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TODAY’'S MENU

ADVANCED LIGO, LISA, AND COSMIC
EXPLORER AS DARK MATTER
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ADVANCED LIGO, LISA, AND COSMIC
EXPLORER AS DARK MATTER
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THE CANDIDATE SIGNAL

e Scalar coupling to SM Lagrangian:

d,
Lit D —\/4nGng {d,,,vnz(,(‘)e — Z( % F‘”’} :

e Modulates \alpha and mass of electron:

Aa(t)

(

Am,(t)

Me

— 44(. COS (SZDI\I?L)

= Al,,,(, COS (_QDMf)
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IMPACT ON SOLID OBJECTS

(due to change in Bohr radius
and bond lengths)
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IMPACT ON GW DETECTORS

due to change in Bohr radius

and bond lengths
(ignore change in refractive

index due to small contribution)

A. Modulation of thickness of beamsplitter
o Can be measured at dark port of Michelson (shown in GEO600)

Larm h

© hDM(t) = Garm los

B. Modulation of
o Can be measured by comparing frequency fluctuations of reference
cavities w.r.t. suspended cavities — typically one of the auxiliary
channels of a GW detector

Nancy Aggarwal, Northwestern University
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GEO600 MEASUREMENT

s  Modulation of thickness of beam-splitter
' can be determined from dark port of
Michelson (aka GW channel): hpp ) =

Larm h
Ips

e Use variable-binwidth FFTs, identify(+reject)
peaks, convert the rest into upper limits

100

g arm GW(t)

This study
Constraint on A’

Constraint on A1

Constraint on AZ' and AT

Vermeulen, S.M., Relton, P., Grote, H. et al. Direct limits for scalar field dark
matter from a gravitational-wave detector. Nature 600, 424—-428 (2021).
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THIS WORK

Advanced LIGO, LISA, and Cosmic Explorer as dark matter transducers

Arxiv:2210.17487

e Modulation of thickness of beamsplitter
o Can be measured at dark port of Michelson
e Modulation of length of
o Can be measured by comparing frequency fluctuations of reference
cavities w.r.t. suspended cavities using auxiliary channel in LIGO

Nancy Aggarwal, Northwestern University
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WHERE IS THE REFERENCE CAVITY?

FIG. 1: Advanced LIGO frequency stabilization. Noise
in the solid cavity, including noise from any dark matter
signal that changes the length of the solid cavity, will
appear on the control signal applied to the acousto-optic
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Frequency actuation
m== Digitizer noise
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frequencies
e LLO needs to be improved, potentially
by improving couplings with laser table
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obtain upper limits on DM couplings
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REFERENCE CAVITY AND GW DETECTOR PARAMETERS

TABLE I: Parameters deciding thermal noise in solid
reference cavities. The current reference cavity
parameters are as-built [39]. “Upgraded” parameters are
proposed with a modest, achievable upgrade.

Cavity parameter
Length [cm)]

Beam size [mm]
Coating loss
Substrate/spacer loss
Coating thickness [pm]
Wavelength [nm)]
Temperature [K]
Young modulus [GPa]
Poisson ratio

Input power [mW]|
Finesse

Nancy Aggarwal, Northwestern University
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d
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Current
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4.4 x 1074
oW
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Upgraded
30.0
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TABLE II: Parameters for scalar-field dark matter
detection using the beamsplitters of laser interferometric
gravitational-wave detectors. The thickness given here is

the physical thickness of the beamsplitter, not its

effective optical thickness.

GEO600 LIGO
Beamsplitter thickness [cm)] 8 6
Arm length [km)] 192 4
Arm gain 1
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FROM STRAIN NOISE TO PROJECTED LIMITS

From noise to DM strain limit: p = threshold amplitude SNR (assumed 3)

5(Qpy,) = DM strain noise psd (from cross-correlation or
single detector)

T = integration time (assumed 1000 h for ground-based)

T = DM coherence time (~10° cycles)

From DM strain limit to DM couping:

A; = strain amplitude limit
d;= coupling limit

Nancy Aggarwal, Northwestern University
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PROJECTED UPPER LIMITS (STRAIN)
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PROJECTED UPPER LIMITS (COUPLING)
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PART1: ULTRALIGHT SCALAR DM: SUMMARY/OUTLOOK

o« Competitive limits can be set by analysing O3 data even with the
higher noise in LLO
- Competitive with GEO600 at low frequencies
e Technical noise could be improved in O4 now that there is a
compelling science case
o Longer length FFTs maybe used to optimize SNR at low-frequencies
e Inthelongterm,
- CE BS will set better limits than LIGO beamsplitter
- there is motivation to swap the refcav with a lower noise
cavity, which will set better limits than CE, even with LIGO
suspended cavities to probe into the natural d parameter
space

Nancy Aggarwal, Northwestern University
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PBH MERGER STRAIN COMPARED TO LIGO NOISE

Insp1ra1 of BBH at a distance of 100 kPc
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CBC VS CW SEARCHES
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DISTANCE LIMIT FOR M, AND fcu
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EXCLUSION W/ LIGO

R=1.04 x 10~ kpC_Byl‘_l supf(rn/PBH)2

—32/37 A
m 5837
("XD[];H> (fpBH) :

~= T 53/37
f el — f81113f<7nl)f<7n?) PB/H

Nancy Aggarwal, Northwestern University
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CONSTRAINTS WITH ASYMMETRIC MASS RATIO

=05 280" kpc_?’yr_lfsupf(ml)f(mg)

—32/37 —34/37 ‘
m1 / ma / (f )53/37
]\[@ mq RBH i

For f(m,):
f(my) = fppy = 1
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IMPROVED UPPER LIMITS ON PBHS

1. Extend continuous-wave (CW) \
searches to faster frequency evolution N
_2 al® & A & .
2. Combine CBC + CW for higher 10 3 a1l I - 250
frequency GWs at a given mass I I | I ‘ .
-3 al l |
A [ 200
e > I |II| |L @ 10_4_- g i I I ! \m-/
L a0 L -~ e
i 8 ””” | ””I” . 150 &
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=] |13 100 &
- '
3. Use 1l & 2 toconstrain PBHs of heavier 10_6-5 HL ! )
masses § | I ! o ! Miller, A., Aggarwal, N, A. et al. 50
4. Combine constraints from multiple 710" | PRD, 2022
dotoctons 107 e
10 10 10 25
Chirp mass, M ¢
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PART2: PBH IN LIGO: SUMMARY/OUTLOOK

1. Method to interpret continuous-wave constraints from LIGO into
constraints for primordial blackholes

2. Current CW searches are designed for pulsars, so limited to linear
frequency evolution and small f-dot

3. Work ongoing to extend CW searches to higher spin-ups

4. Work ongoing to place constraints on the higher-frequency part
using matched-filtering searches

5. Work ongoing to combine CBC and CW constraints

Nancy Aggarwal, Northwestern University
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THANK YOU

ALSO SEE ARXIV 2011.12617, 2010.13157 FOR OTHER DARK MATTER PROJECTS
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PART1: DILATON DM: OUTLINE

1. The candidate signal

2. Previous limits

3. Our method using auxiliary channel in LIGO

4. Possible limits from LIGO’s third observing run

s. Performance with lowering noise in current system,
upgraded system, LISA

6. Possible limits from using normal GW channel in O3,
04, O5, CE

Nancy Aggarwal, Northwestern Universit



COMPARING GEO VS LIGO BEAMSPLITTER

Larm h
Bs
* LIGO has better h_GW, but GEO has no arm cavities, and thicker beam splitter

* hDM(t) = Garm GW (t)

Nancy Aggarwal, Northwestern University
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HOLOMETER (2108.04746)

Frequency (Hz)

- =-=-MICROSCOPE
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BROADER LANDSCAPE
(GITHUB:CAJOHARE/A
XIONLIMITS)
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BROADER
LANDSCAPE
(GITHUB:CAJOHA
RE/AXIONLIMITS)
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CW SEARCH CONSTRAINTS
f < 10° Hz/s
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MERGER RATE FULL EXPRESSION

COS 1.6 x 10° 53 /37
Rprlm i~ bePfPBH

A A
Gpc3yr

Mo
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. { M1Mo
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NUMBER OF PBHS IN THE MILKY WAY
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MICROLENSING AND SN LIMITS ON PBHS
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LIMITS ON PBHS USING GWS
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ASTROPHYSICAL EXPERIMENTAL LIMITS

SNe lensing

/ \Eridanos Il
EROS

Planck

—~ Levitated
sensors

10— 10—3 10—2 101 109 101 102 10°

Mpgn (M)

LIGO BHs

Dark Matter fraction [%)]

39



DISTINGUISHING PBHS FROM ASTROPHYSICAL BHS BY
EINSTEIN TELESCOPE AND COSMIC EXPLORER
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