

particle in the Standard Model. The results are,
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where ↵ ' 1/137 denotes the fine-structure constant.
Then, (13) implies a lower bound on ✏: from MT we

FIG. 2. The upper bounds (19) and (20) for ⇤ = 1 TeV are
plotted in the (mA0 , ✏)-plane by the black dotted line and the
white line, respectively. We find that there is no parameter
space compatible with experiments and the bound (20). The
figure is made based on the data given in [41, 42].
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These bounds (19) and (20) are plotted in FIG. 2. The
bound (20) also shows the existence of a lower bound on
mA0 for given ✏ and ⇤ (this bound applies to massive dark
photons only, so massless dark photons are free from this
constraint). The origin of the lower bound on mA0 is the

suppression factor (mA0/mW )2 contained in B(2)
L,non-grav.

This factor appears because longitudinal modes of dark
photons are decoupled fromW-bosons in the limitmA0 !

0.
We have neglected QCD contributions so far. Since the

QCD scale is lower than the electroweak scale, it may give

relevant contributions to B(2)
non-grav. Indeed, QCD e↵ects,

particularly the Pomeron exchange, provide the leading

contribution to B(2)
non-grav in the Standard Model analysis

of [36]. If we extend the analysis to transversely polarized
dark photons simply by multiplying the factor ✏ to the
coupling between photon and Pomeron, the bound (19)
is slightly relaxed as ✏ & 10�13 for ⇤ ⇠ 1 TeV.
It would be interesting to investigate how much the

bound (20) is relaxed when QCD is taken into account.
In general, the QCD contributions to ML will be sup-
pressed by the dark photon mass mA0 at least as long the
mass is the Stückelberg mass. We thus expect that the
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Scenario B: bi-charged spin 1 particle

Suppose that there exists a bi-charged massive vector boson .V

Consider the longitudinal scattering     (  : dark photon gauge coupling)
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 ※ dark photon mass cannot be too small, since the vector boson  is coupled to photon.
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Scenario B ( )MV = Λ = 1TeV, ẽ = e 4
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FIG. 2. The upper bounds (19) and (20) for ⇤ = 1 TeV are
plotted in the (mA0 , ✏)-plane by the black dotted line and the
white line, respectively. We find that there is no parameter
space compatible with experiments and the bound (20). The
figure is made based on the data given in [41, 42].
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These bounds (19) and (20) are plotted in FIG. 2. The
bound (20) also shows the existence of a lower bound on
mA0 for given ✏ and ⇤ (this bound applies to massive dark
photons only, so massless dark photons are free from this
constraint). The origin of the lower bound on mA0 is the

suppression factor (mA0/mW )2 contained in B(2)
L,non-grav.

This factor appears because longitudinal modes of dark
photons are decoupled fromW-bosons in the limitmA0 !

0.
We have neglected QCD contributions so far. Since the

QCD scale is lower than the electroweak scale, it may give

relevant contributions to B(2)
non-grav. Indeed, QCD e↵ects,

particularly the Pomeron exchange, provide the leading

contribution to B(2)
non-grav in the Standard Model analysis

of [36]. If we extend the analysis to transversely polarized
dark photons simply by multiplying the factor ✏ to the
coupling between photon and Pomeron, the bound (19)
is slightly relaxed as ✏ & 10�13 for ⇤ ⇠ 1 TeV.
It would be interesting to investigate how much the

bound (20) is relaxed when QCD is taken into account.
In general, the QCD contributions to ML will be sup-
pressed by the dark photon mass mA0 at least as long the
mass is the Stückelberg mass. We thus expect that the

Lesson 1: The bounds depend on details of the dark photon model.


Lesson 2: Very light & very tiny is generically in conflict w/the bounds.



Summary and prospects



The recipe of gravitational positivity bounds


1. Compute scattering amplitudes  in your model taking into account gravity.


 ※ The model should be considered as an IR EFT since gravity is there.


2. Perform IR expansion, e.g., as .

3. Evaluate a cutoff-dependent quantity .

4. Then,  is required for the EFT to have a consistent UV completion. 

 → Quantum gravity constraints on your gravitational model!

ℳ(s, t)

ℳ(s, t) = (graviton poles) +
∞

∑
n=0

a2n s2n + 𝒪(t)

B(Λ) := a2 −
2
π ∫

Λ2

m2
th

ds
Imℳ(s, t = 0)

s3

B(Λ) = ± 1
M2

PlM2

Summary



Summary

Under the assumptions “ ” made in the SM analysis,


we showed that unitarity of gravitational scattering can be useful


to curved out the DM theory space from a complementary direction.


Interesting interplay between theory, pheno, and experiments!

M ≫ me
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To begin with, we consider the simplest model with
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! ��0 is mediated
only by the Standard Model particles. For simplicity, we
neglect the QCD sector for a while. Since new particles
coupled to photon below 1 TeV have not been found, we
choose ⇤ � 1 TeV.

The form of interactions between A0 and the Stan-
dard Model particles are the same as those for A ex-
cept that the coupling strength is suppressed by a factor
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FIG. 2. The upper bounds (19) and (20) for ⇤ = 1 TeV are
plotted in the (mA0 , ✏)-plane by the black dotted line and the
white line, respectively. We find that there is no parameter
space compatible with experiments and the bound (20). The
figure is made based on the data given in [41, 42].
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These bounds (19) and (20) are plotted in FIG. 2. The
bound (20) also shows the existence of a lower bound on
mA0 for given ✏ and ⇤ (this bound applies to massive dark
photons only, so massless dark photons are free from this
constraint). The origin of the lower bound on mA0 is the

suppression factor (mA0/mW )2 contained in B(2)
L,non-grav.

This factor appears because longitudinal modes of dark
photons are decoupled fromW-bosons in the limitmA0 !

0.
We have neglected QCD contributions so far. Since the

QCD scale is lower than the electroweak scale, it may give

relevant contributions to B(2)
non-grav. Indeed, QCD e↵ects,

particularly the Pomeron exchange, provide the leading

contribution to B(2)
non-grav in the Standard Model analysis

of [36]. If we extend the analysis to transversely polarized
dark photons simply by multiplying the factor ✏ to the
coupling between photon and Pomeron, the bound (19)
is slightly relaxed as ✏ & 10�13 for ⇤ ⇠ 1 TeV.
It would be interesting to investigate how much the

bound (20) is relaxed when QCD is taken into account.
In general, the QCD contributions to ML will be sup-
pressed by the dark photon mass mA0 at least as long the
mass is the Stückelberg mass. We thus expect that the

4

The rotation (17) generates tiny couplings between
A0 and the Standard Model: they are included in
LSM|Ab!A�(✏/

p
1�✏2)A0 . By contrast, couplings between

A and hidden matters are not induced by this rotation.
Below, we call A and A0 photon and the dark photon,
respectively, and analyze the photon-dark photon scat-
tering ��0

! ��0.
The amplitude depends on the helicity configurations

in general. For the process with transversely polarized
dark photon, we consider

MT (s, t) :=
1
4

⇥
M(1+2+3+4+) +M(1+2�3+4�)

+M(1�2�3�4�) +M(1�2+3�4+)
⇤
,

where 1 and 2 (3 and 4) are the ingoing (outgoing) pho-
ton and dark photon, respectively, and the superscript
± denotes the helicity. For the process with longitudinal
modes, we consider

ML(s, t) :=
1

2

⇥
M(1+2L3+4L) +M(1�2L3�4L)

⇤
,

where L means the longitudinal polarization. For these
amplitudes, the crossing symmetry implies the s $ u
permutation invariance.

Below, we refer to (B(2)
non-grav, B

(2)
grav) for MT and ML

as (B(2)
T,non-grav, B

(2)
T,grav) and (B(2)

L,non-grav, B
(2)
L,grav), re-

spectively.

A simplest model

To begin with, we consider the simplest model with
Lhm = 0. In this case, the process ��0

! ��0 is mediated
only by the Standard Model particles. For simplicity, we
neglect the QCD sector for a while. Since new particles
coupled to photon below 1 TeV have not been found, we
choose ⇤ � 1 TeV.

The form of interactions between A0 and the Stan-
dard Model particles are the same as those for A ex-
cept that the coupling strength is suppressed by a factor
✏/
p
1� ✏2 ' ✏. As a result, the calculations of MT and

ML are similar to those of the amplitude of the light-
by-light scattering which has been done in [36]. As it is
the case for the light-by-light scattering, in our case, the

dominant contributions to B(2)
non-grav(⇤) at ⇤ � 1TeV are

given by the W-boson loop whereas the dominant term

in B(2)
grav arises from the electron, the lightest charged

particle in the Standard Model. The results are,

B(2)
T,non-grav(⇤) '

32↵2✏2

m2
W⇤2

, B(2)
L,non-grav(⇤) '

8↵2✏2m2
A0

⇤2m4
W

,

B(2)
T,grav(⇤) ' B(2)

L,grav(⇤) ' �
11↵

180⇡m2
eM

2
Pl

, (18)

where ↵ ' 1/137 denotes the fine-structure constant.
Then, (13) implies a lower bound on ✏: from MT we
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These bounds (19) and (20) are plotted in FIG. 2. The
bound (20) also shows the existence of a lower bound on
mA0 for given ✏ and ⇤ (this bound applies to massive dark
photons only, so massless dark photons are free from this
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In general, the QCD contributions to ML will be sup-
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Prospects

1) comprehensive unitarity analysis of DM models coupled to gravity


 - dark photon w/Higgs [Aoki-TN-Tokuda-Saito-Sato-Shirai-Yamazaki to appear]


 - B-L gauge boson (implications for neutrino masses?)


 - axion-photon coupling, …


 ※ There are several theoretical works necessary for such generalizations


2) theoretical studies on gravitational S-matrix bootstrap


 - How generic is the assumption “ ” is?


 - Implications to/from string compactification.


 - Positivity bounds w/unstable external particles, …

M ≫ me



Prospects

1) comprehensive unitarity analysis of DM models coupled to gravity


 - dark photon w/Higgs [Aoki-TN-Tokuda-Saito-Sato-Shirai-Yamazaki to appear]


 - B-L gauge boson (implications for neutrino masses?)


 - axion-photon coupling, …


 ※ There are several theoretical works necessary for such generalizations


2) theoretical studies on gravitational S-matrix bootstrap


 - How generic is the assumption “ ” is?


 - Implications to/from explicit string compactification.


 - Positivity bounds w/unstable external particles, …

M ≫ me

Thank you!


