This talk is based on arXiv:2303.03594

First Results of DANCE from Long-Term Observation

Yuka Oshima

Department of Physics, University of Tokyo
Hiroki Fujimoto, Jun'ya Kume, Soichiro Morisaki, Koji Nagano, Tomohiro Fujita, Ippei Obata, Atsushi Nishizawa, Yuta Michimura, Masaki Ando

Overview

- New experimental project to search for axion DM with an optical cavity
I. Obata, T. Fujita, Y. Michimura PRL 121, 161301 (2018)
DANCE: Dark matter Axion search
with riNg Cavity Experiment
- First results of prototype experiment DANCE Act-1 from long-term observation yo, н. Fujimoto+, arxiv:2303.03594

Mario Royal Kaikan (Chino)

Axion search with laser interferometers

- We need to search for DM in a wider mass range
- Laser interferometers are useful to search for ultralight DM
- DANCE focuses on axion-like particle DM

Dark matter mass [eV]

CMB

Axions and ALPs

- QCD axions are hypothetical particles to solve the strong CP problem
- Various axion-like particles (ALPs) are predicted by string theory
- One of the DM candidates
- Many experiments to search for ALPs through axion-photon coupling by using a strong magnetic field

Primakoff effect

Polarization rotation from axions

- Axion-photon coupling causes phase velocity difference between left- and right-handed photons

$$
\begin{aligned}
& c_{\mathrm{L} / \mathrm{R}}=\sqrt{1+\frac{g_{a \gamma} a_{0} m_{a}}{k} \sin \left(m_{a} t+\delta_{\tau}\right)} \\
& \text { pling constant Axion field Axion mass }
\end{aligned}
$$

- Phase velocity difference of circular polarizations makes linear polarization rotate and oscillate
- Axion search without magnetic field

Signal amplification with cavities

- Rotation angle is too small to be observed without a cavity

- Laser light runs many times between mirrors in an optical cavity
\rightarrow Rotation angle can be amplified

Bow-tie ring cavity

- Rotated direction is inverted by reflection on mirrors
\rightarrow Rotation effect is canceled out in a linear cavity

- A bow-tie ring cavity prevents linear polarization from flipping

Design sensitivity of DANCE

- Shot noise is caused by fluctuations in photons' number
- Need to minimize the other noise sources

Setup of DANCE Act-1

between s- and p-pol.: 2.52(2) MHz

Picture of DANCE Act-1

Data acquisition and calibration

- Recorded the data in May 18-30, 2021
- The first 86,400 -second (24 -hour) data was selected
- Amplitudes of s - and p-polarizations were calibrated to the rotation angle of linearly polarized light

Data analysis

- Analysis pipeline for ultralight DM applied to the data
- 551 points exceeded the threshold
- All candidate peaks were rejected by 3 veto procedures
- Consistency veto: $551 \rightarrow 271$
- Linewidth veto: $271 \rightarrow 7$
- Control signal veto: $7 \rightarrow 0$

Candidate peaks

VLDM2023 March 30, 2023

Mario Royal Kaikan (Chino)

Results

- Worse than design sensitivity by 7 orders of magnitude - First results of axion DM search with a ring cavity

Discussion to improve the sensitivity

1. This work to shot noise

- We need to reduce classical noises
- Laser intensity noise
- Laser frequency noise
- Mechanical vibration

2. Shot noise to design sensitivity

- We need to improve the parameters
- Input laser power: 0.2 W $\rightarrow 1 \mathrm{~W}$
- Observation time: 24 hours $\rightarrow 1$ year
- Resonant freq. difference between s- and p-pol.: $3 \mathrm{MHz} \rightarrow 0 \mathrm{~Hz}$ (simultaneous resonance)

We are installing an auxiliary cavity (H. Fujimoto's talk)

Summary

- New experimental project to search for axion DM with a bow-tie cavity: DANCE
I. Obata, T. Fujita, Y. Michimura PRL 121, 161301 (2018)
- Prototype experiment DANCE Act-1 is ongoing
- Long-term observation in May 2021
- The first upper limit on $g_{a y}$ with a ring cavity
- We continue to improve the sensitivity

> YO, H. Fujimoto+, arXiv:2303.03594
> H. Fujimoto, YO+, JPCS $2156,012182(2021)$

Mario Royal Kaikan (Chino)

