How axions change stars

KONSTANTIN SPRINGMANN

In collaboration with Reuven Balkin (Technion), Javi Serra (IFT Madrid), Stefan Stelzl (EPFL Lausanne), Andreas Weiler (TUM)

March, 2023

Part I: White dwarfs as a probe of light QCD axions

- Axions and their properties at finite density
- Toy Model: Free Fermi gas of neutrons with axion
- White dwarfs and light QCD axions

Part II: Heavy neutron stars from light scalars

- Motivation and simplest example
- What kind of equation of state?
- Parameter space

Conclusion and Outlook

Part I: White dwarfs as a probe of light QCD axions

• Axions and their properties at finite density

CP violation in the strong sector

$$\mathcal{L}_{ ext{QCD}} = \sum_{q} ar{q} \left(i oldsymbol{D} - m_{q} e^{i heta_{q}}
ight) q - rac{1}{4} G_{a}^{\mu heta}$$

 $G^{\mu
u}_{a}G^{a}_{\mu
u}- hetarac{lpha_{s}}{8\pi}G^{\mu
u}_{a} ilde{G}^{a}_{\mu
u}$

CP violation in the strong sector

$$\mathcal{L}_{ ext{QCD}} = \sum_{q} ar{q} \left(i ar{p} - oldsymbol{m_q} e^{i heta_q}
ight) q - rac{1}{4} G^{\mu
u}_a G^a_{\mu
u} - oldsymbol{ heta} rac{lpha_s}{8\pi} G^{\mu
u}_a ilde{G}^a_{\mu
u}$$

 ${\cal L}_\chi \supset d_n ar n \sigma^{\mu
u} \gamma_5 n F_{\mu
u}$ Predicts a neutron EDM

CP violation in the strong sector

$$\mathcal{L}_{\text{QCD}} = \sum_{q} \bar{q} \left(i D - m_{q} e^{i\theta_{q}} \right) q - \frac{1}{4} G_{a}^{\mu\nu} G_{a\nu}^{a} - \theta \frac{\alpha_{s}}{8\pi} G_{a}^{\mu\nu} \tilde{G}_{\mu\nu}^{a}$$

$$\text{neutron EDM} \qquad \mathcal{L}_{\chi} \supset d_{n} \bar{n} \sigma^{\mu\nu} \gamma_{5} n F_{\mu\nu}$$

$$\left[\text{See e.g. 1810.03718} \right] \qquad d_{n} \approx \frac{e |\bar{\theta}| m_{\pi}^{2}}{m_{n}^{3}} \approx 10^{-16} |\bar{\theta}| e \text{ cm}$$

Predicts a

CP violation in the strong sector

$$\mathcal{L}_{ ext{QCD}} = \sum_{q} ar{q} \left(i ar{p} - oldsymbol{m_q} e^{i heta_q}
ight) q - rac{1}{4} G^{\mu
u}_a G^a_{\mu
u} - oldsymbol{ heta} rac{lpha_s}{8\pi} G^{\mu
u}_a ilde{G}^a_{\mu
u}$$

Predicts a neutron EDM

 ${\cal L}_\chi \supset d_n ar n \sigma^{\mu
u} \gamma_5 n F_{\mu
u}$

$$l_n pprox rac{e|ar{ heta}|m_\pi^2}{m_n^3} pprox 10^{-16}|ar{ heta}|e~{
m cm}$$

Why so small? $|ar{ heta}| \lesssim 10^{-10}$

The QCD Axion: Solution

- Axial PQ symmetry $U(1)_{\rm PQ}$: spontaneously broken at the scale $\sim f$
- Explicitly broken at the quantum level by QCD anomaly
- pseudo-Nambu-Goldstone Boson (pNGB) arises: the QCD axion $\,\phi(x)$

$$\mathcal{L} = \left(\frac{\phi(x)}{f_a} - \bar{\theta}\right) \frac{\alpha_s}{8\pi} G^{\mu\nu a} \tilde{G}^a_{\mu\nu}$$

• Non-perturbative axion potential relaxes to CP conserving minimum below the QCD scale

$$\bar{\theta}_{\rm eff} \equiv \langle \phi \rangle / f_a - \bar{\theta} \to 0$$

Roberto Peccei

Helen Quinn

The QCD Axion: At low energies

Non-perturbative effects generate potential

$$\frac{g_s^2}{32\pi^2}\frac{\phi}{f}G\tilde{G}$$

The QCD axion is very predictive

Couplings to nucleons, photons, electrons,... Determined by the scale *f*

$$m_{\phi} \simeq \frac{m_{\pi} f_{\pi}}{f}$$

The QCD Axion: Plethora of experimental searches

See e.g. G. Raffelt '06 and Di Luzio Giannotti, Nardi, Visinelli '20

 10^{10}

ARIADNE

 10^{8}

IAXO

10-1

Quasiparticles

 10^{-2}

 10^{-3}

The QCD Axion: Plethora of experimental searches

See e.g. G. Raffelt '06 and Di Luzio Giannotti, Nardi, Visinelli '20

The QCD Axion: Plethora of experimental searches

Hz

SMBHs

See e.g. G. Raffelt '06 and Di Luzio Giannotti, Nardi, Visinelli '20

Light QCD Axions

Non-perturbative effects generate potential

$$\frac{g_s^2}{32\pi^2}\frac{\phi}{f}G\tilde{G}$$

... with smaller mass

$$V(\phi) \simeq -\frac{\epsilon m_{\pi}^2 f_{\pi}^2}{4} \left[\cos\left(\frac{\phi}{f}\right) - 1 \right]$$

For symmetry based realizations, see (Hook, Huang '17, Hook '18, Di Luzio et. al. '21)

Light QCD Axion: Coupling to nucleons

Nuclear Chiral Perturbation Theory with QCD axion

$$\mathcal{L}_{\chi \mathrm{PT}} = \mathrm{Tr} \left[U M_q e^{i\phi/f} + \mathrm{h.c.} \right] \bar{N} N + \dots$$

Leads to non-derivative coupling to nucleons:

$$\mathcal{L} \supset -m_N(\phi)\bar{N}N$$
 with $m_N(\phi) \equiv m_N \left[1 + \frac{\sigma_{\pi N}}{2m_N} \left(\cos\frac{\phi}{f} - 1\right)\right]$

such that $m_N(0) = m_N, \quad \sigma_{\pi N} \simeq 50 \,\mathrm{MeV}$

Light QCD Axion: at Finite Density

Turn on baryon density background $\langle \bar{N}N \rangle = n$

$$V(\phi) \simeq - \left[\frac{\epsilon m_{\pi}^2 f_{\pi}^2}{4} - \sigma_{\pi N} n\right]$$

Light QCD Axion: at Finite Density

Turn on baryon density background $\langle \bar{N}N \rangle = n$

$$V(\phi) \simeq - \left[\frac{\epsilon m_{\pi}^2 f_{\pi}^2}{4} - \sigma_{\pi N} n\right]$$

At critical density $n > n_c$:

new minima appear at $\langle \phi \rangle = \pi f$

Exciting effects appear once $\phi(x)$ develops a non-trivial profile

Axion Profile: in a neutron star 1.0 **axion core** $\phi = \theta f$ Axion core π 0.0

Long range forces, axion conversion in magnetosphere of NSs

see Hook, Huang '17 and Balkin, Serra, KS, Weiler '20

Axion Profile: in a neutron star 1.0 **axion core** $\phi = \theta f$ Axion core π 0.0

On the other hand: There is a back reaction on the system!

Why does this not affect large nuclei?

We gain energy by being in the true vacuum inside dense object.

Field theory potential energy contains gradient term!

$$E = \frac{1}{2} (\partial_t \phi)^2 + U(\phi)$$

Resists change in profile

("string does not want to be bend")

$$U = \frac{1}{2} (\nabla \phi)^2 + V(\phi)$$

Why does this not affect large nuclei?

Condition for non-trivial profile:

Potential gain...
$$m_{\pi}^2 f_{\pi}^2 (\epsilon - \frac{\sigma_N}{m_{\pi}^2})$$

... outweighs gradient energy price

$$r_{\rm critical} > 1/m_{\phi}^{\rm inside}$$

Objects must be large enough. No effects in particle physics experiments.

 $\left(\frac{N^n N}{2 f_\pi^2}\right)$

 $(\nabla \phi)^2 \sim f^2/r^2$ e.g. $f \sim 10^{12} \,\mathrm{GeV}$ $r_{\mathrm{critical}} \sim 0.2 \,cm$

Light QCD Axion: at Finite Density

1) Nucleon mass is reduced once the axion

$$m_N(\phi) \equiv m_N \left[1 + \frac{\sigma_{\pi N}}{2m_N} \left(\cos \frac{\phi}{f} - 1 \right) \right]$$

$$m_N(\pi f) \simeq m_N - \sigma_{\pi N}$$

is at
$$\langle \phi \rangle = \pi f$$

Light QCD Axion: at Finite Density

1) Nucleon mass is reduced once the axion is at $\langle \phi \rangle = \pi f$

$$m_N(\phi) \equiv m_N \left[1 + \frac{\sigma_{\pi N}}{2m_N} \left(\cos \frac{\phi}{f} - 1 \right) \right]$$

$$m_N(\pi f) \simeq m$$

 $V(\pi f) \simeq \epsilon m_\pi^2 f_\pi^2/2$ 2) Energy density of the potential acts as energy density (similar to a CC)

- $\varepsilon(n,\phi) =$

see Bellazzini et. al. '15 and Csaki et. al. '18

$$=\varepsilon_N(n,\phi) + V(\phi)$$

 $p(n,\phi) = p_N(n,\phi) - V(\phi)$

Part I: White dwarfs as a probe of light QCD axions

• Axions and their properties at finite density

• Toy Model: Equation of state of free fermi gas with axion

Free Fermi Gas of Neutro

Minimizing the action

 $\frac{\delta S}{\delta g_{\mu\nu}} =$

Description with Axion

$$\mathcal{L}_{N\phi} = \sqrt{-g} \left[\bar{N} \left(i g^{\mu\nu} \gamma_{\mu} D_{\nu} - m_{N}^{*}(\phi) \right) N + \frac{1}{2} g^{\mu\nu} (\partial_{\mu} \phi) (\partial_{\nu} \phi) \right]$$

 $\frac{\delta S}{\delta \phi} = 0$

Free Fermi Gas of Neutrons with Axion

Minimizing the action
$$\frac{\delta S}{\delta g_{\mu\nu}} =$$

$$\begin{split} \phi^{\prime\prime} \left[1 - \frac{2GM}{r} \right] &+ \frac{2}{r} \phi^{\prime} \left[1 - \frac{GM}{r} - 2\pi G r^2 \left(\varepsilon - p \right) \right] = \frac{\partial V}{\partial \phi} + \rho \frac{\partial m_{\psi}^*(\phi)}{\partial \phi} \equiv U(\phi, \rho) \\ p^{\prime} &= -\frac{GM\varepsilon}{r^2} \left[1 + \frac{p}{\varepsilon} \right] \left[1 - \frac{2GM}{r} \right]^{-1} \left[1 + \frac{4\pi r^3}{M} \left(p + \frac{(\phi^{\prime})^2}{2} \left\{ 1 - \frac{2GM}{r} \right\} \right) \right] - \phi \\ M^{\prime} &= 4\pi r^2 \left[\varepsilon + \frac{1}{2} \left(1 - \frac{2GM}{r} \right) \left(\phi^{\prime} \right)^2 \right]. \end{split}$$

Free Fermi Gas of Neutrons with Axion

Minimizing the action
$$\frac{\delta S}{\delta g_{\mu\nu}} =$$

$$\begin{split} \phi^{\prime\prime} \left[1 - \frac{2GM}{r} \right] &+ \frac{2}{r} \phi^{\prime} \left[1 - \frac{GM}{r} - 2\pi G r^2 \left(\varepsilon - p \right) \right] = \frac{\partial V}{\partial \phi} + \rho \frac{\partial m_{\psi}^*(\phi)}{\partial \phi} \equiv U(\phi, \rho) \\ p^{\prime} &= -\frac{GM\varepsilon}{r^2} \left[1 + \frac{p}{\varepsilon} \right] \left[1 - \frac{2GM}{r} \right]^{-1} \left[1 + \frac{4\pi r^3}{M} \left(p + \frac{(\phi^{\prime})^2}{2} \left\{ 1 - \frac{2GM}{r} \right\} \right) \right] - \phi \\ M^{\prime} &= 4\pi r^2 \left[\varepsilon + \frac{1}{2} \left(1 - \frac{2GM}{r} \right) \left(\phi^{\prime} \right)^2 \right]. \end{split}$$

can be solved numerically, very technical

Free Fermi Gas of Neutrons with Axion

Minimizing the action
$$\frac{\delta S}{\delta g_{\mu\nu}} =$$

$$\begin{split} \phi^{\prime\prime} \left[1 - \frac{2GM}{r} \right] &+ \frac{2}{r} \phi^{\prime} \left[1 - \frac{GM}{r} - 2\pi G r^2 \left(\varepsilon - p \right) \right] = \frac{\partial V}{\partial \phi} + \rho \frac{\partial m_{\psi}^*(\phi)}{\partial \phi} \equiv U(\phi, \rho) \\ p^{\prime} &= -\frac{GM\varepsilon}{r^2} \left[1 + \frac{p}{\varepsilon} \right] \left[1 - \frac{2GM}{r} \right]^{-1} \left[1 + \frac{4\pi r^3}{M} \left(p + \frac{(\phi^{\prime})^2}{2} \left\{ 1 - \frac{2GM}{r} \right\} \right) \right] - \phi \\ M^{\prime} &= 4\pi r^2 \left[\varepsilon + \frac{1}{2} \left(1 - \frac{2GM}{r} \right) \left(\phi^{\prime} \right)^2 \right]. \end{split}$$

can be solved numerically, very technical

Zero Gradient Limit

Scale of the system

Zero Gradient Limit

Scale of the system

Gradient energy becomes negligible: $\phi'(r) = 0$

The system effectively decouples: Solve for EOS Solve pressure gravity equations

Limit of a thin wall bubble

Equation of state

$$\frac{\partial V}{\partial \phi} + n \frac{\partial m_N(\phi)}{\partial \phi} = 0$$

$$\varepsilon(n,\phi) = \varepsilon_N(n,\phi) + V(\phi)$$
$$p(n,\phi) = p_N(n,\phi) - V(\phi)$$

Equation of state

$$\frac{\partial V}{\partial \phi} + n \frac{\partial m_N(\phi)}{\partial \phi} = 0$$

$$\varepsilon(n,\phi) = \varepsilon_N(n,\phi) + V(\phi)$$
$$p(n,\phi) = p_N(n,\phi) - V(\phi)$$

Equation of state

$$\varepsilon(n,\phi) = \varepsilon_N(n,\phi) + V(\phi)$$
$$p(n,\phi) = p_N(n,\phi) - V(\phi)$$

$$\phi(n)$$

 $\frac{\varepsilon(n,\phi)}{=} = \frac{\varepsilon_N(n,\phi) + V(\phi)}{\varepsilon_N(n,\phi) + V(\phi)}$ n ${\mathcal N}$

$$\frac{\varepsilon(n,\phi)}{n} = \frac{\varepsilon_N(n,\phi) + V(\phi)}{n}$$

- metastable ($\phi = 0$) --- unstable --- stable ($\phi = \pi f$)

$$\frac{\varepsilon(n,\phi)}{n} = \frac{\varepsilon_N(n,\phi) + V(\phi)}{n}$$

— metastable ($\phi = 0$) — unstable — stable ($\phi = \pi f$)

Energy per particle is related to pressure

$$p = n^2 \frac{\partial(\varepsilon/n)}{\partial n} = p_N - V$$

$$\frac{\varepsilon(n,\phi)}{n} = \frac{\varepsilon_N(n,\phi) + V(\phi)}{n}$$

— metastable ($\phi = 0$) — unstable — stable ($\phi = \pi f$)

Energy per particle is related to pressure $p = n^2 \frac{\partial(\varepsilon/n)}{\partial n} = p_N - V$

Negative pressure for

$$n_c < n < n^*$$

Defines n^* as

 $p(n^*) = p_N(n^*) - V = 0$
Energy per particle and pressure

- stable $(\phi = \pi f)$

Part I: White dwarfs as a probe of light QCD axions

•Axions and their properties at finite density •Toy Model: Equation of state of free fermi gas with axion

White dwarfs and light QCD axions

White Dwarfs

Degenerate Fermi gas of electrons and light nuclei

- Balance gravity with electron degeneracy pressure
- Charge neutrality $n_e = n_p \equiv n$
- Zero temperature EOS: $p_e(\varepsilon_{\text{Nuclei}})$

•Mass comes dominantly from nuclei 4 He,..., 24 Mg $\varepsilon \simeq \varepsilon_{\text{Nuclei}} = (A/Z)m_N n$

White Dwarfs

Degenerate Fermi gas of electrons and light nuclei

- Balance gravity with electron degeneracy pressure
- Mass comes dominantly from nuclei 4 He, ..., 24 Mg $\varepsilon \simeq \varepsilon_{\text{Nuclei}} = (A/Z)m_N n_A/Z \simeq 2$
- Charge neutrality $n_e = n_p \equiv n$
- Zero temperature EOS: $p_e(\varepsilon_{\text{Nuclei}})$

Solve static degeneracy vs. gravity equations

$$p' = -\frac{GM\varepsilon}{r^2},$$
$$M' = 4\pi r^2\varepsilon,$$

White Dwarf: MR Curve

White Dwarfs with light QCD axion

- EOS analogous to free Fermi gas picture $\varepsilon = (A/Z)m_N^*n + \varepsilon_e(n) + V$

• New ground state density set by electron pressure $p_e(n^*) = p_e(n^*) - V = 0$

White Dwarfs with light QCD axion

- EOS analogous to free Fermi gas picture
- New ground state density set by electron p

There exists a range of densities $n_c <$ and no stable configuration:

$$\varepsilon = (A/Z)m_N^*n + \varepsilon_e(n) + V$$

pressure
$$p_e(n^*) = p_e(n^*) - V = 0$$

$$n < n^*$$
 with $p < 0$

Translates to gap in the MR Curve

Part I: White dwarfs as a probe of light QCD axions

• Axions and their properties at finite density

- Toy Model: Equation of state of free fermi gas with axion
- White dwarfs and the axion

Part II: Heavy stars from light scalars

Motivation and simplest example

Heavy Neutron Stars from light Scalars

... or Fat Zombies in the Stellar Graveyard

Motivation

Gravitational wave astronomy

Masses in the Stellar Graveyard

LIGO-Virgo-KAGRA Black Holes LIGO-Virgo-KAGRA Neutron Stars EM Black Holes EM Neutron Stars Masses 100 Solar 50 20 10

Motivation

Gravitational wave astronomy

Masses in the Stellar Graveyard

LIGO-Virgo-KAGRA Black Holes LIGO-Virgo-KAGRA Neutron Stars EM Black Holes EM Neutron Stars Masses 100 Solar 50-20 10 0000000

Motivation

Gravitational wave astronomy

Masses in the Stellar Graveyard

LIGO-Virgo-KAGRA Black Holes LIGO-Virgo-KAGRA Neutron Stars EM Black Holes EM Neutron Stars Masses 100 Solar 50-20 10 Mass gap +> What are these? 000000

Consider non-interacting Fermi gas of neutrons

 $\Rightarrow M_{\rm max} \sim 0.7 M_{\odot}$

 $\Rightarrow R_{\rm max} \simeq 10 \,\rm km$

Consider non-interacting Fermi gas of neutrons

$$\Rightarrow M_{\rm max} \sim 0.7 \left(\frac{m_N}{m}\right)^2 M_{\odot}$$
$$\Rightarrow R_{\rm max} \sim 10 \left(\frac{m_N}{m}\right)^2 \,\rm{km}$$

Consider non-interacting Fermi gas of neutrons

$$\Rightarrow M_{\rm max} \sim 0.7 \left(\frac{m_N}{m}\right)^2 M_{\odot}$$
$$\Rightarrow R_{\rm max} \sim 10 \left(\frac{m_N}{m}\right)^2 \,\rm{km}$$

For lighter neutrons

$$m \sim m_N/3 \quad \rightarrow \quad \mathcal{O}(10)$$

Consider non-interacting Fermi gas of neutrons

$$\Rightarrow M_{\rm max} \sim 0.7 \left(\frac{m_N}{m}\right)^2 M_{\odot}$$
$$\Rightarrow R_{\rm max} \sim 10 \left(\frac{m_N}{m}\right)^2 \,\mathrm{km}$$

For lighter neutrons

$$m \sim m_N/3 \quad \rightarrow \quad \mathcal{O}(10)$$

Why is that? At fixed energy density need more neutrons $\varepsilon_0 = m_N n$

Part I: White dwarfs as a probe of light QCD axions

- Axions and their properties at finite density
- Toy Model: Equation of state of free fermi gas with axion
- White dwarfs and the axion

- Motivation and simplest example
- What kind of equation of state?

Part II: Heavy stars from light scalars

Potential and coupling $V(\phi) = -\Lambda^4 (\cos \phi)$

Relax the coupling

 $m_N^* = \begin{cases} m_N \\ m_N \end{cases}$

$$\mathcal{S}(\phi/f) - 1) \qquad \mathcal{O}_{\phi N} = \frac{g \, m_N}{2} \bar{N} N \cos\left(\frac{\phi}{f}\right)$$

$$\mathcal{O}_{\phi N} = 0 \qquad 1 > g > 0$$

$$\mathcal{O}_{\gamma N}(1 - g) \qquad \phi = \pi \qquad 1 > g > 0$$

Potential and coupling $V(\phi) = -\Lambda^4 (\cos \phi)$

Relax the coupling

What kind of EOS?

Mass reduction $m_N^* < m_N$ 1) st

 $V(\pi f) = 2\Lambda^4$ softens the EOS Vacuum energy 2)

see Bellazzini et. al. '15 and Csaki et. al. '18

$$\phi) = -\Lambda^4 \left(\cos\left(\frac{\phi}{f}\right) - 1 \right) \qquad \mathcal{O}_{\phi N} = \frac{g \, m_N}{2} \bar{N} N \cos\left(\frac{\phi}{f}\right)$$
$$m_N^* = \begin{cases} m_N & \phi = 0\\ m_N(1-g) & \phi = \pi \end{cases} \qquad 1 > g > 0$$

tiffens the EOS

$$\varepsilon = \text{const.} = m_N^* \rho$$

$$\Rightarrow M_{\text{max}} \sim 0.7 \left(\frac{m_N}{m}\right)^2 M_{\odot}$$

additional energy density gravitates

Parameter space is split – Free fermi gas Stiffer – Coexistence Softer – New ground state dsofter EOS $p_c^{\rm CE}$ Metastable $arepsilon^{*}$ 0

 \mathcal{E}

Potential dominating: $\varepsilon/n > m_N$

Coexistence First order PT: hybrid stars with

– Free fermi gas Stiffer – Coexistence Softer – New ground state dsofter EOS $p_c^{\rm \scriptscriptstyle CE}$ Metastable $arepsilon^{*}$ 0

 \mathcal{E}

Potential dominating: $\varepsilon/n > m_N$

Parameter space is split **Coexistence** First order PT: hybrid stars with

Mass change dominating: $\varepsilon/n < m_N$

New ground state $p = 0, \quad \varepsilon \ge \varepsilon^*$

like SQM

Part I: White dwarfs as a probe of light QCD axions

- Axions and their properties at finite density
- Toy Model: Equation of state of free fermi gas with axion
- White dwarfs and the axion

- Motivation and simplest example
- What kind of equation of state?
- Parameter space

Part II: Heavy stars from light scalars

Part I: White dwarfs as a probe of light QCD axions

- Axions and their property at finite density
- Toy Model: Equation of state of free fermi gas with axion
- White dwarfs and the axion

- Motivation and simplest example
- What kind of equation of state?
- Parameter space

Part II: Heavy stars from light scalars

Conclusion and Outlook White dwarfs as a probe of light QCD axions

- Light QCD axions can get sourced in White Dwarfs leading to a NGS
- There is a gap in densities between the Meta Stable and the NGS branch...
- ... which translates to a gap in the M-R curve
- Allows to exclude large chunk of parameter space
- This does not rely on the axion being DM

Conclusion and Outlook White dwarfs as a probe of light QCD axions

- Light QCD axions can get sourced in White Dwarfs leading to a NGS
- There is a gap in densities between the Meta Stable and the NGS branch...
- ... which translates to a gap in the M-R curve
- Allows to exclude large chunk of parameter space
- This does not rely on the axion being DM

Heavy Neutron Stars from light Scalars

- Light Scalars with non-derivative coupling to nucleons make them lighter
- Coexistence Phase: Hybrid stars with softer EOS
- New ground state: Large effects on maximal mass

Conclusion and Outlook White dwarfs as a probe of light QCD axions

- Light QCD axions can get sourced in White Dwarfs leading to a NGS
- There is a gap in densities between the Meta Stable and the NGS branch...
- ... which translates to a gap in the M-R curve
- Allows to exclude large chunk of parameter space
- This does not rely on the axion being DM

Heavy Neutron Stars from light Scalars

- Light Scalars with non-derivative coupling to nucleons make them lighter
- Coexistence Phase: Hybrid stars with softer EOS
- New ground state: Large effects on maximal mass

More to do

Self bound objects as DM, Coupling to electrons, GW from 1st order PT, what about Supernovae?...
Conclusion and Outlook White dwarfs as a probe of light QCD axions

- Light QCD axions can get sourced in White Dwarfs leading to a NGS
- There is a gap in densities between the Meta Stable and the NGS branch...
- ... which translates to a gap in the M-R curve
- Allows to exclude large chunk of parameter space
- This does not rely on the axion being Heavy Neut
 Thank you!
 ght Scalars
- Light Scalars with non-derivative coupling to nucleons make them lighter
- Coexistence Phase: Hybrid stars with softer EOS
- New ground state: Large effects on maximal mass

More to do

Self bound objects as DM, Coupling to electrons, GW from 1st order PT, what about Supernovae?...

Studying density effects is fun!

To appear soon

White Dwarfs with light Axion

But, for large decay constants $f > 10^{13} \text{GeV}$ gradient effects become important

1) On meta-stable branch: minimum radius is fixed by $R_{min} \sim m_{\phi}^{-1}$

 $n_c = \frac{\epsilon m_\pi^2 f_\pi^2}{4\sigma_{\pi N}}$

White Dwarfs with light Axion

But, for large decay constants $f > 10^{13} \text{GeV}$ gradient effects become important

- 1) On meta-stable branch: minimum radius is fixed by $R_{min} \sim m_{\phi}^{-1}$
- 2) On stable branch: gradient pressure fixes maximal radius

 $n_c = \frac{\epsilon m_\pi^2 f_\pi^2}{4\sigma_{\pi N}}$

ALP-FERMION-GRAVITY SYSTEM

Consider one Fermion N, gravity and the ALP

$$\mathcal{L}_{N\phi} = \sqrt{-g} \left[\bar{N} \left(i g^{\mu\nu} \gamma_{\mu} D_{\nu} - m_{N}^{*}(\phi) \right) N + \frac{1}{2} g^{\mu\nu} (\partial_{\mu} \phi) (\partial_{\nu} \phi) - V(\phi) \right] ,$$

$$\text{ALP neutron interaction} \qquad \text{ALP self-interaction}$$

Outside the dense object

$$\frac{\partial V(\phi)}{\partial \phi} \bigg|_{\phi_0} = 0 \qquad V(\phi)$$

$m_N^*(\phi_0) = m_N$ $(\phi_0) = 0$

Effectively decoupled

COUPLED EOMS

The full coupled system

$$\begin{split} p' + \phi' \left(\frac{\mathrm{d}V}{\mathrm{d}\phi} \right) &= -\frac{(\epsilon + p) \, e^{\sigma}}{2r} \left[1 - e^{-\sigma} + \kappa r^2 \left(p + \frac{e^{-\sigma}}{2} (\phi')^2 \right) \right], \\ \sigma' &= \kappa r e^{\sigma} \left[\epsilon + \frac{e^{-\sigma}}{2} (\phi')^2 \right] - \frac{e^{\sigma} - 1}{r}, \\ \phi'' + \frac{2}{r} \left[\frac{1 + e^{\sigma}}{2} + \frac{\kappa r^2 e^{\sigma}}{4} (p - \epsilon) \right] \phi' = e^{\sigma} \frac{\mathrm{d}V}{\mathrm{d}\phi}. \end{split}$$

ZERO GRADIENT LIMIT

Corresponds to systems much larger than the typical scale of ϕ

$$E(R) \simeq R^2 \Delta R \left(\frac{f}{\Delta R}\right)^2 + R^3 \varepsilon_{\rm pot} \simeq R^3 \varepsilon_{\rm pot}$$

 \checkmark Can forget about the scalar gradient $\partial_\mu \phi = 0$

This is very nice because now the system is effectively decoupled!

 $\frac{\partial \varepsilon}{\partial \phi} = 0 + \text{Neutron Fermi gas} - -$

essure - Gravity balance equations

(Also known as TOV equations)

ENERGY PER PARTICLE

Energy per particle of non-relativistic nergy per particle of nergy per parti

neutrons
$$E_N(n) = \frac{\varepsilon_N(n) + V(n)}{n}$$

Equation of state

Pressure

Global view

ENERGY PER PARTICLE

Difference between NGS and CE region

ew ground state:
$$\{\Lambda_1,g\}$$

 $arepsilon/
ho < m_N$ for some ho

- At lower densities, energy density dominated by $m_N \rho$
- Can even reach less energy per particle as well separated ordinary neutrons!
- Nucleons want to be at finite density!

Coexistence: $\{\Lambda_2, g\}$

$$\varepsilon/
ho > m_N$$
 for all ho

• At higher densities, mass contributes less to the total

PRESSURE – ENERGY DENSITY

Q

– Coexistence

 $p = \rho^2 \frac{\partial(\varepsilon/\rho)}{\partial\rho}$

 \mathcal{E}

QUADRATIC COUPLING PARAMETER SPACE

LINEAR COUPLING PARAMETER SPACE

Coexistence Phase: MR Curve

1st order phase transition:

- Generically softens EOSs e.g. Kaon condensation
- Clearly disfavoured

Gravitational wave signal?

	0.8
	0.7
$M_{\odot}]$	0.6
MNS [0.5
	0.4
	0.3

New Ground State Phase

NGS for $\Lambda = 5 \,\mathrm{MeV}, \ g = 0.75$

This can be a large effect

 $M_{\rm max} \simeq 11.2 M_{\odot}$ $R_{\rm max} \simeq 160 \,\rm km$

New Ground State Phase

Also interesting on a log plot

Self bound objects

 $M \simeq \varepsilon^{\rm NGS} R^3$

Minimal size given by gradient

$$R_{\min} \simeq \frac{f}{\Lambda^2}$$

Field has to fit inside R^3

New Ground State Phase

Also interesting on a log plot

Self bound objects

 $M \simeq \varepsilon^{\rm NGS} R^3$

Minimal size given by gradient

$$R_{\min} \simeq \frac{f}{\Lambda^2}$$

Field has to fit inside R^3

White Dwarfs with light Axion

 $R_{\rm WD}$ [km]

 $n_c = \frac{\epsilon m_\pi^2 f_\pi^2}{4}$ $4\sigma_{\pi N}$

White Dwarfs with light Axion

