Production of light dark photon dark matter in the early universe

Naoya Kitajima (A01)

FY2022 "What is dark matter? - Comprehensive study of the huge discovery space in dark matter"

March 7-9, 2023, Kavli IPMU

Dark photon dark matter production

- Gravitational particle production during inflation / reheating

Graham, Mardon, Rajendran (2016) / Ema, Nakayama, Tang (2019)

Requirement : High scale inflation / high reheating temperature

- Resonant production from axion oscillation

Agrawal, NK, Reece, Sekiguchi, Takahashi (2020) Co, Pierce, Zhang, Zhao (2019), Bastro-Gil, Santiago, Ubaldi, Vega-Morales (2019) Requirement : Large axion-dark photon coupling

- Resonant production from dark Higgs oscillation Harigaya, Narayan (2019) Requirement : Extremely small Higgs self-coupling and gauge coupling
- Misalignment production Nakayama (2019), Nakayama (2020)

Requirement : non-trivial dynamics of gauge kinetic function during inflation

- Production from the decay of cosmic string loop Long, Wang (2019), NK, Nakayama (2022)

Resonant dark photon DM production from axion

Agrawal, NK, Reece, Sekiguchi, Takahashi, 1810.07188 Co, Pierce, Zhang, Zhao, 1810.07196 Bastero-Gil, Santiago, Ubaldi, Vega-Morales, 1810.07208

$$\mathcal{L} = \frac{1}{2}\partial^{\mu}\phi\partial_{\mu}\phi - V(\phi) - \frac{1}{4}F_{\mu\nu}F^{\mu\nu} - \frac{1}{2}m_{\gamma'}^{2}A_{\mu}A^{\mu} - \frac{\beta}{4f_{a}}\phi F_{\mu\nu}\tilde{F}^{\mu\nu}$$

$$\longrightarrow \quad \ddot{\mathbf{A}}_{\mathbf{k},\pm} + H\dot{\mathbf{A}}_{\mathbf{k},\pm} + \left(m_{\gamma'}^2 + \frac{k^2}{a^2} \mp \frac{k}{a}\frac{\beta\dot{\phi}}{f_a}\right)\mathbf{A}_{\mathbf{k},\pm} = 0$$

- Produced dark photons can stabilize the dark Higgs
 - -> secondary inflation (like thermal inflation) or early dark energy

NK, Nakagawa, Takahashi, 2111.06696next talk by S. NakagawaNakagawa, Takahashi, Yin, 2209.01107

- GW emission with circular polarization NK, Soda, Urakawa, 2010.10990 see also Machado+ (2019), Salehian+ (2020), Ratzinger+ (2020), Namba+ (2020)

Relic abundance of dark photon DM and axion

Agrawal, NK, Reece, Sekiguchi, Takahashi, 1810.07188

Axion abundance is suppressed due to the backreaction

(see also NK, T. Sekiguchi, F. Takahashi, 1711.06590)

& dark photon can be the dominant DM component

Dark photon DM from Abelian-Higgs cosmic strings

Long, Wang 1901.03312, NK, Nakayama 2212.13573

$$\mathcal{L} = (\mathcal{D}_{\mu}\Phi)^* \mathcal{D}^{\mu}\Phi - \frac{1}{4}F_{\mu\nu}F^{\mu\nu} - V(\Phi), \ V(\Phi) = \frac{\lambda}{4}(|\Phi|^2 - v^2)^2$$
$$(\mathcal{D}_{\mu} = \partial_{\mu} - ieA_{\mu}, \ F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu})$$

Scenario

- We are interested in very light dark photon (i.e. extremely small gauge coupling) in order to give the observed relic abundance.

—> cosmic string is almost global (Type-II string)
 e = 0 limit corresponds to the global string case

- Dark photon is continuously produced by the collapse of loops. (similar to the axion emission from global strings)
- Dark photon production becomes inefficient for $\ell_{\text{loop}} \gtrsim m_A^{-1}$ (i.e. loop oscillation frequency becomes smaller than the mass) or $H \lesssim m_A$
- After that, string behaves like local string
 (network loses the energy only through the GW emission)

Loop production & decay

Type-II string with e=0.01 and λ =2

Scaling law/violation

scaling violation can be seen (similar to the axion string case)

Dark photon DM abundance & spectrum

$$\Omega_A h^2 = \frac{m_A (n_{A,0}/s_0) h^2}{\rho_{\rm cr,0}/s_0} \simeq 0.091 \left(\frac{\xi}{12}\right) \left(\frac{m_A}{10^{-13} \,\mathrm{eV}}\right)^{1/2} \left(\frac{v}{10^{14} \,\mathrm{GeV}}\right)^2$$

$$\xi = 0.15 \log\left(\frac{m_r}{m_A}\right) \simeq 12 + 0.15 \log\left[\left(\frac{m_r}{10^{14} \,\text{GeV}}\right) \left(\frac{10^{-13} \,\text{eV}}{m_A}\right)\right]$$

GW spectrum from local/global strings

Energy loss of loops = GW emission + vector boson emission

$$\frac{dE_{\ell}}{dt} = -\Gamma_{\rm GW}G\mu^2 - \Gamma_{\rm vec}v^2\theta(1 - m_A\ell) \quad (\Gamma_{\rm GW} \sim \Gamma_{\rm vec} \sim 50)$$

Loops shorter than m_A-1 can emit dark photons

—> short lived & GW emission is suppressed

GW spectrum

NK, Nakayama 2212.13573

scaling violation (Log-dependence) is taken into account

Detectability

NK, Nakayama 2212.13573

(a)
$$v = 10^{15} \text{ GeV}, m_A = 10^{-14} \text{ eV}$$

(b) $v = 10^{13} \text{ GeV}, m_A = 10^{-10} \text{ eV}$ (c) $v = 10^{12} \text{ GeV}, m_A = 10^{-5} \text{ eV}$

Discussion

More precise study is necessary for

- Scaling violation
- Time-dependence of the tension
- Loop and dark photon production rate
 especially near the transition : global —> local
- Initial loop size distribution (monochromatic or extended?)
- Spectral function of GW from individual loop (cusp- or kink-like?) (because it is crucial for high frequency region)
- Loop lifetime (deviation from Nambu-Goto string)

discussed in Hindmarsh et al (2017), Matsunami et al (2019)

Summary

 Dark photon can be produced from the network of cosmic strings efficient loop collapse continuously produces dark photons dark photon production stops when H < m_A (i.e. the dark photon emission is kinematically suppressed)

-> relic abundance is fixed at that time observed abundance can be obtained for e.g. $v \sim 10^{12} \cdot 10^{14} \text{GeV}, \ m_A \sim 10^{-14} \cdot 10^{-5} \text{eV}$

Gravitational waves are emitted as a signal of this scenario
 Spectrum is different from both local and global one
 It can be tested by combining pulsar timing and direct detection

Mean separation of neighboring strings

Near-global string is more sparse than local string (as pointed out by Yamaguchi at al (1999))

Number of strings per Hubble patch

$$\xi = \frac{\ell_{\rm str} t^2}{V}$$

correction: $d_{sep} = a\tau + b \rightarrow \tilde{d}_{sep} \equiv d_{sep} - b = a\tau$

$$\tilde{d}_{\rm sep} = \sqrt{\frac{V^{(c)}}{\tilde{\ell}_{\rm str}^{(c)}}} \longrightarrow \tilde{\xi} = \frac{\tilde{\ell}_{\rm str} t^2}{V}$$

Loop production & decay

local string (e=1)

local string (e=1)

Emission of longitudinal vector boson

$$\rho_A^{(L)} = \frac{|\Phi|^2}{v^2} \left[\frac{2}{a^2} \left(\frac{\operatorname{Im}(\Phi^* \Phi')}{|\Phi|} \right)^2 + \frac{1}{a^4} \left(E_i^{(L)} \right)^2 \right]$$

$$n_A = \int dk \frac{dn_A}{dk} = \int dk \frac{1}{E_A(k)} \frac{d\rho_A}{dk}$$

$$n_A^{(L)}(t) \simeq \frac{8\xi\mu H}{\bar{E}_A/H}$$

(analytic estimation)

Spectrum of emitted dark photon

NK, Nakayama 2212.13573

peak wavenumber: $k/a \sim 10H \iff$ typical loop size: $\ell \sim 0.1H^{-1}$