This talk is based on arXiv:2303.03594

First Results of DANCE from Long-Term Observation

Yuka Oshima

Department of Physics, University of Tokyo

Hiroki Fujimoto, Jun'ya Kume, Soichiro Morisaki, Koji Nagano, Tomohiro Fujita, Ippei Obata, Atsushi Nishizawa, Yuta Michimura, Masaki Ando

Overview

- New experimental project to search for axion DM I. Obata, T. Fujita, Y. Michimura with an optical cavity PRL 121, 161301 (2018) **DANCE:** Dark matter Axion search with riNg Cavity Experiment
- First results of prototype experiment DANCE Act-1 from long-term observation YO, H. Fujimoto+, arXiv:2303.03594

March 30, 2023 Mario Royal Kaikan (Chino) VLDM2023

Axion search with laser interferometers

- We need to search for DM in a wider mass range
- Laser interferometers are useful to search for ultralight DM
- DANCE focuses on axion-like particle DM

March 30, 2023 Mario Royal Kaikan (Chino) **VLDM2023**

Axions and ALPs

- QCD axions are hypothetical particles to solve the strong CP problem
- Various axion-like particles (ALPs) are predicted by string theory
 - One of the DM candidates
- Many experiments to search for ALPs through axion-photon coupling by using a strong magnetic field

Polarization rotation from axions

 Axion-photon coupling causes phase velocity difference between left- and right-handed photons

$$c_{L/R} = \sqrt{1 + \frac{g_{a\gamma}a_0m_a}{k}} \sin(m_a t + \delta_{\tau})$$

Coupling constant Axion field Axion mass

- Phase velocity difference of circular polarizations makes linear polarization rotate and oscillate
 - Axion search without magnetic field

March 30, 2023

VLDM2023

Signal amplification with cavities

 Rotation angle is too small to be observed without a cavity

- Laser light runs many times between mirrors in an optical cavity
 - \rightarrow Rotation angle can be amplified

Laser

6 / 15

Bow-tie ring cavity

• Rotated direction is inverted by reflection on mirrors

 \rightarrow Rotation effect is canceled out in a linear cavity

 A bow-tie ring cavity prevents linear polarization from flipping

Design sensitivity of DANCE

• Shot noise is caused by fluctuations in photons' number

8 / 15

Need to minimize the other noise sources

Picture of DANCE Act-1

Data acquisition and calibration

- Recorded the data in May 18-30, 2021
- The first 86,400-second (24-hour) data was selected
- Amplitudes of s- and p-polarizations were calibrated to the rotation angle of linearly polarized light

Data analysis

<u>H. Nakatsuka+ (2022)</u> J. Kume+, in prep.

- Analysis pipeline for ultralight DM applied to the data
- 551 points exceeded the threshold
- All candidate peaks were rejected by 3 veto procedures
 - Consistency veto: $551 \rightarrow 271$
 - Linewidth veto: $271 \rightarrow 7$
 - Control signal veto: $7 \rightarrow 0$

Results

Worse than design sensitivity by 7 orders of magnitude
First results of axion DM search with a ring cavity

13 / 15

Discussion to improve the sensitivity

<u>1. This work to shot noise</u>

- We need to reduce classical noises
 - Laser intensity noise
 - Laser frequency noise
 - Mechanical vibration
- 2. Shot noise to design sensitivity
- We need to improve the parameters
 - Input laser power: 0.2 W \rightarrow 1 W
 - Observation time: 24 hours \rightarrow 1 year
 - Resonant freq. difference between s- and p-pol.:
 3 MHz → 0 Hz (simultaneous resonance)

We are installing an auxiliary cavity (H. Fujimoto's talk)

Summary

- New experimental project to search for axion DM
 with a bow-tie cavity: DANCE
 I. Obata, T. Fujita, Y. Michimura
 PRL 121, 161301 (2018)
- Prototype experiment DANCE Act-1 is ongoing
 - Long-term observation in May 2021
 - The first upper limit on $g_{a\gamma}$ with a ring cavity
 - We continue to improve the sensitivity

15 / 15

